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On exponentials of exponential generating series

After identification of the algebra of exponential generating series with the shuffle algebra of ordinary formal power series, the exponential map exp ! : XK

] for the associated Lie group with multiplication given by the shuffle product is well-defined over an arbitrary field K by a result going back to Hurwitz. The main result of this paper states that exp ! (and its reciprocal map log ! ) induces a group isomorphism between the subgroup of rational, respectively algebraic series of the additive group XK[[X]] and the subgroup of rational, respectively algebraic series in the group 1 + XK[[X]] endowed with the shuffle product, if the field K is a subfield of the algebraically closed field F p of characteristic p.

Introduction

The equality

∞ n=0 α n X n n! ∞ n=0 β n X n n! = ∞ n=0 n m=0 n + m n α n β m X n+m (n + m)! (1) 
shows that we can define an algebra structure on the vector space

E(K) = ∞ n=0 α n X n n! | α 0 , α 1 , . . . ∈ K
of formal exponential generating series with coefficients α 0 , α 1 , . . . in an arbitrary field or ring K. For the sake of simplicity we work in the sequel only over fields. The expression α n /n! should be considered formally since the numerical value of n! is zero over a field of positive characteristic p ≤ n.

Motivation for this work is given by the fact that formula (1) allows to define the shuffle product

∞ n=0 γ n X n = ∞ n=0 α n X n ∞ n=0
β n X n of two formal power series ∞ n=0 α n X n and ∞ n=0 β n X n by setting

γ n = n k=0 n k α k β n-k . (2) 
The definition of the shuffle product arises in the theory of divided powers, see eg. [START_REF] Berthelot | Notes On Criystalline Cohomology[END_REF]Definition 3.1]. The main properties needed in this paper are however already in Hurwitz, see [START_REF] Hurwitz | Über die Entwicklungskoefficienten der lemniskatischen Funktionen[END_REF]. I have the impression that the main results of the present paper, given by Theorem 1.1 and 1.3 do not fit very well into the theory of divided powers: They are based on an interplay between ordinary power series (used for defining rationality and algebraicity) and exponential power series (used for defining an analogue of the exponential map in positive characteristic). A special instance of this exponential map is a standard ingredient for divided powers, see [4, Appendix A, Proposition A1], but ordinary formal power series do not seem to play a significant role there. Definition 2 is also a particular case of a shuffle product defined more generally for formal power series in several non-commuting variables. The associated shuffle-algebras arise for example in the study of free Lie algebras [START_REF] Reutenauer | Free Lie Algebras[END_REF], Hopf algebras and polyzetas [START_REF] Zagier | Values of zeta functions and their applications in First European Congress of Mathematics[END_REF], [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzêtas et groupes prounipotents[END_REF], formal languages [START_REF] Berstel | Rational Series and Their Languages, electronic book available at the author's websites[END_REF], etc.

I became interested in this subject through the study of the properties of the algebra of recurrence matrices, a subset of sequences of matrices displaying a kind of self-similarity structure used in [START_REF] Bacher | La suite de Thue-Morse et la catégorie Rec[END_REF] and [START_REF] Bacher | Determinants related to Dirichlet characters modulo 2, 4 and 8 of binomial coeffficients and the algebra of recurrence matrices[END_REF] for studying reductions of the Pascal triangle modulo suitable Dirichlet characters. Such recurrence matrices are closely related to automata groups and complex dynamical systems, see for example [START_REF] Nekrashevych | Self-similar groups[END_REF] for details. Over a finite field, they can be identified with rational formal power series in several non-commuting variables (the underlying algebras are however very different) and it is thus natural to investigate properties of other possible products preserving these sets. The main results of this paper, given by Theorem 1.1 and 1.3 (and their effective analogues, Theorem 1.5 and 1.6), deal with properties of the shuffle product for formal power series in one variable which have gone unnoticed in the existing literature, as far as I am aware.

We denote by

m E = ∞ n=1 α n X n n! | α 1 , α 2 , • • • ∈ K ⊂ E(K)
the maximal ideal of the local algebra E(K). A straightforward computation already known to Hurwitz, see [START_REF] Hurwitz | Über die Entwicklungskoefficienten der lemniskatischen Funktionen[END_REF], shows that a n /n! is always well-defined for a ∈ m E . Endowing K with the discrete topology and E(K) with the topology given by coefficientwise convergency, the functions

exp(a) = ∞ n=0 a n n! and log(1 + a) = - ∞ n=1 (-a) n n
are always defined for a ∈ m E . Switching back to ordinary generating series

A = ∞ n=1 α n X n , B = ∞ n=1 β n X n ∈ m contained in the maximal ideal m = XK[[X]
], of (ordinary) formal power series, we write exp

! (A) = 1 + B if exp ∞ n=1 α n X n n! = 1 + ∞ n=1 β n X n n! .
It is easy to see that exp ! defines a one-to-one map between m and 1 + m with reciprocal map

1 + B -→ A = log ! (1 + B) .

It satisfies exp

! (A + B) = exp ! (A) exp ! (B)
for all A, B ∈ m where the shuffle product

∞ n=0 α n X n ∞ n=0 β n X n = ∞ n,m=0 n + m n α n β m X n+m
corresponds to the ordinary product of the associated exponential generating series. The map exp ! defines thus an isomorphism between the additive group (m, +) and the special shuffle-group (1+m, ) with group-law given by the shuffle-product. It coincides with the familiar exponential map from the Lie algebra m into the special shuffle group, considered as an infinitedimensional Lie group.

