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On exponentials of exponential generating series

Roland Bacher

August 4, 2008

Abstract1: Identifying the algebra of exponential generating series with
the shuffle algebra of formal power series, one can define an exponential
map exp! : XK[[X]] −→ 1+XK[[X]] for the associated Lie group formed by
exponential generating series with constant coefficient 1 over an arbitrary
field K. The main result of this paper states that the associated exponential
map exp! (and its reciprocal map log!) induces a bijection between rational,
respectively algebraic, series in XK[[X]] and 1 + XK[[X]] if the field K is a
subfield of the algebraically closed field Fp of characteristic p.

1 Introduction

The equality
(

∞
∑

n=0

αn
Xn

n!

)(

∞
∑

n=0

βn
Xn

n!

)

=

∞
∑

n=0

n
∑

m=0

(

n + m

n

)

αnβm
Xn+m

(n + m)!

shows that we can define an algebra structure on the vector space

E(K) = {

∞
∑

n=0

αn
Xn

n!
| α0, α1, · · · ∈ K}

of exponential generating series with coefficients α0, α1, . . . in an arbitrary
field or ring K. For the sake of simplicity we work in the sequel only over
fields. The expression αn/n! should be considered formally since the numer-
ical value of n! is zero over a field of positive characteristic p ≤ n.

We denote by

mE = {

∞
∑

n=1

αn
Xn

n!
| α1, α2, · · · ∈ K} ⊂ E(K)

the maximal ideal of the local algebra E(K). A straightforward computa-
tion shows that an/n! is well-defined for a ∈ mE over an arbitrary field.

1Keywords: Bell numbers, exponential function, shuffle product, formal power series,

rational series, algebraic series, homogeneous form, automaton sequence, Math. class:

11B73, 11B85, 11E08, 11E76, 22E65
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Endowing K with the discrete topology and E(K) with the topology given
by coefficientwise convergency, the functions

exp(a) =
∞
∑

n=0

an

n!
and log(1 + a) = −

∞
∑

n=1

(−a)n

n

are always defined for a ∈ mE .
Switching back to ordinary generating series

A =

∞
∑

n=1

αnXn, B =

∞
∑

n=1

βnXn ∈ m

contained in the maximal ideal m = XK[[X]], of (ordinary) formal power
series, we write

exp!(A) = 1 + B

if

exp

(

∞
∑

n=1

αn
Xn

n!

)

= 1 +

∞
∑

n=1

βn
Xn

n!
.

It is easy to see that exp! defines a one-to-one map from m onto 1 + m with
inverse map

1 + B 7−→ A = log!(1 + B) .

It satisfies
exp!(A + B) = exp!(A) exp!(B)

for all A,B ∈ m where the shuffle product

(

∞
∑

n=0

αnXn

) (

∞
∑

n=0

βnXn

)

=

∞
∑

n,m=0

(

n + m

n

)

αnβmXn+m

corresponds to the ordinary product of the associated exponential generating
series. The map exp! defines thus an isomorphism from the additive group
(m,+) onto the special shuffle-group (1 + m, ) with group-law given by
the shuffle-product. It coincides with the familiar exponential map from
the Lie algebra m into the special shuffle group, considered as an infinite-
dimensional Lie group.

Theorem 1.1. Let K be a subfield of the algebraically closed field Fp of
positive characteristic p. Given a series A ∈ m = XK[[X]] the following two
assertions are equivalent:

(i) A is rational.
(ii) exp!(A) is rational.
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Example 1.2. The Bell numbers B0, B1, B2, . . . , see pages 45,46 in [5] or
Example 5.2.4 in [7], are the natural integers defined by

∞
∑

n=0

Bn
xn

n!
= eex−1

and have combinatorial interpretations.
Reducing the associated ordinary generating series

∑∞
n=0 Bnxn = exp!(x/(1−

x)) modulo a prime p defines the series expansion of a rational fraction. A
few reductions of the ordinary generating series

∞
∑

n=0

Bnxn = 1 + x+ 2x2 + 5x3 + 15x4 + 52x5 + 203x6 + 877x7 + 4140x8 + . . .

of Bell numbers modulo small primes are

1

1 + x + x2
(mod 2),

1 + x + x2

1 − x2 − x3
(mod 3),

1 + x + 2x2 − x4

1 − x4 − x5
(mod 5) .

Theorem 1.3. Let K be a subfield of the algebraically closed field Fp of
positive characteristic p. Given a series A ∈ m = XK[[X]] the following two
assertions are equivalent:

(i) A is algebraic.
(ii) exp!(A) is algebraic.

Corollary 1.4. Over a subfield K ⊂ Fp, the group isomorphism

exp! : (m,+) −→ (1 + m, )

restricts to an ismorphism between the subgroups of rational elements in
(m,+) and in (1 + m, ).

It restricts also to an isomorphism between the subgroups of algebraic
elements in (m,+) and in (1 + m, ).

