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Abstract

The intensity of an electromagnetic wave interacting self-consistently with a beam of charged particles, as in a Free Electron Laser,
displays large oscillations due to an aggregate of particles, called the macro-particle. In this article, we propose a strategy to stabilize
the intensity by destabilizing the macro-particle. This strategy involves the study of the linear stability of a specific periodic orbit of
a mean-field model. As a control parameter - the amplitude of an external wave - is varied, a bifurcation occur in the system which
has drastic effects on the self-consistent dynamics, and in particular, on the macro-particle. We show how to obtain an appropriate
tuning of the control parameter which is able to strongly decrease the oscillations of the intensity without reducing its mean-value.
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1. Introduction

The amplification of a radiation field by a beam of par-
ticles and the radiated field, as it occurs in a Free Electron
Laser, can be modelled within the framework of a simpli-
fied Hamiltonian [1]. The N + 1 degree of freedom Hamil-
tonian displays a kinetic part, associated with the N parti-
cles, and a potential term accounting for the self-consistent
interaction between the particles and the wave. Thus, mu-
tual particles interactions are neglected, while an effective
coupling is indirectly provided through the wave.

The linear theory predicts [1] for the amplitude of the ra-
diation field a linear exponential instability, and then a late
oscillating saturation. Inspection of the asymptotic phase-
space suggests that a bunch of particles gets trapped in the
resonance and forms a clump that evolves as a single macro-
particle localized in phase space. The untrapped particles
are almost uniformly distributed between two oscillating
boundaries, and form the so-called chaotic sea.

Furthermore, the macro-particle rotates around a well
defined centre in phase-space and this peculiar dynamics
is shown to be responsible for the macroscopic oscillations
observed for the intensity [2,3]. It can be therefore hypoth-
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esized that a significant reduction in the intensity fluctu-
ations can be gained by implementing a dedicated control
strategy, aimed at reshaping the macro-particle in space.

The dynamics can be also investigated from a topologi-
cal point of view, by looking at the phase space structures.
In the framework of a simplified mean field description, i.e.
the so-called test-particle picture where the particles pas-
sively interact with a given electromagnetic wave: The tra-
jectories of trapped particles correspond to invariant tori,
whereas unbounded particles evolve in a chaotic region
of phase-space. Then, the macro-particle corresponds to a
dense set of invariant tori.

For example, a static electric field [4,5] can be used to in-
crease the average wave power. While the chaotic particles
are simply accelerated by the external field, the trapped
ones are responsible for the amplification of the radiation
field. Some shift in the relative phase between the electrons
and the ponderomotive potential can also be implemented
to improve harmonic generation.

In this paper, we propose to perturb the system with ex-
ternal electromagnetic waves. Qur strategy is to stabilize
the intensity of the wave, by chaotizing the part of phase-
space occupied by the macro-particle. To modify the topol-
ogy of phase space, an additional test wave is introduced,
whose amplitude plays the role of a control parameter. The
residue method [6,7,8] is implemented to identify the im-
portant local bifurcations happening in the system when
the parameter is varied, by an analysis of linear stability of
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Figure 1. Left : Normalized intensity I/N from the dynamics of
Hamiltonian (1), with N = 10000 particles and Hy = 0, Py = 1077,
Right : Snapshot of the N particles at ¢ = 800, with N = 10000.
The grey points correspond to the chaotic particles, the dark ones
to the particles in the macro-particle.

a specific periodic orbit. Though first developed in a mean-
field approach, our strategy proves to be robust as the self-
consistency of the wave is restored.

2. Dynamics of a single particle

The dynamics of the wave particle interaction, as en-
countered in the FEL, can be described by the following
N- body Hamiltonian [1]:

N
Hn({0;,p5},0,1) Z [ZCOS (p+6;). (1)

It is composed of a kinetic contribution and an interac-
tion term between the particles and the radiation field : the
(0j,p;) are the conjugate phase and momentum of the N
particles, whereas (¢, I) stand respectively for the conju-
gate phase and intensity of the radiation field. Furthermore,
there are two conserved quantities : Hy and the total mo-
mentum Py = [ + Zj p;. We consider the dynamics given
by Hamiltonian (1) on a 2N-dimensional manifold (defined
by Hy = 0 and Py = ¢ where ¢ is infinitesimally small).

Starting from a negligible level (I < N and p; = 0), the
intensity grows exponentially and eventually reaches a sat-
urated state characterized by large oscillations, as depicted
in Fig. 1. Concerning the particles dynamics, more than
half of them are trapped by the wave [9] and form the so-
called macro-particle (see Fig. 1). The remaining particles
experience an erratic motion within an oscillating water
bag, termed chaotic sea, which is unbounded in 6 contrary
to the macro-particle.

In order to know how many particles have a regular mo-
tion, we compute finite Lyapunov exponents for each tra-
jectory (the particles are then considered as evolving in an
external field). The Lyapunov exponents were computed
over a time period of T" = 300 (once the stationary state
reached), and a trajectory is considered to be regular if the
Lyapunov exponent is smaller than 0.025 (while it is typi-
cally of order 1 in the chaotic sea).

In order to get a deeper insight into the dynamics, we
consider the motion of a single particle. For large N, we
assume that its influence on the wave is negligible, thus it
can be described as a passive particle in an oscillating field.