The paper [START_REF] Fliess | Sur divers produits de séries formelles[END_REF] of Fliess implies that rational, respectively algebraic elements form a subgroup in (1 + m, ) if one works over a subfield of F p . It is thus natural to consider the corresponding subgroups (under the reciprocal map log ! of the Lie-exponential exp ! : m -→ 1 + m) in the isomorphic additive group (m, +) forming the Lie algebra of (1 + m,

). The answer which is the main result of this paper is surprisingly simple: The corresponding subgroup is exactly the subgroup of all rational, respectively algebraic elements in the additive group m. We have thus: 

(i) A is rational. (ii) exp ! (A) is rational. Theorem 1.1 fails in characteristic zero: The series log ! (1 -X) = - ∞ n=1 (n -1)!X n
is obviously transcendental. (This series shows also that Theorem 1.3 fails to hold in characteristic zero.)

Example 1.2. The Bell numbers B 0 , B 1 , B 2 , . . . , see pages 45,46 in [START_REF] Comtet | Analyse combinatoire, Tome second[END_REF] or Example 5.2.4 in [START_REF] Stanley | Enumerative Combinatorics[END_REF], are the natural integers defined by

∞ n=0 B n x n n! = e e x -1
and have combinatorial interpretations. Since e x -1 is the exponential generating series of the sequence 0, 1, 1, . . . , we have ∞ n=0 B n x n = exp ! (x/(1 -x)) for the ordinary generating series 

∞ n=0 B n x n = 1 + x + 2x 2 + 5x
1 1 + x + x 2 (mod 2), 1 + x + x 2 1 -x 2 -x 3 (mod 3), 1 + x + 2x 2 -x 4
1 -x 4 -x 5 (mod 5) .

Theorem 1.3. Let K be a subfield of the algebraically closed field F p of positive characteristic p. Given a series A ∈ m = XK[[X]] the following two assertions are equivalent: (i) A is algebraic.

(ii) exp ! (A) is algebraic.

Theorem 1.1 and 1.3 are the main results of this paper and can be restated as follows.

Corollary 1.4. Over a subfield K ⊂ F p , the group isomorphism

exp ! : (m, +) -→ (1 + m, )
restricts to an ismorphism between the subgroups of rational elements in (m, +) and in (1 + m, ). It restricts also to an isomorphism between the subgroups of algebraic elements in (m, +) and in (1 + m,

). In particular, the subgroup of rational, respectively algebraic elements in the shuffle group (1 + m,

) is a Lie-group whose Lie algebra (over K ⊂ F p ) is given by the additive subgroup of all rational, respectively algebraic elements in (m, +). Theorem 1.1 and 1.3 can be made more precise as follows. Given a rational series A ∈ K[[X]] represented by a reduced fraction f /g where f, g with g = 0 are two coprime polynomials of degree deg(f ) and deg(g), we set A = max(1 + deg(f ), deg(g)), see also Proposition 2.1 for a well-known equivalent description of A .

Theorem 1.5. We have

exp ! (A) ≤ p q A and log ! (1 + A) ≤ 1+ 1 + A p for a rational series A in m ⊂ F p [[X]
] having all its coefficients in a finite subfield F q ⊂ F p containing q = p e elements.

The bounds for log ! (and the analogous bounds in the algebraic case) can be improved, see Proposition 7.1.

Theorem 1.5 could be called an effective version of Theorem 1.1: Given a rational series represented by f /g ∈ m with f, g ∈ F p [X], Theorem 1.1 ensures the existence of polynomials u, v such that exp ! (f /g) = u/v. Theorem 1.5 shows that u and v are of degre at most p q f /g . They can thus be recovered as suitable Padé approximants from the series developement of exp ! (f /g) up to order 2p q f /g . Experimentally, the number exp ! (A) is generally much smaller.

Since the bounds for log ! are better than for exp ! , the determination of the rational series B = exp ! (A) with A ∈ m rational is best done as follows: Start by "guessing" the rational series B and check (or improve the guess for B in case of failure) that A = log ! (B) using the bounds for log ! .

Given a prime p and a formal power series

C = ∞ n=0 γ n X n in K[[X]] with coefficients in a subfield K of F p , we define for f ∈ N, k ∈ N, k < p f the series C k,f = ∞ n=0 γ k+np f X n .
The vector space K(C) = KC + k,f KC k,f spanned by C and by all series of the form

C k,f , k ∈ {0, . . . , p f -1}, f ∈ {1, 2, . . . } is called the p-kernel of C. We denote its dimension by κ(C) = dim(K(C)). Algebraic series in K[[X]] for K a subfield of F p are characterised by a Theorem of Christol (see Theorem 12.2.5 in [1]) stating that a series C in F p [[X]] is algebraic if and only if its p-kernel K(C) is of finite dimension κ(C) < ∞. We have κ(A + B) ≤ κ(A) + κ(B) and an algebraic series A ∈ F p [[X]
] has a minimal polynomial of degree at most p κ(A) with respect to A.

Theorem 1.6. We have

κ(exp ! (A)) ≤ q κ(A)-1 p q κ(A) and κ(log ! (1 + A)) ≤ 1 + 4(κ(1 + A)) p for a non-zero algebraic series A in m ⊂ F p [[X]
] having all its coefficients in a finite subfield F q ⊂ F p containing q = p e elements.

Considerations similar to those made after Theorem 1.5 are valid and Theorem 1.6 can be turned into an algorithmically effective version of Theorem 1.3.

A map µ : V -→ W between two K-vector spaces is a homogeneous form of degree d if l • µ : V -→ K is homogeneous of degree d (given by a homogeneous polynomial of degre d with respect to coordinates) for every linear form l : W -→ K.