Theorem 1.1 and 1.3 can be made effective:
Given a rational series A ∈ K[[X]] represented by a reduced fraction f/g

where f, g with g 6= 0 are two coprime polynomials of degree deg(f) and
deg(g), we set ‖ A ‖= max(1 + deg(f),deg(g)).

Theorem 1.5. We have

‖ exp!(A) ‖≤ pq‖A‖
and ‖ log!(1 + A) ‖≤ 1+ ‖ 1 + A ‖p

for a rational series A in m ⊂ Fp[[X]] having all its coefficients in a finite
subfield Fq ⊂ Fp containing q = pe elements.
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Given a prime p and a formal power series C =
∑∞

n=0 γnXn in Kp[[X]]
with coefficients in a subfield K of Fp, we define for f ∈ N, k ∈ N, k < pf

the series

Ck,f =
∞
∑

n=0

γk+npf Xn .

We denote by κ(C) the dimension dim(
∑

k,f KCk,f ) ∈ N∪{∞} of the vector
space spanned by all series of the form Ck,f .

Algebraic series in K[[X]] for K a subfield of Fp are characterised by
a Theorem of Christol (see Theorem 12.2.5 in [1]) stating that a series C
in Fp[[X]] is algebraic if and only if κ(C) is finite. We have κ(A + B) ≤
κ(A) + κ(B) and an algebraic series A ∈ Fp[[X]] has a minimal polynomial
of degree at most pκ(A) with respect to A.

Theorem 1.6. We have

κ(exp!(A)) ≤ qκ(A)pqκ(A)
and κ(log!(1 + A)) ≤ 1 + 4(κ(1 + A))p

for an algebraic series A in m ⊂ Fp[[X]] having all its coefficients in a finite
subfield Fq ⊂ Fp containing q = pe elements.

A map µ : V −→ W between two K−vector spaces is a homogeneous
form of degree d if l ◦ µ : V −→ K is homogeneous of degree d for every
linear form l : W −→ K.

A useful ingredient for proving Theorems 1.1, 1.3 and their effective
versions is the following characterisation of log!:

Proposition 1.7. Over a field K ⊂ Fp, the application log! : 1 + m −→ m

extends to a homogeneous form of degree p from K[[X]] into m.

Example 1.8. In characteristic 2, we have

log!

(

∞
∑

n=0

αnXn

)

=
∞
∑

n=0

α2
2nX2n+1

+
∑

0≤i<j

(

i + j

i

)

αiαjX
i+j

for
∑∞

n=0 αnXn in 1 + XF2[[X]].

Notice that Theorems 1.1 and 1.3 fail in characteristic zero: We have
log!(1 − X) = −

∑∞
n=1(n − 1)!Xn which is obviously transcendental.

Remark 1.9. Defining f! as

f!

(

∞
∑

n=1

αnXn

)

=

∞
∑

n=1

βnXn

if

f

(

∞
∑

n=1

αn
Xn

n!

)

=

∞
∑

n=1

βn
Xn

n!

Theorems 1.1, 1.3, 1.5 and 1.6 have analogues for the functions sin! and
tan! (and their reciprocal functions arcsin! and arctan!).
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The rest of the paper has two parts. In a first part we recall a few
definitions and well-known results and prove all results mentionned above.

In a second part, starting at Section 8, we generalise Theorems 1.1 and
1.5 to formal power series in several non-commuting variables.

2 Rational and algebraic elements in K[[X]]

This section recalls a few well-known facts concerning rational and algebraic
elements in the algebra K[[X]] of formal power series.

We denote by τ : K[[X] −→ K[[X]] the shift operator

τ

(

∞
∑

n=0

αnXn

)

=

∞
∑

n=0

αn+1X
n

acting on formal power series. The following well-known result characterises
rational series:

Proposition 2.1. A formal power series A =
∑∞

n=0 αnXn of K[[X]] is ra-
tional if and only if the series A, τ(A), τ2(A), . . . , τk(A) =

∑∞
n=0 αn+kX

n, . . .
span a finite-dimensional vector-space in K[[X]].

More precisely, the vector space spanned by A, τ(A), τ2(A), . . . , τ i(A), . . .
has dimension ‖ A ‖= max(1 + deg(f),deg(g)) if f/g with f, g ∈ K[X] is a
reduced expression of a rational series A.

The function A −→‖ A ‖ satisfies the inequality

‖ A + B ‖≤‖ A ‖ + ‖ B ‖

for rational series A,B in K[[X]]. As a particular case we have

‖ A ‖ −1 ≤‖ 1 + A ‖≤‖ A ‖ +1 .

