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Abstract

In this paper, we address the problem

of fuzzy rule-based pattern recognition

with reject options. These options are

made possible thanks to simple rules

whose satisfaction level is expressed by

the value of dedicated operators that ag-

gregate degrees of typicality. Results

obtained with the proposed classifier on

articicial and real data are given.

Keywords: Pattern recognition, reject

options, fuzzy rules, aggregation.

1 Introduction

In many decision-making systems, we face the

problem of aggregating collections of numerical

or ordinal data to obtain a typical value. Aggrega-

tion operators are used to obtain an overall score

for each alternative, which is exploited to estab-

lish a decision. In the context of pattern recog-

nition, such a decision consists in assigning ob-

jects to a given class. Since the publication of

L. A. Zadeh’s paper on fuzzy sets, this theory

has evolved into powerful tools for managing un-

certainty in decision-making systems. Many re-

search works have been carried out for applica-

tions to pattern recognition, e.g. fuzzy rule-based

classifiers such as Takagi-Sugeno-Kang ones that

approximate classification boundaries [9]. Fuzzy

classifiers generally have faster training capabil-

ities and comparable generalization abilities to

other ones. This paper deals with the design of

fuzzy rules whose inputs are the membership de-

grees of objects to the classes at hand instead of

features describing them like in classical fuzzy if-

then classifiers. By including possible rejection

of extraneous and ambiguous objects, we allow

to significantly improve the performance of such

a classification or decision-making system.

The paper is organized as follows. In section 2,

we recall the formal definition of aggregation op-

erators and some special functions. In section 3,

a brief overview of fuzzy classifier design and

fuzzy rule-based classifiers is given. Section 4

briefly describes the principles of pattern rejec-

tion and the existing strategies leading to the dif-

ferent options: exclusive classification, ambiguity

or distance rejection. Then, the new approach for

obtaining classification boundaries using simple

fuzzy rules is presented and discussed. Section 5

present results obtained on both artificial and real

data sets. Concluding remarks and ideas for fu-

ture work are finally given in section 6.

2 Aggregation Operators

The aggregation problem is of major importance

in decision-making systems, where values to be

aggregated are generally defined on a finite real

interval or on ordinal scales. In this paper, we as-

sume with no loss of generality that they come

from the unit interval. If not, a simple trans-

formation can be found to make this assump-

tion true. Among the frequently used aggrega-

tion operators, in addition to the mean opera-

tors, one can cite: triangular norms [10], OWA

(Ordered Weighted Averaging) operators [16], γ-

operators [19], or fuzzy integrals [14]. These op-

erators are divided in several categories, depend-

ing on the way the values are aggregated: con-

junctives, disjunctives, compensatory, compen-



sative, and weighted operators. An aggregation

operator A on the unit interval is said to be con-

junctive if A(x1, · · · , xn) ≤ min(x1, · · · , xn).
The values are combined by a fuzzy logical AND,

which means that the overall score is high if and

only if all partial scores are high. If we add prop-

erties of non decreasingness, commutativity and

associativity, we obtain the family of the trian-

gular norms (t-norms). A triangular norm is a

commutative, associative and monotone function

T : [0, 1]2 → [0, 1] having for neutral element 1,

i.e. T (x, 1) = x for x ∈ [0, 1]. The minimum

operator is a t-norm and T (x, y) ≤ x ∧ y, with

∧ = min, so that the minimum is the greatest t-

norm. An aggregation operator on the unit inter-

val is said to be disjunctive if A(x1, · · · , xn) ≥
max(x1, · · · , xn). The values are combined by

a fuzzy logical OR, which means that the over-

all score is low if and only if all partial scores

are low. If we add properties of non decreasing-

ness, commutativity and associativity, we obtain

the family of the triangular conorms (t-conorms).