A useful ingredient for proving Theorems 1.1, 1.3 and their effective versions is the following characterisation of log ! :

Proposition 1.7. Over a field K ⊂ F p , the application log ! : 1 + m -→ m extends to a homogeneous form of degree p from K[[X]] into m. Example 1.8. In characteristic 2, we have log ! ∞ n=0 α n X n = ∞ n=0 α 2 2 n X 2 n+1 + 0≤i<j i + j i α i α j X i+j for ∞ n=0 α n X n in 1 + XF 2 [[X]]. Remark 1.9. Defining f ! as f ! ∞ n=1 α n X n = ∞ n=1 β n X n if f ∞ n=1 α n X n n! = ∞ n=1 β n X n n!
Theorems 1.1, 1.3, 1.5 and 1.6 have analogs for the functions sin ! and tan ! (and for their reciprocal functions arcsin ! and arctan ! ).

The rest of the paper is organised as follows. In Sections 2-6 we recall a few definitions and well-known facts which are essentially standard knowledge in the theory of divided powers, see [START_REF] Berthelot | Notes On Criystalline Cohomology[END_REF] or the original work [START_REF] Roby | Lois polynômes et lois formelles en théries des modules[END_REF][START_REF] Roby | Les algèbres à puissances divisées[END_REF]. Section 7 contains the proofs for all results mentionned above.

In a second part, starting at Section 8, we generalise Theorems 1.1 and 1.5 to formal power series in several non-commuting variables.

Rational and algebraic elements in K[[X]]

This section recalls a few well-known facts concerning rational and algebraic elements in the algebra K[[X]] of formal power series.

We denote by τ :

K[[X] -→ K[[X]] the shift operator τ ∞ n=0 α n X n = ∞ n=0 α n+1 X n
acting on formal power series. The following well-known result characterises rational series:

Proposition 2.1. A formal power series A = ∞ n=0 α n X n of K[[X]] is ra- tional if and only if the series A, τ (A), τ 2 (A), . . . , τ k (A) = ∞ n=0 α n+k X n , . . . span a finite-dimensional vector space in K[[X]].
More precisely, the vector space spanned by A, τ (A), τ 2 (A), . . . , τ i (A), . . .

has dimension A = max(1 + deg(f ), deg(g)) if f /g with f, g ∈ K[X] is a reduced expression of a rational series A.

The function A -→ A satisfies the inequality

A + B ≤ A + B for rational series A, B in K[[X]].
As a particular case we have

A -1 ≤ 1 + A ≤ A +1 .
Given a prime p and a formal power series

C = ∞ n=0 γ n X n in F p [[X]] we denote by κ(C) ∈ N ∪ {∞} the dimension of its p-kernel K(C) = KC + f,k F p C k,f
spanned C and by all series of the form

C k,f = ∞ n=0 γ k+np f X n with k ∈ N such that k < p f for f ∈ {1, 2, . . . }.
Algebraic series of K[[X]] for K a subfield of the algebraic closure F p of finite prime characteristic p are characterised by the following Theorem of Christol (see [START_REF] Christol | Ensembles presque périodiques k-reconnaissables[END_REF] or Theorem 12.2.5 in [START_REF] Allouche | Automatic Sequences. Theory, Applications, Generalizations[END_REF]):

Theorem 2.2. A formal power series C = ∞ n=0 γ n X n of F p [[X]] is alge- braic if and only if the dimension κ(C) = dim(K(C)) of its p-kernel K(C) is finite.
Finiteness of κ(C) amounts to recognisability of C which has the following well-known consequence.

Corollary 2.3. An algebraic series of F p [[X]] has all its coefficients in a finite subfield of F p . Proposition 2.4. Let C = ∞ n=0 γ n X n be an algebraic series with coeffi- cients in a subfield K ⊂ F p . (i) We have K(τ (C)) ⊂ K(C) + τ (K(C)) which implies κ(τ (C)) ≤ 2κ(C) .
(ii) We have

K(C) ⊂ K + K(τ (C)) + XK(τ (C)) which implies κ(C) ≤ 1 + 2κ(τ (C)) .
Proof Assertion (i) follows from an iterated application of the easy computations (τ (C)

) k,1 = C k+1,1 if 0 ≤ k < p -1 and (τ (C)) p-1,1 = τ (C 0,1 ) .
The proof of assertion (ii) is similar. 2

The shuffle algebra

This section recalls mostly well-known results concerning shuffle products of elements in the set K[[X]] of formal power series over a commutative field K which is arbitrary unless specified otherwise. The shuffle product

A B = C = ∞ n=0 γ n X n of A = ∞ n=0 α n X n and B = ∞ n=0 β n X n is defined by γ n = n k=0 n k α k β n-k
and corresponds to the usual product ab = c of the associated exponential generating series

a = ∞ n=0 α n X n n! , b = ∞ n=0 β n X n n! , c = ∞ n=0 γ n X n n! .
The shuffle algebra is the algebra

(K[[X]],
) obtained by endowing the vector space K[[X]] of ordinary generating series with the shuffle product. By construction, the shuffle algebra is isomorphic to the algebra E(K) of exponential generating series. In characteristic zero, the trivial identity

∞ n=0 α n X n = ∞ n=0 (n!α n ) X n n!
gives an isomorphism between the usual algebra K[[X]] of ordinary generating series and the shuffle algebra (K[[X]],

). The identity n≥0 λ n X n n≥0 µ n X n = n≥0 (λ + µ) n X n , equivalent to e λX e µX = e (λ+µ)X implies that the convergency radius of the shuffle product of two complex series with strictly positive convergency radii ρ 1 , ρ 2 is at least the harmonic mean 1/ 1 ρ 1 + 1 ρ 2 of ρ 1 and ρ 2 .

Proposition 3.1. The shift operator τ ( ∞ n=0 α n X n ) = ∞ n=0 α n+1 X n acts as a derivation on the shuffle algebra.