Given a prime p and a formal power series C =
∑∞

n=0 γnXn in Fp[[X]]
we denote by κ(C) ∈ N ∪ {∞} the dimension of the “p−kernel”

K(C) =
∑

f,k

FpCk,f

spanned by all series

Ck,f =
∞
∑

n=0

γk+npf Xn

for f ∈ N, k ∈ N, k < pf .
Algebraic series of K[[X]] for K a subfield of the algebraic closure Fp of

finite prime characteristic p are characterised by the following Theorem of
Christol (see [4] or Theorem 12.2.5 in [1]):
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Theorem 2.2. A formal power series C =
∑∞

n=0 γnXn of Fp[[X]] is alge-
braic if and only if κ(C) is finite.

We state without proof the following well-known consequence.

Corollary 2.3. An algebraic series of Fp[[X]] has all its coefficients in a
finite subfield of Fp.

Proposition 2.4. Let C =
∑∞

n=0 γnXn be an algebraic series with coeffi-
cients in a subfield K ⊂ Fp.

(i) We have
K(τ(C)) ⊂ K(C) + τ(K(C))

which implies
κ(τ(C)) ≤ 2κ(C) .

(ii) We have

K(C) ⊂ K + K(τ(C)) + XK(τ(C))

which implies
κ(C) ≤ 1 + 2κ(τ(C)) .

Proof Assertion (i) follows from an iterated application of the easy com-
putations

(τ(C))k,1 = Ck+1,1

if 0 ≤ k < p − 1 and
(τ(C))p−1,1 = τ(C0,1) .

The proof of assertion (ii) is similar. 2

3 The shuffle algebra

This section recalls mostly well-known results concerning shuffle products of
elements in the set K[[X]] of formal power series over a commutative field
K which is arbitrary unless specified otherwise.

The shuffle product

A B = C =
∞
∑

n=0

γnXn

of A =
∑∞

n=0 αnXn and B =
∑∞

n=0 βnXn is defined by

γn =
n
∑

k=0

(

n

k

)

αkβn−k
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and corresponds to the usual product ab = c of the associated exponential
generating series

a =
∞
∑

n=0

αn
Xn

n!
, b =

∞
∑

n=0

βn
Xn

n!
, c =

∞
∑

n=0

γn
Xn

n!
.

The shuffle algebra is the algebra (K[[X]], ) obtained by endowing the
vector space K[[X]] of ordinary generating series with the shuffle product.
By construction, the shuffle algebra is isomorphic to the algebra E(K) of
exponential generating series. In characteristic zero, the trivial identity

∞
∑

n=0

αnXn =

∞
∑

n=0

(n!αn)
Xn

n!

gives an isomorphism between the usual algebra K[[X]] of ordinary gener-
ating series and the shuffle algebra (K[[X]], ).

The identity
(

∑

n≥0 λnXn
) (

∑

n≥0 µnXn
)

=
∑

n≥0(λ + µ)nXn,

equivalent to eλXeµX = e(λ+µ)X implies that the convergency radius of the
shuffle product of two complex series with strictly positive convergency radii

ρ1, ρ2 is at least the harmonic mean 1/
(

1
ρ1

+ 1
ρ2

)

of ρ1 and ρ2.

Proposition 3.1. The shift operator τ(
∑∞

n=0 αnXn) =
∑∞

n=0 αn+1X
n acts

as a derivation on the shuffle algebra.

Proof The map τ is clearly linear. The computation

τ





∑

i,j≥0

(

i + j

i

)

αiβjX
i+j



 =
∑

i,j≥0

(

i + j

i

)

αiβjX
i+j−1 =

=
∑

i,j≥0

((

i + j − 1

i − 1

)

+

(

i + j − 1

j − 1

))

αiβjX
i+j−1

shows that τ satisfies the Leibniz rule τ(A B) = τ(A) B+A τ(B).
2

Proposition 3.1 is trivial in characteristic zero: the usual derivation d/dX
acts obviously as the shift operator on the algebra E(K) of exponential gen-
erating series over a field of characteristic zero.

Proposition 3.2. Shuffle products of rational power series are rational.
More precisely, we have

‖ A B ‖≤‖ A ‖ ‖ B ‖

for two rational series A,B in K[[X]].
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Proof Proposition 3.1 implies τn
(

A B
)

=
∑n

k=0

(

n
k

)

τk(A) τn−k(B).

The series τn
(

A B
)

belongs thus to the vector space spanned by shuffle
products with factors in the vector-spaces

∑

n≥0 Kτn(A) and
∑

n≥0 Kτn(B).
This implies the inequality. Proposition 2.1 ends the proof. 2

Proposition 3.3. Shuffle products of algebraic series in Fp[[X]] are alge-
braic.

More precisely, we have

κ(A B) ≤ κ(A) κ(B) .