A triangular conorm is a commutative, associa-

tive and monotone function S : [0, 1]2 → [0, 1]
having for neutral element 0, i.e. S(x, 0) = x for

x ∈ [0, 1]. The maximum operator is a t-conorm

and S(x, y) ≥ x ∨ y, with ∨ = max, so that

the maximum is the weakest t-conorm. Table 1

shows the three basic t-norms (⊤) and t-conorms

(⊥), but there exists a large panel of triangular

norms (indeed infinite since the combination of

two t-norms is a t-norm), see [8] for a survey.

Table 1: Basic t-norms and t-conorms couples

Standard
a⊤Sb = min(a, b)
a⊥Sb = max(a, b)

Algebraic
a⊤Ab = a b
a⊥Ab = a + b − a b

Lukasiewicz
a⊤Lb = max(a + b − 1, 0)
a⊥Lb = min(a + b, 1)

An aggregation operator on the unit interval is

said to be compensatory if min(x1, · · · , xn) ≤
A(x1, · · · , xn) ≤ max(x1, · · · , xn). Here, a

high value (resp. low) can be compensated by

a low value (resp. high). If we add properties

of non decreasingness and idempotency, we ob-

tain the family of mean operators. Conjunctives,

disjunctives and compensatory operators form a

large part of aggregation operators on [0, 1], but

one can find some operators that do not belong to

any of these categories, e.g. the symmetric sum

[13] and compensative operators [19]. Both com-

pensative and compensatory operators tend to ex-

press a compromise within the values, but the out-

put of the former operators do not necessarily lie

between the minimum and the maximum values

whereas the latter do.

To conclude this section, let us mention the ex-

istence of weighted operators. Multi-criteria de-

cision often need to establish the importance of

each evaluated criterion, which implies an exten-

sion of the usual non weighted operators. These

weights cause the loss of neutrality from the deci-

sion system, but could allow to perform better re-

sults. OWA operators are used to adjust the terms

AND and OR, and allow an easier semantic inter-

pretation of the linguistic quantifiers. Fuzzy inte-

grals compute the mean value of a given function

with respect to a fuzzy measure and thus can be

seen as aggregation operators in the discrete case.

3 Fuzzy Pattern Classification

3.1 Classifier Design

Let x = t(x1 x2 ... xp) be a pattern in a fea-

ture space, to be classified with respect to a set

Ω = {ω1, · · · , ωc} of c classes. A conventional

hard classifier is a rule aiming at assigning an un-

known pattern x to a particular class ωi, thanks

to the aggregation of class-labels uj(x), e.g. pos-

terior probabilities that x belongs to the classes

or membership degrees to fuzzy sets associated

with the classes. We do not address the labelling

problem in this paper, so we will use a measure of

typicality:

ui(x) =
α

α + d2(x, pi)
(1)

where α is a user-defined parameter, d a distance,

and pi a prototype of ωi obtained from a learn-

ing set of patterns. The most popular agregation

operator is the standard t-conorm, defining the so-

called max classifier (MC):

1. compute class-labels uj(x) (j = 1, c)

2. aggregate labels A(u1, · · · , uc)

3. rule: if A is ui then assign x to ωi



Such an exclusive classification rule is not so ef-

ficient because it supposes that classes do not sig-

nificantly overlap (separability) and that Ω is ex-

haustively defined (closed-world). These assump-

tions are generally not valid in practice.

3.2 Fuzzy Rule-Based Classifiers

Fuzzy systems are meant to be models under-

standable for the end-user. They use if-then rules

and a mechanism which should correspond to the

expert knowledge for a given problem. A fuzzy

if-then classifier consists in a model with fuzzy

rules of the form:

if A1
i AND A2

i AND · · · AND An
i then Bi (2)

where Ak
i is a fuzzy set with membership func-

tion ak
i : R → [0, 1], i = 1, · · · , m, k = 1, · · · , p

and Bi ∈ R. Among the most popular models, the

Takagi-Sugeno-Kang (TSK) model [15] is charac-

terized by:

1. a set of m fuzzy rules.

2. a connective operator A whose output pro-

vides the satisfaction τi, or firing strength, of

the rule i:

τi(x) = A(a1
i (x1), · · · , ap

i (xp)) (3)

3. a defuzzification method allowing the final

assignment.