Proof The map τ is clearly linear. The computation

τ   i,j≥0 i + j i α i β j X i+j   = i,j≥0 i + j i α i β j X i+j-1 = = i,j≥0 i + j -1 i -1 + i + j -1 j -1 α i β j X i+j-1
shows that τ satisfies the Leibniz rule τ

(A B) = τ (A) B +A τ (B). 2
Proposition 3.1 is trivial and well-known in characteristic zero: the usual derivation d/dX acts obviously as the shift operator on the algebra E(K) of exponential generating series over a field of characteristic zero.

The following two results seem to be due to Fliess, cf. Proposition 6 in [START_REF] Fliess | Sur divers produits de séries formelles[END_REF]. Proposition 3.2. Shuffle products of rational power series are rational.

More precisely, we have

A B ≤ A B for two rational series A, B in K[[X]]. Proof Proposition 3.1 implies τ n A B = n k=0 n k τ k (A) τ n-k (B). The series τ n A
B belongs thus to the vector space spanned by shuffle products with factors in the vector spaces n≥0 Kτ n (A) and n≥0 Kτ n (B). This implies the inequality. Proposition 2.1 ends the proof.

2

Proposition 3.3. Shuffle products of algebraic series in F p [[X]] are alge- braic.
More precisely, we have

κ(A B) ≤ κ(A) κ(B) .
Proof Denoting as in Section 2 by C k,f the series

C k,f = ∞ n=0 γ k+np f X n
associated to a series C = ∞ n=0 γ n X n and by κ(C) the dimension of the vector space K(C) = KC + k,f F p C k,f , Lucas's identity (see [START_REF] Lucas | Sur les congruences des nombres eulériens et les coefficients différentiels des fonctions trigonométriques suivant un module premier[END_REF])

n k ≡ i≥0 ν i κ i (mod p) for n = i≥0 ν i p i , k = i≥0 κ i p i with ν i , κ i ∈ {0, . . . , p -1} implies A B k,1 = k i=0 k i A i,1 B k-i,1
for k = 0, . . . , p -1. Iteration of this formula shows that A B k,f (for arbitrary k, f ∈ N such that k < p f ) belongs to the vector space spanned by shuffle products with factors in the vector spaces K(A) and K(B) of dimension κ(A) and κ(B).

Christol's Theorem (Theorem 2.2) ends the proof.

2 Remark 3.4. Given a subfield K of F p let A ⊂ K[[X]
] denote a vector space of finite dimension a = dim(A) containing the p-kernel K(A) of every element A ∈ A.

We consider an element

B = A 1 A 2 • • • A k
given by the shuffle product of k series A 1 , . . . , A k ∈ A. Expressing all elements A 1 , A 2 , . . . as linear combinations of elements in a fixed basis of A and using commutativity of the shuffle product, the proof of Proposition 3.3 shows that the inequality κ

(B) ≤ κ(A 1 )κ(A 2 ) • • • ≤ a k = (dim(A)) k can be improved to κ(B) ≤ k + a -1 a -1
where the binomial coefficient k+a-1 a-1

encodes the dimension of the vector space of homogeneous polynomials of degree k in a (commuting) variables X 1 , X 2 , . . . , X a .

The special shuffle-group

We call the group of units of the shuffle algebra (K[[X]],

) the shufflegroup. Its elements are given by the set K * + XK[[X]] underlying the multiplicative unit group. The shuffle-group is the direct product of the unit group K * of K with the special shuffle-group

(1 + XK[[X]],
).

The inverse in the shuffle group of 1

-A ∈ (1 + XK[[X]],
) is given by

∞ n=0 A n = 1 + A + A A + A A A + . . . where A 0 = 1 and A n+1 = A A n for n ≥ 1. The trivial identity X X n = n+1 1 X n+1 = (n + 1)X n+1 ∈ K[[X]] implies (1 -X) ( ∞ n=0 n!X n ) = 1.
Invertible rational (analytical) power series have thus generally a transcendental (non-analytical) shuffle-inverse over the complex numbers.

Proposition 4.1. The special shuffle-group (1 + XK[[X]],

) is isomorphic to an infinite-dimensional F p -vector space if the field K is of positive characteristic p.

Proposition 4.1 shows that (1 + XK[[X]],

) is not isomorphic to the multiplicative group structure on 1

+ XK[[X]] if K is of positive character- istic.
Proof of Proposition 4.1 Follows from the fact that exp ! is a group isomorphism between the F p -vector space m and the special shuffle group. 2 Proposition 4.1 follows also as a special case from Proposition 8.1. This yields a different proof which is not based on properties of exp ! .

Remark 4.2. One can show that a rational fraction A ∈ 1 + XC[[X]] has a rational inverse for the shuffle-product if and only if

A = 1
1-λX with λ ∈ C. (Compute A B = 1 using the decomposition into simple fractions of the rational series A, B.) [START_REF] Berstel | Rational Series and Their Languages, electronic book available at the author's websites[END_REF] The exponential and the logarithm for exponential generating functions Hurwitz showed that 1 k! a k is well-defined for a ∈ m E with coefficients in an arbitrary field or commutative ring, see Satz 1 in [START_REF] Hurwitz | Über die Entwicklungskoefficienten der lemniskatischen Funktionen[END_REF]. We give a different proof of this fact which implies that exp ! and log ! are well-defined over fields of positive characteristic. Proposition 5.1. For all natural numbers j, k ≥ 1, the set {1, . . . , jk} can be partitioned in exactly (jk)! (j!) k k! different ways into k unordered disjoint subsets of j elements.

In particular, the rational number (jk)!/((j!) k k!) is an integer for all natural numbers j, k such that j ≥ 1.

Proof The multinomial coefficient (jk)!/(j!) k counts the number of ways of partitioning {1, . . . , jk} into an ordered sequence of k disjoint subset containing all j elements. Dividing by k! removes the order on these k subsets.

This proves that the formula defines an integer for all j, k ≥ 1 and integrality holds also obviously for k = 0 and j ≥ 1.