Proof Denoting as in Section 2 by Ck,f the series

Ck,f =

∞
∑

n=0

γk+npf Xn

associated to a series C =
∑∞

n=0 γnXn and by κ(C) the dimension of the
vector space K(C) =

∑

k,f FpCk,f , Lucas’s identity (see [6])

(

n

k

)

≡
∏

i≥0

(

νi

κi

)

(mod p)

for n =
∑

i≥0 νip
i, k =

∑

i≥0 κip
i with νi, κi ∈ {0, . . . , p − 1} implies

(

A B
)

k,1
=

k
∑

i=0

(

k

i

)

Ai,1 Bk−i,1

for k = 0, . . . , p − 1. Iteration of this formula shows that
(

A B
)

k,f
(for

arbitrary k, f ∈ N such that k < pf ) belongs to the vector space spanned
by shuffle products with factors in the vector spaces K(A) and K(B) of
dimension κ(A) and κ(B).

Christol’s Theorem (Theorem 2.2) ends the proof. 2

4 The special shuffle-group

We call the group of units of the shuffle algebra (K[[X]], ) the shuffle-
group. Its elements are given by the set K

∗ + XK[[X]] underlying the mul-
tiplicative unit group. The shuffle-group is the direct product of the unit
group K

∗ of K with the special shuffle-group (1 + XK[[X]], ).
The inverse in the shuffle group of 1 − A ∈ (1 + XK[[X]], ) is given

by
∞
∑

n=0

A
n

= 1 + A + A A + A A A + . . .

8



where A
0

= 1 and A
n+1

= A A
n

for n ≥ 1.
This shows in particular the identity (1 − X) (

∑∞
n=0 n!Xn) = 1.

Invertible rational (analytical) power series have thus generally a transcen-
dental (non-analytical) shuffle-inverse over the complex numbers.

Proposition 4.1. The special shuffle-group (1 + XK[[X]], ) is isomor-
phic to an infinite-dimensional Fp−vector-space if the field K is of positive
characteristic p.

Proposition 4.1 shows that (1 + XK[[X]], ) is not isomorphic to the
multiplicative group structure on 1 + XK[[X]] if K is of positive character-
istic.

Proof of Proposition 4.1 Follows from the fact that exp! is a group
isomorphism between the Fp−vector space m and the special shuffle group.

One can also give a direct proof by computing A
p

. 2

Remark 4.2. One can show that a rational fraction A ∈ 1+XC[[X]] has a
rational inverse for the shuffle-product if and only if A = 1

1−λX
with λ ∈ C.

(Compute A B = 1 using the decomposition into simple fractions of the
rational series A,B.)

5 The exponential and the logarithm for exponen-

tial generating functions

Proposition 5.1. For all natural numbers j, k ≥ 1, the set {1, . . . , jk} can
be partitioned in exactly

(jk)!

(j!)k k!

different ways into k unordered disjoint subsets of j elements.
In particular, the rational number (jk)!/((j!)k k!) is an integer for all

natural numbers j, k such that j ≥ 1.

Proof The multinomial coefficient (jk)!/(j!)k counts the number of ways
of partitioning {1, . . . , jk} into k disjoint ordered subset of j elements. Di-
viding by k! removes the order on these k subsets.

This proves that the formula defines an integer for all j, k ≥ 1 and
integrality holds also obviously for k = 0 and j ≥ 1. 2

Proposition 5.2. For any natural integer k ∈ N, there exists polynomials
Pk,n ∈ N[α1, . . . , αn] such that

1

k!

(

∞
∑

n=1

αn
Xn

n!

)k

=
∞
∑

n=0

Pk,n(α1, α2, . . . , αn)
Xn

n!
.
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Proof The contribution of a monomial

αj1
1 αj2

2 . . . αjs
s

X
∑s

i=1 iji

(
∑s

i=1 iji)!

with j1 + j2 + · · · + js = k to (1/k!) (
∑∞

n=1 αnXn/n!)k is given by

1

k!

k!

(j1)!(j2)! · · · (js)!

(
∑s

i=1 iji)!
∏s

i=1(i!)
ji

=

(

s
∏

i=1

(iji)!

(i!)ji(ji)!

)

(
∑s

i=1 iji)!
∏s

i=1(iji)!

and the last expression is a product of a natural integer by Proposition 5.1
and of a multinomial coefficient. It is thus a natural integer. 2

Corollary 5.3. For a =
∑∞

n=1 αn
Xn

n! the formulae

exp

(

∞
∑

n=1

αn
Xn

n!

)

=
∞
∑

k=0

∞
∑

n=0

Pk,n(α1, . . . , αn)
Xn

n!

and

log

(

1 +

∞
∑

n=1

αn
Xn

n!

)

=

∞
∑

k=1

∞
∑

n=0

(−1)k+1(k − 1)!Pk,n(α1, . . . , αn)
Xn

n!

define the exponential function and the logarithm of an exponential generat-
ing series in a ∈ mE respectively 1 + a ∈ 1 + mE over an arbitrary field K.
These functions are one-to-one and mutually reciprocal.