For instance, by choosing the product for the con-

nective operator and the COA (Center Of Area)

defuzzification method, we obtain a TSK2 [9]

classifier for the object x:

C(x) =

∑m
i=1 Bi

∏p
k=1 ak

i (xk)
∑m

i=1

∏p
k=1 ak

i (xk)
(4)

Let us consider a simple two-classes problem as

first example. We generated 100 two-dimensional

samples equally arising from two normal distri-

butions ω1 ∼ N
(

p1 = [1, 3]T , I
)

and ω2 ∼
N

(

p2 = [5, 1]T , I
)

where I is the identity ma-

trix. Two rules are enough to define a TSK2 clas-

sifier for this problem:

• rule R1:

if x1 is about 1 AND x2 is about 3, then b1

• rule R2:

if x1 is about 5 AND x2 is about 1, then b2

where about c can be modelled by the following

membership function:

ak(xk) = exp
(

−(xk − c)2/2
)

(5)

Thus, the satisfaction τi (i = 1, 2) of the rules are:

τi(x) = exp
(

−(x − pi)
T (x − pi)/2

)

If we set b1 to 1 and b2 to 0, we obtain:

C(x) =
τ1

τ1 + τ2
(6)

and the decision areas shown in Fig. 1 that vary

from black, corresponding to ω2 (b2 = 0), to

white corresponding to ω1 (b1 = 1). The clas-

sification boundary is given by τ1 = τ2, whose

solution is the following hyperplan equation:

x2 =
3

2
x1 − 7 (7)
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Figure 1: A simple two-classes (◦,×) problem

with normal distribution in R
2

Many membership functions from R to [0, 1] can

be used, then too much flexibility arises, leading

to untractable learning. So we restrict the study

to positive definite functions. Since classes may

have ellipsoidal shapes, Abe and Thawonmas in-

troduced a fuzzy classifier, based on neural net-

works and fuzzy rules, which provides ellipsoidal

decision areas [1]. They use the following mem-

bership function:

ai(x) = exp(−h2
i (x))

h2
i (x) =

d2
i (x)

αi

d2
i (x) = (x − pi)

T Σ−1
i (x − pi)



where Σi is the covariance matrix of the class ωi

and αi is a user-defined parameter.

Furthermore, it has been proved [9] that some

TSK classifiers with adequate membership func-

tions are equivalent to non-parametrical classi-

fiers:

• TSK3 with ai(x) = exp
(

− 1
2(x − pi)

2
)

is

equivalent to the nearest neighbor classifier,

• TSK4 with ai(x) = exp
(

− 1
2h2 (x − pi)

2
)

is equivalent to a Parzen classifier.

In [7], the authors proved that a monotonic func-

tion f(x) can model the classification boundary

for two classes in R
2, and they propose to use

other t-norms and t-conorms than minimum and

maximum because they fail in p > 2-dimensional

problems, even for linear separable problems.

4 The New Classifier

4.1 Reject Options

We said in subsection 3.1 that the separability and

the closed-world assumptions are generally not

valid in practice. Reject options have been pro-

posed to overcome these difficulties and to reduce

the misclassification risk. The first one, called

distance reject option, is dedicated to outlying

patterns. If x is far from all the class-prototypes,

the option allows to assign it to no class. The sec-

ond one allows to assign inlying patterns to sev-

eral or all the classes. If x is close to two or more

prototypes, it is associated with the corresponding

classes. Finally, a pattern is exclusively classified

when its maximum membership degree is signifi-

cantly higher than the others. Different strategies

can be adopted to handle the options at hand [4, 5]

but they all lead to a three types decision system:

exclusive classification, ambiguity rejection, dis-

tance rejection.