2

Remark 5.2. A slightly different proof of Proposition 5.1 follows from the observation that (jk)!/((j!) k k!) is the index in the symmetric group over jk elements of the subgroup formed by all permutations stabilising a partition of the set {1, . . . , jk} into k disjoint subsets of j elements.

A different proof is given by the formula

(jk)! (j!) k k! = k n=1 nj-1 j-1
, easily shown using induction on k, see [4, Section 3] (which contains a small misprint).

Proposition 5.3. For any natural integer k ∈ N, there exists polynomials

P k,n ∈ N[α 1 , . . . , α n ] such that 1 k! ∞ n=1 α n X n n! k = ∞ n=0 P k,n (α 1 , α 2 , . . . , α n ) X n n! .
Proof The contribution of a monomial

α j 1 1 α j 2 2 . . . α js s X s i=1 ij i ( s i=1 ij i )! with j 1 + j 2 + • • • + j s = k to (1/k!) ( ∞ n=1 α n X n /n!) k is given by 1 k! k! (j 1 )!(j 2 )! • • • (j s )! ( s i=1 ij i )! s i=1 (i!) j i = s i=1 (ij i )! (i!) j i (j i )! ( s i=1 ij i )! s i=1 (ij i )!
and the last expression is a product of a natural integer by Proposition 5.1 and of a multinomial coefficient. It is thus a natural integer.

2 Corollary 5.4. For a = ∞ n=1 α n X n n! the formulae exp ∞ n=1 α n X n n! = ∞ k=0 ∞ n=0 P k,n (α 1 , . . . , α n ) X n n! and log 1 + ∞ n=1 α n X n n! = ∞ k=1 ∞ n=0 (-1) k+1 (k -1)!P k,n (α 1 , . . . , α n ) X n n!
define the exponential function and the logarithm of an exponential generating series in a ∈ m E respectively 1 + a ∈ 1 + m E over an arbitrary field K. These functions are one-to-one and mutually reciprocal.

The following result shows that the functions exp! and log ! behave as expected under the derivation τ :

∞ n=0 α n X n -→ ∞ n=0 α n+1 X n of the shuffle-algebra. Proposition 5.5. For all A ∈ m = XK[[X]] over an arbitrary field K we have τ (exp ! (A)) = (exp ! (A)) τ (A)
and

τ (log ! (1 + A)) = (1 + A) -1 τ (A)
where

(1 + A) -1
denotes the shuffle inverse of (1 + A).

Proof Proposition 3.1 implies the formal identities

τ   ∞ n=0 A n n!   = ∞ n=0 n A n-1 n! τ (A) =   ∞ n=0 A n n!   τ (A)
for A ∈ m. By Proposition 5.1, this identity holds over the ring Z and thus over an arbitrary commutative field. This establishes the formula for exp ! .

For log ! we get similarly

τ   - ∞ n=1 (-A) n n   = ∞ n=1 n (-A) n-1 n τ (A) = ∞ n=0 (-A) n τ (A)
which implies the result by Proposition 5.1 and by the trivial identity

(1 + A) -1 = ∞ n=0 (-A) n for the shuffle inverse (1 + A) -1 of 1 + A ∈ 1 + m. 2 6 
The logarithm as a p-homogeneous form over

F p [[x]]
Given a fixed prime number p, Proposition 4.1 implies that there exists polynomials

Q p,n ∈ N[α 0 , . . . , α n ] for n ≥ 1 such that ∞ n=0 α n X n p = α p 0 + p ∞ n=1 Q p,n (α 0 , . . . , α n )X n .
The polynomials Q p,n are homogeneous of degree p with respect to the variabels α 0 , . . . , α n and we denote by

µ p ∞ n=0 α n X n = ∞ n=1 Q p,n (α 0 , . . . , α n )X n
the p-homogeneous form defined by the ordinary generating series of the polynomials

Q p,1 , Q p,2 , . . . . Proposition 6.1. The restriction of µ p to 1 + m ⊂ F p [[X]
] coincides with the function log ! .

Proof We have

τ (µ p (1 + A)) = (1 + A) p-1 τ (1 + A) for A in m where τ ( ∞ n=0 α n X n ) = ∞ n=0 α n+1
X n is the shift-operator of Proposition 3.1. This identity defines the restriction of the p-homogenous form µ p to 1+m. Proposition 5.5 and the identity (1+A) p-1 (1+A) = 1 show that the function log ! satisfies the same equation

τ (log ! (1 + A)) = (1 + A) p-1 τ (1 + A) .
Since both series µ p (1 + A) and log ! (1 + A) are without constant term, the equality τ

(µ p (1 + A)) = τ (log ! (1 + A)) implies the equality µ p (1 + A) = log ! (1 + A). 2 7 Proofs Proposition 7.1. If A in XF p [[X]
] is rational (respectively algebraic) then the formal power series log ! (1 + A) is rational (respectively algebraic).

More precisely, we have

log ! (1 + A) ≤ 1 + p+ 1 + A -1 p ≤ 1+ 1 + A p for A rational in m = XF p [[X]], respectively κ(log ! (1 + A)) ≤ 1 + 4κ(A) p + κ(1 + A) -2 p -1 ≤ 1 + 4(κ(1 + A)) p , for A algebraic in m. Proposition 7.2. If A in XF p [[X]
] is rational (respectively algebraic) then exp ! (A) is rational (respectively algebraic). More precisely, denoting by q = p e the cardinality of a finite field F q ⊂ F p containing all coefficients of A we have

exp ! (A) ≤ p q A for A rational in m, respectively κ(exp ! (A)) ≤ q κ(A)-1 p q κ(A)
for A algebraic and non-zero in m. 