6 The logarithm as a p−homogeneous form over

Fp[[x]]

Given a fixed prime number p, Proposition 4.1 shows that there exists poly-
nomials Pp,n ∈ N[α0, . . . , αn] for n ≥ 1 such that

(

∞
∑

n=0

αnXn

)

p

= αp
0 + p

∞
∑

n=1

Pp,n(α0, . . . , αn)Xn .

The polynomials Pp,n are homogeneous of degree p with respect to the vari-
abels α0, . . . , αn and we denote by

µp

(

∞
∑

n=0

αnXn

)

=

∞
∑

n=1

Pp,n(α0, . . . , αn)Xn

the p−homogeneous form defined by the ordinary generating series of the
polynomials Pp,1, Pp,2, . . . .

10



Proposition 6.1. The restriction of µp to 1 + m ⊂ Fp[[X]] coincides with
the function log!.

Proof We have

τ(µp(1 + A)) = (1 + A)
p−1

τ(1 + A)

for A in m. This identity defines the restriction of the p−homogenous form

µp to 1 + m. The identity (1 + A)
p−1

(1 + A) = 1 shows that the
same equation

τ(log!(1 + A)) = (1 + A)
p−1

τ(1 + A)

is also satisfied by the function log! since τ corresponds to the differential op-
erator d/dX of the associated exponential series and since the shuffle product
corresponds to the ordinary product of exponential generating series.

Since both series µp(1 + A) and log!(1 + A) are without constant term,
the equality τ(µp(1 + A)) = τ(log!(1 + A)) implies the equality µp(1 + A) =
log!(1 + A). 2

7 Proofs

Proposition 7.1. If A in XFp[[X]] is rational (respectively algebraic) then
the formal power series log!(1 + A) is rational (respectively algebraic).

More precisely, we have

‖ log!(1 + A) ‖≤ 1+ ‖ 1 + A ‖p ,

respectively
κ(log!(1 + A)) ≤ 1 + 4(κ(1 + A))p ,

for rational, respectively algebraic, A in XFp[[X]].

Proposition 7.2. If A in XFp[[X]] is rational (respectively algebraic) then
exp!(A) is rational (respectively algebraic).

More precisely, denoting by q = pe the cardinality of a finite field Fq ⊂ Fp

containing all coefficients of A we have

‖ exp!(A) ‖≤ pq‖A‖

respectively

κ(exp!(A)) ≤ qκ(A)pqκ(A)

for rational respectively algebraic A in m.

11



Theorems 1.1, 1.3, 1.5 and 1.6 are now simple reformulations of Propo-
sitions 7.1 and 7.2.

Proof of Proposition 7.1 We have

τ(log!(1 + A)) = (1 + A)
p−1

τ(A) .

This shows

‖ τ(log!(1 + A) ‖≤‖ 1 + A ‖p−1‖ τ(A) ‖≤‖ 1 + A ‖p

and implies
‖ log!(1 + A) ‖≤ 1+ ‖ 1 + A ‖p .

This settles the rational case.
For algebraic A we have similarly

κ(τ(log!(1 + A))) ≤ (κ(1 + A))p−1 κ(τ(A)) = (κ(1 + A))p−1 κ(τ(1 + A)) ≤

≤ (κ(1 + A))p−12κ(1 + A) ≤ 2(κ(1 + A))p

showing

κ(log!(1 + A)) ≤ 1 + 2κ(τ(log!(1 + A))) ≤ 1 + 4(κ(1 + A))p

and ending the proof. 2

Given a vector-space V ⊂ K[[X]] containing K, we denote by Γ(V) the
shuffle-subgroup generated by all elements of V ∩ (1 + XK[[X]]).

Lemma 7.3. Every element of a vector space V ⊂ K[[X]] containing the
constants K can be written as a linear combination of elements in Γ(V).

Proof We have the identity

A = (1 − ǫ(A) + A) + (ǫ(A) − 1)

where ǫ(
∑∞

n=0 αnXn) = α0 is the augmentation map and where (1−ǫ(A)+A)
and (ǫ(A) − 1) are both in KΓ(V) for A ∈ V. 2

Proof of Proposition 7.2 for rational A Corollary 2.3 shows that we
can work over a finite subfield K = Fq of Fp with q = pe.

Given a rational series A in m = XK[[X]], we denote by ΓA the shuffle-
subgroup generated by all elements of the set

{

∞
⋃

n=0

(τn(A) + K)

}

∩ {1 + XK[[X]]}.

The group ΓA is an Fp−vector space generated by at most q‖A‖ elements.

We denote by K[ΓA] the subalgebra of dimension ≤ pq‖A‖
in K[[X]] spanned

by all elements of ΓA. The identity

τ(exp!(A)) = exp!(A) τ(A)

12



and the fact that the linear application τ is a derivation of K[[X]] show the
inclusion

τn(exp!(A)) ∈ exp!(A) K[ΓA]

which ends the proof since the right-hand side is a K−vector space of di-
mension at most pq‖A‖

.