4.2 Reject Options Using Fuzzy Rules

In this section, we detail the construction of re-

ject operators with the help of fuzzy rules. Step

by step, by combining triangular norms, we de-

fine what the suitable operator should satisfy. In

[18], Yager and Rybalov showed that t-norms and

t-conorms provide downward and upward rein-

forcement, respectively. Downward (respectively

upward) reinforcement corresponds to the fact

that if the values are all low (respectively high),

then they reinforce each other and the overall

value will be low (respectively high). From these

properties, they build a full reinforcement opera-

tor by the use of a fuzzy system modeling tech-

nique. We follow this approach and define new

rules. According to the rules defined, the operator

will have a conjunctive, disjunctive or a compen-

sative behavior.

• rule R1: there is only one high value,

(so exclusive classification is possible)

• rule R2: several values are high,

(so ambiguity rejection is needed)

• rule R3: all the values are low

(so distance rejection is needed)

We propose to formalize this set of rules.

4.3 The Fuzzy 3-Rules based Classifier with

Reject Options (3-RCRO)

Let L, respectively H , be the fuzzy subset de-

fined on [0, 1] corresponding to the concept low,

respectively high. Furthermore, let (T ,S) be any

dual couple (t-norm,t-conorm). As mentioned in

the second section, the t-conorm S is the fuzzy

equivalent of the logical operator OR. We define

H(ui) = ui using a linear membership function

and L(ui) = 1 − ui as the negation of H . In [6],

the authors built a fuzzy exclusive OR operator

that extends the crisp XOR operator to the fuzzy

context:

⊥
i=1,c

ui =

(

1

⊥
i=1,c

ui

)

⊤





2

⊥
i=1,c

ui

/

1

⊥
i=1,c

ui





(8)

where

k

⊥
i=1,c

ui = ⊤
A∈Pk−1

(

⊥
j∈C\A

uj

)

(9)

with P the powerset of C = {1, 2, ..., c} and

Pk = {A ∈ P : |A| = k} where |A| denotes

the cardinality of subset A. Assusming u to be a

sorted c-tuple, i.e. u1 ≥ u2 · · · ≥ uc, we defined

in [12] an operator based on triangular norms and

the Sugeno integral which quantifies the similar-



ity of the block of values {uj , . . . , uk}:

Φj,k(u) =



























































k

⊥
i=

k+j
2

ui⊤Kλ(i,k)

j

⊥
i=

k+j
2

ui⊤Kλ(i,j)

if k − j is even

k

⊥
i=

k+j+1
2

ui⊤Kλ(i,k)

j

⊥
i=

k+j−1
2

ui⊤Kλ(i,j)

if k − j is odd

(10)

where Nλ(i, l) is a gaussian kernel defined by:

Nλ(i, l) = exp
−(i − l)2

λ
(11)

The new fuzzy 3-rules classifier with reject op-

tions we propose derive as follows:

• rule R1: if u1 is high XOR u2 is high XOR

· · · XOR uc is high, then x 7→ ωargmaxj(uj)

• rule R2: if Φ1,2 is high OR · · · OR Φ1,c is

high, then reject x for ambiguity

• rule R3: if u1 is low AND u2 is low AND

· · · AND uc is low, then reject x for distance.

We define the firing strengths of the 3 rules by:

τ1(x) = ⊥
i=1,c

H(ui) = ⊥
i=1,c

ui (12)

τ2(x) = ⊥
i=2,c

H(Φ1,i(u)) = ⊥
i=2,c

Φ1,i(u) (13)

τ3(x) = ⊤
i=1,c

L(ui) = ⊤
i=1,c

ui (14)

Finally, a simple winner takes all strategy ap-

plied to the triplet {τ1(x), τ2(x), τ3(x)} activates

the corresponding rule which gives the classifica-

tion result. It is worthnoting that the proposed

classifier does not involve any threshold, com-

pared to most of other classifiers with reject op-

tions. Depending on his interest, the user can se-

lect only the reject rules, and choose a conjunc-

tion, for instance a triangular norm, for the ag-

gregation process of these firing strengths. In this

case, a threshold can be applied on ⊤
i=1,3

τi(x). By

changing the characteristics, various discrimina-

tion procedures are possible, see section 5 for ex-

amples.