τ (log ! (1 + A)) = (1 + A) -1 τ (A)
of Proposition 5.5 establishes the equality

τ (log ! (1 + A)) = (1 + A) p-1 τ (A)
already encountered in the proof of Proposition 6.1. This shows

τ (log ! (1 + A) ≤ 1 + A p-1 τ (A) ≤ 1 + A p and implies log ! (1 + A) ≤ 1+ 1 + A p .
This proves the cruder inequality in the rational case. The finer inequality follows from the fact that all p factors of (1+A)

p-1 τ (A) = τ (log ! (1+ A)) belong to a common vector space of dimension 1 + A which is closed for the shift map. The details are the same as for Remark 3.4.

For algebraic A we have similarly

κ(τ (log ! (1 + A))) ≤ (κ(1 + A)) p-1 κ(τ (A)) = (κ(1 + A)) p-1 κ(τ (1 + A)) ≤ ≤ (κ(1 + A)) p-1 2κ(1 + A) ≤ 2(κ(1 + A)) p
using assertion (i) of Proposition 2.4. This shows

κ(log ! (1 + A)) ≤ 1 + 2κ(τ (log ! (1 + A))) ≤ 1 + 4(κ(1 + A)) p
by assertion (ii) of Proposition 2.4 and ends the proof for the cruder inequality.

The finer inequality follows from Proposition 2.4 combined with Remark 3.4.

2 Given a vector space V ⊂ K[[X]] containing K, we denote by Γ(V) the shuffle-subgroup generated by all elements of V ∩ (1 + XK[[X]]). Lemma 7.3. Every element of a vector space V ⊂ K[[X]] containing the field K of constants can be written as a linear combination of elements in Γ(V).

Proof We have the identity

A = (1 -ǫ(A) + A) + (ǫ(A) -1)
where ǫ( ∞ n=0 α n X n ) = α 0 is the augmentation map and where (1-ǫ(A)+A) and the constant (ǫ(A) -1) are both in KΓ(V) for A ∈ V.

2 Proof of Proposition 7.2 for A rational Corollary 2.3 shows that we can work over a finite subfield K = F q of F p consisting of q = p e elements.

Given a rational series A in m = XK[[X]], we denote by Γ A the shufflesubgroup generated by all elements of the set

∞ n=0 (τ n (A) + K) ∩ {1 + XK[[X]]}.
This generating set of Γ A contains at most q A elements. Proposition 4.1 implies thus that Γ A is a finite group having at most p q A elements. The subalgebra

K[Γ A ] ⊂ K[[X]
] spanned by all elements of Γ A is thus of dimension ≤ p q A . The identity 

τ n (exp ! (A)) ∈ exp ! (A) K[Γ A ]
for all n ∈ N by Lemma 7.3. This ends the proof since the right-hand side is a K-vector space of dimension at most p q A . 2

Proposition 7.4. We have for every prime number p and for all natural integers j, k such that j ≥ 1 the identity

(jk)! (j!) k k! ≡ (pjk)! ((pj)!) k k! (mod p) .
Proof The number (pjk)!/(((pj)!) k k!) of the right-hand-side yields the cardinality of the set E of all partitions of {1, . . . , pjk} into k subsets of pj elements. Consider the group G generated by the jk cycles of length p of the form (i, i + jk, i + 2jk, . . . , i + (p -1)jk) for i = 1, . . . , jk. The group G has p jk elements and acts on the set of partitions by preserving their type defined as the multiset of cardinalities of all involved parts. In particular it acts by permutation on the set E. A partition P ∈ E is a fixpoint for G if and only if every part of P is a union of G-orbits. Choosing a bijection between {1, . . . , jk} and G-orbits of {1, . . . , pjk}, fixpoints of E are in bijection with partitions of the set {1, . . . , jk} into k subsets of j elements. The number of fixpoints of the G-action on E equals thus (jk)! (j!) k k! . Since G is a p-group, the cardinalities of all non-trivial G-orbits of E are strictly positive powers of p. This ends the proof. 2

Corollary 7.5. exp ! and log ! commute with the "Frobenius substitution"

ϕ( ∞ n=0 α n X n ) = ∞ n=0 α n X pn for series in XF p [[X]], respectively in 1 + XF p [[X]].
This implies (exp

! (A)) 0,f = exp ! (A 0,f )
where

C k,f = ∞ n=0 γ k+np f X n for C = ∞ n=0 γ n X n .
Lemma 7.6. We have

(B C) 0,1 = B 0,1 C 0,1
Proof Follows from the identity pn k ≡ 0 (mod p)

if k ≡ 0 (mod p). 2 Proof of Proposition 7.2 for A algebraic We work again over a finite subfield K = F q ⊂ F p containing all coefficients of A.

Let Γ A denote the shuffle-subgroup generated by all elements in

(K(A) + K) ∩ (1 + XK[[X]])
where K(A) = KA + k,f KA k,f denotes the p-kernel of A. We denote by

K[Γ A ] ⊂ (K[[X]],
) the shuffle-subalgebra of dimension at most p q κ(A) spanned by all elements of the group Γ

A ⊂ (1 + XK[[X]],
). Using the convention A 0,0 = A, we have for

B ∈ K[Γ(A)] and for k such that 0 ≤ k < p exp ! (A 0,f ) B k,1 = τ k exp ! (A 0,f ) B 0,1 = =   k j=0 k j τ j (exp ! (A 0,f )) τ k-j (B)   0,1 = = k j=0 k j τ j (exp ! (A 0,f )) 0,1 B k-j,1
where the last equality is due to Lemma 7.6 (and to the equality (τ k (C)) 0,1 = C k,1 for 0 ≤ k < p). Iteration of the identity τ (exp ! (A 0,f )) = exp ! (A 0,f ) τ (A 0,f ) given by Proposition 5.5 shows that τ j (exp ! (A 0,f )) is of the form exp ! (A 0,f ) F where F is a linear combination of shuffle-products involving at most j factors of the set {τ (A 0,f ), τ 2 (A 0,f ), . . . , τ j (A 0,f )}. Applying Lemma 7.6 we get (τ j (exp

! (A 0,f ))) 0,1 = (exp 0,f +1 (A)) F 0,1 .
An iterated application of Lemma 7.6 shows now that F 0,1 is a linear combination of shuffle-products involving at most j factors in {A 1,f +1 , . . . , A j,f +1 }.