Proposition 7.4. We have for every prime number p and for all natural
integers j, k such that j ≥ 1 the identity

(jk)!

(j!)kk!
≡

(pjk)!

((pj)!)kk!
(mod p) .

Proof The right-hand-side counts partitions of {1, . . . , pjk} into k sub-
sets of pj elements. Consider the action on such partitions obtained from
the group generated by the jk cyclic permutations (i, i + jk, i + 2jk, . . . , i +
(p − 1)jk) for i = 1, . . . , jk. Its fixpoints are in bijection with partitions of
{1, . . . , jk} into k subsets of j elements. 2

Corollary 7.5. exp! and log! commute with the “Frobenius substitution”

ϕ(

∞
∑

n=0

αnXn) =

∞
∑

n=0

αnXpn

for series in XFp[[X]], respectively in 1 + XFp[[X]].

This implies
(exp!(A))0,f = exp!(A0,f )

Lemma 7.6. We have

(B C)0,1 = B0,1 C0,1

Proof Follows from the identity

(

pn

k

)

≡ 0 (mod p)

if k 6≡ 0 (mod p). 2

Proof of Proposition 7.2 for algebraic A We work again over a finite
subfield K = Fq ⊂ Fp containing all coefficients of A.

Let ΓA denote the shuffle subgroup generated by all elements in

(K(A) + K) ∩ (1 + XK[[X]])

where K(A) =
∑

k,f KAk,f . We denote by K[ΓA] ⊂ (K[[X]], ) the shuffle-

subalgebra of dimension at most pqκ(A)
spanned by all elements of the group

Γ(A) ⊂ (1 + XK[[X]], ).

13



Using the convention A0,0 = A, we have for B ∈ K[Γ(A)] and for k such
that 0 ≤ k < p

(

exp!(A0,f ) B
)

k,1
=
(

τk
(

exp!(A0,f ) B
)

)

0,1
=

=





k
∑

j=0

(

k

j

)

τ j(exp!(A0,f )) τk−j(B)





0,1

=

=

k
∑

j=0

(

k

j

)

(

τ j(exp!(A0,f ))
)

0,1
Bk−j,1

where the last equality is due to Lemma 7.6 (and to the equality (τk(C))0,1 =
Ck,1 for 0 ≤ k < p).

An iterated application of the identity τ(exp!(A0,f )) = exp!(A0,f ) τ(A0,f )
implies

(τ j(exp!(A0,f )))0,1 ∈ exp!(A0,f+1) K[Γ(A)]

and shows the inclusion

(exp!(A))k,f ∈ exp!(A0,f ) K[ΓA]

for all k such that 0 ≤ k < pf and for (k, f) = (0, 0). Since the vector space
∑

f Kexp!(A0,f ) is of dimension at most qκ(A) we have the inequality

κ(exp!(A)) ≤ qκ(A)pqκ(A)
.

This ends the proof. 2

8 Power series in free non-commuting variables

This and the next section recall a few basic and well-known facts concerning
(rational) power series in free non-commuting variables, see for instance [7],
[3] or a similar book on the subject. We use however sometimes a different
terminology, motivated by [2].

We denote by X ∗ the free monoid on a finite set X = {X1, . . . ,Xk}.
We write 1 for the identity element and we use a boldface capital X for a
non-commutative monomial X = Xi1Xi2 · · ·Xil ∈ X ∗. We denote by

A =
∑

X∈X ∗

(A,X)X ∈ K〈〈X1, · · · ,Xk〉〉

a non-commutative formal power series where

X ∗ ∋ X 7−→ (A,X) ∈ K

14



stands for the coefficient function.
We denote by m ⊂ K〈〈X1, . . . ,Xk〉〉 the maximal ideal consisting of formal

power series without constant coefficient and by K
∗+m = K〈〈X1, . . . ,Xk〉〉\m

the unit-group of the algebra K〈〈X1, . . . ,Xk〉〉 consisting of all (multiplica-
tively) invertible elements in K〈〈X1, . . . ,Xk〉〉. The unit group is isomorphic
to the direct product K∗×(1+m) where K∗ is the central subgroup consisting
of non-zero constants and where 1 + m denotes the multiplicative subgroup
given by the affine subspace formed by power series with constant coefficient
1. We have (1−A)−1 = 1+

∑∞
n=1 An for the multiplicative inverse (1−A)−1

of an element 1 − A ∈ 1 + m.