Examples of label vectors u(x) for a c = 3 classes

problem and resulting firing strengths are given in

Table 2 for different dual couples: standard (S),

algebraic (A), and the parameterized Hamacher

family (Hγ) defined by:

⊤H,γ(a, b) =
a b

γ + (1 − γ) (a + b − a b)

⊥H,γ(a, b) =
a + b + (γ − 2) a b

1 − (1 − γ) a b

which reducts to (⊤A,⊥A) when γ = 1.

The given label vectors are representative of var-

ious situations: ambiguity between three and two

classes, exclusive classification, and distance re-

jection, respectively. Whatever the dual couple,

the Winning Firing Strength (WFS) gives the cor-

rect classification result. However, τ2(x) does not

exhibit selective ambiguity rejection, e.g. ambi-

guity between three or two classes in the Table.

This refinment, corresponding to the k-order am-

biguity concept, can obviously be obtained by in-

dexing τ2(x) by k instead of c in (13).

Table 2: Examples of firing strengths

u(x) τi(x) and (⊤,⊥)





0.85
0.90
0.75





τ1(x) τ2(x) τ3(x)
S : 0.05 0.94 0.10
A : 0.07 0.99 0.00
H0 : 0.16 0.95 0.05





0.85
0.90
0.10





τ1(x) τ2(x) τ3(x)
S : 0.05 0.94 0.1
A : 0.21 0.96 0.01
H0 : 0.20 0.94 0.06





0.15
0.90
0.10





τ1(x) τ2(x) τ3(x)
S : 0.83 0.16 0.10
A : 0.72 0.30 0.07
H0 : 0.70 0.32 0.09





0.15
0.00
0.10





τ1(x) τ2(x) τ3(x)
S : 0.15 0.66 0.85
A : 0.19 0.40 0.80
H0 : 0.17 0.45 0.81

5 Experimental Results

5.1 Artificial Data

This example aims at showing the classfication

boundaries that can result from the triplet of fir-



ing strengths {τ1(x), τ2(x), τ3(x)} using a partic-

ular dual couple: (⊤A,⊥A), but others give simi-

lar results. The data set consists of four classes

composed of sixty points in R
2 each. Classes

slightly overlap in such a way that k-order am-

biguity areas can appear. Membership degrees in

the feature space are computed by equation (1)

with α = 3 and

d2(x, pi) = (x − pi)
T Σ−1

i (x − pi)

where the mean vector pi and covariance matrix

Σi of each class are estimated from the data set.

First, we choose to define the 3-RCRO with

no distance reject option. Thus, it simply con-

sists in ambiguity rejecting patterns for which

⊤
i=1,3

τi(x) = τ1(x) τ2(x) τ3(x) is higher than a

threshold t, else exclusively assigning them to the

class of maximum degree. Fig. 2 shows the con-

tour plot of ⊤
i=1,3

τi(x) varying from high values

(white) to low ones (black).

The second result we give is obtained by allowing

the three rules to be activated by the WFS clas-

sifier. As mentioned in the previous section, no

threshold is needed. Classification boundaries are

shown in Fig. 3, where white, grey ands black

areas correspond to distance rejection, ambiguity

rejection and exclusive classification respectively.

Such a classification procedure results in a a very

low error rate (nearly zero) and a high reject rate,

therefore is more suitable for applications where

the cost of misclassification is very high. Remind

that other combinations of part of all the firing

strengths leading to a dedicated 3-RCRO could

allow the user to tune the different rates, but a

threshold should be used.

5.2 Real Data Sets

In this final subsection, we present some results

that show the classification performance of the

3-RCRO on well-known real data. The iris data

set [3] contains n = 150 observations from c =
3 four-dimensional classes (iris species) of 50

points each. It is one of the most used benchmarks

in pattern recognition, especially for cluster va-

lidity because two classes, numbered 2 and 3,

present a substantial overlap in the feature space

the class 1 is well separated from the others. For

visualization purpose, only the third and fourth
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Figure 2: Contour plot of τ1(x)⊤τ2(x)⊤τ3(x)
with algebraic norms (⊤A,⊥A) – artificial data
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Figure 3: Classification areas using the winning

firing strength – artificial data.

features were considered, as many authors do [2].