We have thus F 0,1 ∈ K[Γ A ] by Lemma 7.3 and we get the inclusion

(exp ! (A 0,f ) K[Γ A ]) k,1 ⊂ exp ! (A 0,f +1 ) K[Γ A ]
for all f ∈ N and for all k ∈ {0, . . . , p -1}.

Setting

E A = {exp ! (B) | B ∈ K(A) ∩ XK[[X]]}
we have the inclusion

K(exp ! (A)) ⊂ E A K[Γ A ] ⊂ K[E A ] K[Γ A ]
where K(exp ! (A)) denotes the p-kernel of exp ! (A). This implies

κ(exp ! (A)) ≤ dim(K[E A ) dim(K[Γ A ]) .
We suppose now A non-zero. The vector space K

(A) ∩ XK[[X]] is thus of codimension 1 in K(A). The image E A of K(A) ∩ XK[[X]] under the group-isomorphism exp ! : (XK[[X]], +) -→ (1 + XK[[X]],
) is hence a subgroup of cardinality q κ(A)-1 in (1 + XK[[X]],

). We have thus

κ(exp ! (A)) ≤ dim(K[E A ]) dim(K[Γ A ]) ≤ q κ(A)-1 p q κ(A)
which ends the proof.

2.

Power series in free non-commuting variables

This and the next section recall a few basic and well-known facts concerning (rational) power series in free non-commuting variables, see for instance [START_REF] Stanley | Enumerative Combinatorics[END_REF], [START_REF] Berstel | Rational Series and Their Languages, electronic book available at the author's websites[END_REF] or a similar book on the subject. We use however sometimes a different terminology, motivated by [START_REF] Bacher | Determinants related to Dirichlet characters modulo 2, 4 and 8 of binomial coeffficients and the algebra of recurrence matrices[END_REF].

Substitution of all variables X j of formal power series in K X 1 , . . . , X k by X (or more generally by arbitrary not necessarily equal formal power series without constant term) yields a homomorphism of (shuffle-)algebras into the commutative (shuffle-)algebra K[[X]].

The commutative unit group (set of invertible elements for the shuffleproduct) of the shuffle algebra, given by the set K * + m, is isomorphic to the direct product K * × (1+ m) where 1+ m is endowed with the shuffle product. Proof Contributions to a p-fold shuffle product A 1 A 2 • • • A p are given by monomials with linear factors coloured by p colours {1, . . . , p} keeping track of their "origin" with coefficients given by the product of the corresponding "monochromatic" coefficients in A 1 , . . . , A p . A permutation of the colours {1, . . . , p} (and in particular, a cyclic permutation of all colours) leaves such a contribution invariant if In the case of a field K of positive characteristic p the function log ! is again given by the restriction to 1 + m of a p-homogeneous form µ p . The form µ p has all its coefficients in N and is again defined by the equality A p = (A, 1) p + pµ p (A) over Z. It can thus be defined over an arbitrary field.

A 1 = • • • = A p . Coefficients

Main result for generating series in non-commuting variables

The following statement is our main result in a non-commutative framework.

Theorem 10.1. Let K be a subfield of F p . Given a non-commutative formal power series A ∈ m ⊂ K X , the following two assertions are equivalent: (i) A is rational.

(ii) exp ! (A) is rational. More precisely, we have for a rational series A in m the inequalities dim log ! (1 + A) ≤ 1 + dim(1 + A) p and dim exp ! (A) ≤ p q dim(A)

where q = p e is the cardinality of a finite field F q containing all coefficients of A.

Proof The identity For the opposite direction we denote by K = F q a finite subfield of F p containing all coefficients of A. We have exp ! (A) ⊂ exp ! (A)

K[Γ(A)]

where K[Γ(A)] is the shuffle subalgebra of dimension ≤ p q dim(A) spanned by all elements of the group Γ generated by all elements of the form

(A + K) ∩ (1 + m) .
This implies the inequality dim exp ! (A) ≤ p q dim(A)

which ends the proof. 2

Theorem 1 . 1 .

 11 Let K be a subfield of the algebraically closed field F p of positive characteristic p. Given a series A ∈ m = XK[[X]] the following two assertions are equivalent:

Theorems 1 .

 1 1, 1.3, 1.5 and 1.6 are now simple reformulations of Propositions 7.1 and 7.2. Proof of Proposition 7.1 The identity (1+A) p = 1 following from Proposition 4.1 applied to the equality

τ

  (exp ! (A)) = exp ! (A) τ (A) of Proposition 5.5 and the fact that the derivation τ of K[[X]] restricts to a derivation of the subalgebra K[Γ A ] show the inclusion

The inverse of an element 1 -= 1 + 1 : 8 . 1 .

 11181 A ∈ (1 + m, ) is given by ∞ n=0 A n A + A A + A A A + . . . . The following result generalises Proposition 4.Proposition Over a field of positive characteristic p, the subgroup 1 + m of the shuffle-group is an infinite-dimensional F p -vector space.

  of strictly positive degree in A p are thus zero in characteristic p. 2 As in the one variable case, one can prove that 1 k! A k is defined over an arbitrary field K for A ∈ m. Indeed, monomials contributing to A k can be considered as colored by k colours and the k! possible colour-permutations yield identical contributions. For A ∈ m, we denote by exp ! (A) = map from the Lie algebra m into the infinitedimensional commutatif Lie group (1 + m,). As expected, its reciprocal function is defined by log ! (1 + A) =

log ! ( 1

 1 dim log ! (1 + A) ≤ 1 + dim(1 + A) p .