8.1 The shuffle algebra

The shuffle-product X X′ of two non-commutative monomials X,X′ ∈
X ∗ of degrees a = deg(X) and b = deg(X′) (for the obvious grading given by
deg(X1) = · · · = deg(Xk) = 1) is the sum of all

(

a+b
a

)

monomials of degree
a+b obtained by “shuffling” in all possible ways the linear factors (elements
of X ) involved in X with the linear factors of X′. A monomial involved
in X X′ can be thought of as a monomial of degree a + b whose linear
factors are coloured by two colours with X corresponding to the product
of all linear factors of the first colour and X′ corresponding to the product
of the remaining linear factors. The shuffle product X X′ can also be
recursively defined by X 1 = 1 X = X and

(XXs) (X′Xt) = (X (X′Xt))Xs + ((XXs) X′)Xt

where Xs,Xt ∈ X = {X1, . . . ,Xk} are monomials of degree 1.
Extending the shuffle-product in the obvious way to formal power series

endows the vector space K〈〈X1, . . . ,Xk〉〉 with an associative and commuta-
tive algebra structure called the shuffle-algebra. In the case of one variable
X = X1 we recover the definition of Section 3.

The group GLk(K) acts on the vector-space K〈〈X1, . . . ,Xk〉〉 by lin-
ear substitutions. This action induces an automorphism of the multiplica-
tive (non-commutative) algebra-structure or of the (commutative) shuffle
algebra-structure underlying the vector space K〈〈X1, . . . ,Xk〉〉.

Substitution of all variables Xj of formal power series in K〈〈X1, . . . ,Xk〉〉
by X yields a homomorphism of (shuffle-)algebras into the commutative
(shuffle-)algebra K[[X]].

The commutative unit group (set of invertible elements for the shuffle-
product) of the shuffle algebra, given by the set K

∗+m, is isomorphic to the
direct product K

∗×(1+m) where 1+m is endowed with the shuffle product.

The inverse of an element 1−A ∈ (1 + m, ) is given by
∑∞

n=0 A
n

=
1 + A + A A + A A A + . . . .

The following result generalises Proposition 4.1:
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Proposition 8.1. Over a field of positive characteristic p, the subgroup
1 + m of the shuffle-group is an infinite-dimensional Fp−vector space.

Proof Contributions to a p−fold shuffle product A1 A2 · · · Ap

are given by monomials with linear factors coloured by p colours {1, . . . , p}
keeping track of their “origin” with coefficients given by the product of
the corresponding “monochromatic” coefficients in A1, . . . , Ap. A permuta-
tion of the colours {1, . . . , p} (and in particular, a cyclic permutation of all
colours) leaves such a contribution invariant if A1 = · · · = Ap. Forgetting

the colours, coefficients of strictly positive degree in A
p

are thus zero in
characteristic p. 2

As in the one variable case, one can prove that

1

k!
A

k

is defined over an arbitrary field K for A ∈ m. Indeed, monomials contribut-

ing to A
k

can be considered as colored by k colours and the k! possible
colour-permutations yield identical contributions.

For A ∈ m, we denote by

exp!(A) =
∞
∑

n=0

1

n!
A

n

the resulting exponential map from the Lie algebra m into the infinite-
dimensional commutatif Lie group (1+m, ). As expected, its reciprocal
function is defined by

log!(1 + A) =

∞
∑

n=1

(−1)n+1

n
A

n

.

In the case of a field K of positive characteristic p the function log! is again
given by the restriction to 1 + m of a p−homogeneous form µp.

The form µp has all its coefficients in N and is defined by the equality

A
p

= (A, 1)p + pµp(A)

over an arbitrary field.

9 Rational series

A formal power series A is rational if it belongs to the smallest subalgebra in
K〈〈X1, . . . ,Xk〉〉 which contains the free associative algebra K〈X1, . . . ,Xk〉 of
non-commutative polynomials and intersects the multiplicative unit group
of K〈〈X1, . . . ,Xk〉〉 in a subgroup.
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Given a monomial T ∈ X ∗, we denote by

ρ(T) : K〈〈X1, . . . ,Xk〉〉 −→ K〈〈X1, . . . ,Xk〉〉

the linear application defined by

ρ(T)A =
∑

X∈X ∗

(A,XT)X

for A =
∑

X∈X ∗(A,X)X in K〈〈X1, . . . ,Xk〉〉. The identity ρ(T)(ρ(T′)A) =
ρ(TT′)A shows that we have a representation

ρ : X ∗ −→ End(K〈〈X 〉〉)

of the free monoid X ∗ on X . The recursive closure A of a power series A
is the vector-space spanned by its orbit ρ(X ∗)A under ρ(X ∗). We call the
dimension dim(A) of A the complexity of A.

We call a subspace A ⊂ K〈〈X1, . . . ,Xk〉〉 recursively closed if it contains
the recursive closure of all its elements.

Rational series coincide with series of finite complexity by a Theorem of
Schützenberger (cf. [3], Theorem 1 of page 22).

Remark 9.1. In the case of one variable, the complexity dim(A) of a re-
duced non-zero rational fraction A = f

g
with f ∈ K[X] and g ∈ 1 + XK[X]

equals dim(A) = max(1 + deg(f), deg(g)).