The membership degrees were computed using

the same equations than for the artificial data.

Contour plot of ⊤
i=1,3

τi(x) using (⊤A,⊥A) is

shown in Fig. 4 varying from high values (white)

to low ones (black). We obtained similar results

with other dual couples. Table 3 shows the er-

ror rates obtained with classical classifiers using a

resubstitution procedure: Quadratic Bayes (QB),

Nearest Neighbor (NN) and the Max Classifier

(MC, see section 3.1).

The performance of the WFS classifier and the

3-RCRO for different values of the threshold on

⊤
i=1,3

τi(x) using (⊤A,⊥A) are reported in Table
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Figure 4: Contour plot of τ1(x)⊤τ2(x)⊤τ3(x)
with algebraic norms (⊤A,⊥A) – iris data

Table 3: Error rates without reject options – iris

data
% QB NN MC

error 2.00 4.67 2.67

4. Depending on the different strategies the user

has in mind, the threshold can be set in order to

minimize the error rate (e.g. t = 0.08), maxi-

mize the correct classification rate with a low er-

ror rate (e.g. t = 0.15), or maximize the cor-

rect classification rate with no reject options (e.g.

t = 1) – this setting making the 3-RCRO coin-

cide with the MC classifier as one could expect.

Obviously, the reject rate decreases as t increases

and its tuning is a keypoint as for every classifier

involving a threshold. Note that rejected patterns

were all rejected for ambiguity with t = 0.15 and

not surprisingly some patterns were distance re-

jected with t = 0.08.

Table 4: Performance rates – iris data
% WFS t = 0.08 t = 0.15 t = 1

error 0.00 0.00 1.33 2.67

reject 25.33 12.00 2.00 0.00

correct 74.67 88.00 96.67 97.33

The second data set is the Forest Cover Type ob-

tained from the UCI repository [3]. This is a very

large GIS data set representing the forest cover

type of a region, which contains n = 581, 012
observations and c = 7 classes described by 54

attributes. Following [11], we only consider the

p = 10 numeric valued attributes and the 495,141

points, belonging to classes 1 and 2. These two

classes are equally distributed and have a signifi-

cant overlap in the feature space. Error rates with

usual supervised classifiers are shown in Table 5

and performance results of the proposed method

are reported in Table 6. Compared to classical

classifiers such as QB and NN without reject op-

tions, the proposed method reduces the error rate.

Table 5: Error rates without reject options – forest

data
% QB NN MC

error 25.56 29.83 24.91

Table 6: Performance rates – forest data
% WFS t = 0.08 t = 0.15 t = 1

error 9.58 3.18 19.14 24.91

reject 34.13 75.99 13.91 0.00

correct 56.29 20.82 66.94 75.09

6 Conclusion

In this paper, we propose a new approach to the

classication problem including reject options. It

is based on three fuzzy rules whose inputs are the

membership degrees of objects to the classes at

hand instead of features describing them and ag-

gregation operators. These operators, based on

combination of triangular norms and the Sugeno

integral, are especially designed to give one of

the three possible results. According to the firing

strength of each rule, the pattern is either classi-

fied in a single class, or ambiguity rejected be-

tween several classes or distance rejected from

all the classes. Two solutions have been pro-

posed for the different decision boundaries. The

first one consists in taking the most satisfied rule

(WFS) and the second one consists in threshold-

ing the conjonction of the three firing strengths

(3-RCRO) or only part of them. Other combina-

tions are under investigation. Experimental re-

sults show that the proposed approach is able to

detect patterns that must be rejected and therefore

gives satisfactory decison boundaries. We also



proposed to extend the approach to k-order am-

biguity rejection by indexing the second rule in a

proper way.

Among the future works we have in mind, let us

cite the use of compensative and compensatory

operators via combination of different couples for

pattern classifiers with reject options, the use of

uninorms instead of triangular norms couples as

universal approximation [17] of fuzzy systems in

this context.
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