  3 + 15x 4 + 52x 5 + 203x 6 + 877x 7 + 4140x 8 + . . .

	of the Bell numbers. The reduction of ∞ n=0 B n x n modulo a prime p is thus always a rational
	element of F p [[x]]. A few such reductions are
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We denote by X * the free monoid on a finite set X = {X 1 , . . . , X k }. We write 1 for the identity element and we use a boldface capital X for a non-commutative monomial X = X i 1 X i 2 • • • X i l ∈ X * . We denote by Acknowledgements I thank J-P. Allouche, M. Brion, A. Pantchichkine, T. Rivoal, B. Venkov and an anonymous referee for their interest and helpful remarks.

a non-commutative formal power series where X * ∋ X -→ (A, X) ∈ K stands for the coefficient function.

We denote by m ⊂ K X 1 , . . . , X k the maximal ideal consisting of formal power series without constant coefficient and by K * +m = K X 1 , . . . , X k \m the unit-group of the algebra K X 1 , . . . , X k consisting of all (multiplicatively) invertible elements in K X 1 , . . . , X k . The unit group is isomorphic to the direct product K * ×(1+m) where K * is the central subgroup consisting of non-zero constants and where 1 + m denotes the multiplicative subgroup given by the affine subspace formed by power series with constant coefficient 1. We have ( 1-A

The shuffle algebra

The shuffle-product X X ′ of two non-commutative monomials X, X ′ ∈ X * of degrees a = deg(X) and b = deg(X ′ ) (for the obvious grading given by deg(

) is the sum of all a+b a monomials of degree a + b obtained by "shuffling" in all possible ways the linear factors (elements of X ) involved in X with the linear factors of X ′ . A monomial involved in X X ′ can be thought of as a monomial of degree a + b whose linear factors are coloured by two colours with X corresponding to the product of all linear factors of the first colour and X ′ corresponding to the product of the remaining linear factors. The shuffle product X X ′ can also be recursively defined by

Extending the shuffle-product in the obvious way to formal power series endows the vector space K X 1 , . . . , X k with an associative and commutative algebra structure called the shuffle-algebra. In the case of one variable X = X 1 we recover the definition of Section 3.

The group GL k (K) acts on the vector space K X 1 , . . . , X k by linear substitutions. This action induces an automorphism of the multiplicative (non-commutative) algebra-structure or of the (commutative) shuffle algebra-structure underlying the vector space K X 1 , . . . , X k . 9 Rational series A formal power series A is rational if it belongs to the smallest subalgebra in K X 1 , . . . , X k which contains the free associative algebra K X 1 , . . . , X k of non-commutative polynomials and intersects the multiplicative unit group of K X 1 , . . . , X k in a subgroup.

Given a monomial T ∈ X * , we denote by

the linear application defined by

of the free monoid X * on X . The recursive closure A of a power series A is the vector space spanned by its orbit ρ(X * )A under ρ(X * ). We call the dimension dim(A) of A the complexity of A.

We call a subspace A ⊂ K X 1 , . . . , X k recursively closed if it contains the recursive closure of all its elements.

Rational series coincide with series of finite complexity by a Theorem of Schützenberger (cf. [START_REF] Berstel | Rational Series and Their Languages, electronic book available at the author's websites[END_REF], Theorem 1 of page 22).

Remark 9.1. In the case of one variable, the complexity dim(A) of a reduced non-zero rational fraction

Remark 9.2. The (generalised) Hankel matrix H = H(A) of

is the infinite matrix with rows and columns indexed by the free monoid X * of monomials and entries H XX ′ = (A, XX ′ ). The rank rank(H) is given by the complexity dim(A) of A and A corresponds to the row-span of H.

Given subspaces A, B of K X , we denote by A B the vector space spanned by all products A B with A ∈ A and B ∈ B.

Proposition 9.3. We have the inclusion

The following result is Proposition 4 of [START_REF] Fliess | Sur divers produits de séries formelles[END_REF]:

for the shuffle product A B of A, B ∈ K X 1 , . . . , X k . In particular, shuffle products of rational elements in K X 1 , . . . , X k are rational.

Proof of Proposition 9.3 For Y ∈ A, Z ∈ B and X in {X 1 , . . . , X k }, the recursive definition of the shuffle product given in Section 8.1 shows

We have thus the inclusions

which show that the vector space A B is recursively closed. Proposition 9.3 follows now from the inclusion A B ∈ A B. 2

Remark 9.5. Similar arguments show that the set of rational elements in K X 1 , . . . , X k is also closed under the ordinary product (and multiplicative inversion of invertible series), Hadamard product and composition (where one considers A • (B 1 , . . . , B k ) with A ∈ K X 1 , . . . , X k and B 1 , . . . , B k ∈ m ⊂ K X 1 , . . . , X k ).

Remark 9.6. The shuffle inverse of a rational element in K * + m is in general not rational in characteristic 0. An exception is given by geometric progressions

corresponding to e λX e µX = e (λ+µ)X in the one-variable case. There are no other such elements in 1 + m ⊂ K[[X]], see Remark 4.2. I ignore if the maximal rational shuffle subgroup of 1 + m ⊂ C X 1 , . . . , X k (defined as the set of all rational elements in 1 + m with rational inverse for the shuffle product) contains other elements if k ≥ 2.

Remark 9.7. Any finite set of rational elements in K X 1 , . . . , X k over a field K of positive characteristic is included in a unique minimal finitedimensional recursively closed subspace of K X 1 , . . . , X k which intersects the shuffle group (K * + m,

) in a subgroup.