Remark 9.2. The (generalised) Hankel matrix H = H(A) of

A =
∑

X∈X ∗

(A,X)X ∈ K〈〈X1, . . . ,Xk〉〉

is the infinite matrix with rows and columns indexed by the free monoid X ∗

of monomials and entries HXX′ = (A,XX′). The rank rank(H) is given by
the complexity dim(A) of A and A corresponds to the row-span of H.

Given subspaces A,B of K〈〈X 〉〉, we denote by A B the vector space
spanned by all products A B with A ∈ A and B ∈ B.

Proposition 9.3. We have the inclusion

A B ⊂ A B

for the shuffle product A B of A,B ∈ K〈〈X1, . . . ,Xk〉〉.

Corollary 9.4. We have

dim(A B) ≤ dim(A) dim(B)

for the shuffle product A B of A,B ∈ K〈〈X1, . . . ,Xk〉〉.
In particular, shuffle products of rational elements in K〈〈X1, . . . ,Xk〉〉 are

rational.
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Proof of Proposition 9.3 For Y ∈ A,Z ∈ B and X in {X1, . . . ,Xk},
the recursive definition of the shuffle product given in Section 8.1 shows

ρ(X)(Y Z) = (ρ(X)Y ) Z + Y (ρ(X)Z) .

We have thus the inclusions

ρ(X)(Y Z) ∈ A Z + Y B ⊂ A B

which show that the vector space A B is recursively closed. Proposition
9.3 follows now from the inclusion A B ∈ A B. 2

Remark 9.5. Similar arguments show that the set of rational elements in
K〈〈X1, . . . ,Xk〉〉 is also closed under the ordinary product (and multiplicative
inversion of invertible series), Hadamard product and composition (where
one considers A ◦ (B1, . . . , Bk) with A ∈ K〈〈X1, . . . ,Xk〉〉 and B1, . . . , Bk ∈
m ⊂ K〈〈X1, . . . ,Xk〉〉).

Remark 9.6. The shuffle inverse of a rational element in K
∗ + m is in

general not rational in characteristic 0. An exception is given by geometric

progressions 1
1−
∑k

j=1 λjXj
=
∑∞

n=0

(

∑k
j=1 λjXj

)n

since we have

1

1 −
∑k

j=1 λjXj

1

1 −
∑k

j=1 µjXj

=
1

1 −
∑k

j=1(λj + µj)Xj

corresponding to eλXeµX = e(λ+µ)X in the one-variable case.
There are no other such elements in 1 + m ⊂ K[[X]], see Remark 4.2. I

ignore if the maximal rational shuffle subgroup of 1 + m ⊂ C〈〈X1, . . . ,Xk〉〉
(defined as the set of all rational elements in 1+ m with rational inverse for
the shuffle product) contains other elements if k ≥ 2.

Remark 9.7. Any finite set of rational elements in K〈〈X1, . . . ,Xk〉〉 over
a field K of positive characteristic is included in a unique minimal finite-
dimensional recursively closed subspace of K〈〈X1, . . . ,Xk〉〉 which intersects
the shuffle group (K∗ + m, ) in a subgroup.

10 Main result for generating series in non-commuting

variables

Theorem 10.1. Let K be a subfield of Fp. Given a non-commutative formal
power series A ∈ m ⊂ K〈〈X 〉〉, the following two assertions are equivalent:

(i) A is rational.
(ii) exp!(A) is rational.

More precisely, we have for a rational series A in m the inequalities

dim
(

log!(1 + A)
)

≤ 1 +
(

dim(1 + A)
)p
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and
dim

(

exp!(A)
)

≤ pqdim(A)

where q = pe is the cardinality of a finite field Fq containing all coefficients
of A.

Proof The identity

log!(1 + A) =
∑

X∈X

(

(1 + A)
p−1

ρ(X)A

)

X

and Corollary 9.4 show

dim
(

log!(1 + A)
)

≤ 1 +
(

dim(1 + A)
)p

.

For the opposite direction we denote by K = Fq a finite subfield of Fp

containing all coefficients of A. We have

exp!(A) ⊂ exp!(A) K[Γ(A)]

where K[Γ(A)] is the shuffle subalgebra of dimension ≤ pqdim(A)
spanned by

all elements of the group Γ generated by all elements of the form

(A + K) ∩ (1 + m) .

This implies the inequality

dim
(

exp!(A)
)

≤ pqdim(A)

which ends the proof. 2
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différentiels des fonctions trigonométriques suivant un module premier,
Bull. Math. Soc. France 6 (1878) 49–54.

[7] R.P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge Uni-
versity Press (1999).

Roland BACHER
INSTITUT FOURIER
Laboratoire de Mathématiques
UMR 5582 (UJF-CNRS)
BP 74
38402 St Martin d’Hères Cedex (France)

e-mail: Roland.Bacher@ujf-grenoble.fr

20