The motion of this test-particle is described by the one and
a half degree of freedom Hamiltonian :

H1p<97pa % 2 I](Vt 9+¢
2
=5 = Re(h(t)e"), 2)

where the interaction term h(t) is derived from dedicated
simulations of the original self-consistent N-body Hamil-
tonian (1). In the saturated regime, h(¢) is mainly periodic.
In particular, a refined Fourier analysis shows that it can
be written as :

I(t) , . . )
h(t) =2 %eﬂﬁ(t) ~ [F + ae't Jrﬂefzwlt]ezﬂt’ (3)
where 2 = —0.685 stands for the wave velocity and wy =

1.291 for the frequency of the oscillations of the intensity.
As for the amplitudes, the Fourier analysis provides the
following values : F' = 1.5382 — 0.0156¢, o = 0.2696 —
0.07347 and 8 = 0.1206 + 0.0306¢.

Hamiltonian (2) results from a periodic perturbation of
a pendulum described by the integrable Hamiltonian Hy

2
Hy = % — |F| cos(0 + Qt + ¢p),

where F' = |F|e!*F . The linear frequency of this pendulum

|F| = 1.240 which is very close to the frequency of
the forcing w;. Therefore a chaotic behaviour is expected
when the perturbation is added even with small values of
the parameters o and (.

The Poincaré sections (stroboscopic plot performed at
frequency wy) of the test-particle (see Fig. 2) reveal that
the macro-particle reduces to a set of invariant tori in this
mean-field model. Conversely, the chaotic sea is filled with
seemingly erratic trajectories of particles, apart from the
upper and lower boundaries, where the trajectories are sim-
ilar to the rotational ones of the unperturbed pendulum.
The rotation of the macro-particle and the oscillations of
the water bag are visualized by translating continuously in
time the stroboscopic plot of phase space.

The macro-particle is organized around a central (ellip-
tic) periodic orbit with rotation number 1. The period of
oscillations of the intensity is the same as the one of the
macro-particle which indicates the role played by this co-
herent structure in the oscillations of the wave.

Thus, in the test-particle model, the macro-particle is
formed by particles which are trapped on two-dimensional
invariant tori. This picture can be extended to the self-
consistent model, if one considers the projection of a trajec-
tory (¢(t), I(t),{0;(t), p;(t)};) in the (6, p) plane, each time
it crosses the hyperplane Zj sin(¢+0;) =0, ie dI/dt =
0. From the full trajectory, we follow a given particle (an in-
dex j) and plot (6}, p;) each time the full trajectory crosses
the Poincaré section.

The trapped particles appear to be confined to domains
of phase-space much smaller than the one of the macro-
particle (see Fig.2). These domains are similar to the in-
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Figure 2. Left : Poincaré section of a test-particle, described by
Hamiltonian (2). The periodic orbit with rotation number 1 is marked
by a cross. Right : Poincaré section of Hamiltonian (1), when the
particles intersect the plane dI(t)/dt = 0. The different trajectories
are represented by different grey levels.

variant tori of the test-particle model, although thicker. It
is worth noticing that not only these figures have a simi-
lar overall layout, but there is a deeper correspondence in
the structure of the macro-particle. For instance, both fig-
ures show similar resonant islands at the boundary of the
regular region. Since we saw that the macro-particle di-
rectly influences the oscillations of the wave, the test par-
ticle Hamiltonian (2) serves as a cornerstone of our control
strategy which consists in destabilizing the regular struc-
ture of the macro-particle in order to stabilize the intensity
of the wave. This strategy focuses on breaking up invari-
ant tori to reshape the macro-particle. In order to act on
invariant tori, we use the central periodic orbit which, as
we have seen, structure the motion of the macro-particle.

3. Residue method

The topology of phase space can be investigated by
analysing the linear stability of periodic orbits. Informa-
tion on the nature of these orbits (elliptic, hyperbolic or
parabolic) is provided using, e.g., an indicator like Greene’s
residue [6,10], a quantity that enables to monitor local
changes of stability in a system subject to an external
perturbation [7,8].

From the integration of the equations of the tangent flow
of the system along a particular periodic orbit, one can
deduce the residue R of this periodic orbit. In particular,
if R €]0,1[, the periodic orbit is called elliptic (and is in
general stable); if R < 0 or R > 1 it is hyperbolic; and
if R =0 and R = 1, it is parabolic while higher order
expansions give the stability of such periodic orbits.

Since the periodic orbit and its stability depend on the set
of parameters A, the features of the dynamics will change
under apposite variations of such parameters. Generically,
periodic orbits and their (linear or non-linear) stability
properties are robust to small changes of parameters, ex-
cept at specific values when bifurcations occur. The residue
method [7,8] detects the rare events where the linear sta-
bility of a given periodic orbit changes thus allowing one to
calculate the appropriate values of the parameters leading
to the prescribed behaviour of the dynamics. As a conse-
quence, this method can yield reduction as well as enhance-
ment of chaos.
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Figure 3. Upper panel : Residue curve of the periodic orbit of rotation
number 1, as a function of the control parameter A. Lower left panel :
Poincaré section of the controlled Hamiltonian (4) of a test-particle.
Lower right panel : Snapshot of the phase-space of the particles for
Hamiltonian (5), with N = 10000 and XA = A (same initial conditions
as for Fig.1).

4. Destruction of the macro-particle

The residue method can be used to enlarge the macro-
particle in the chaotic sea [9], which results in its stabi-
lization : then, the fluctuations of the intensity of the wave
eventually collapse.

Nonetheless, it can also be used to reduce the aggrega-
tion process for the particles, by destroying the invariant
tori forming the macro-particle : such a control, as we will
see, tends to limit the fluctuations in the intensity of the
wave. Here, we implement this control with an extra test-
wave, whose amplitude is used as a control parameter. The
Hamiltonian of the mean-field model with a test-wave is
chosen as :

chp(ﬁ,p, t;\) = Hip(0,p,t) —2Xcos (k(0 —wit)), (4)

where w; corresponds to the resonant frequency of the cen-
tral periodic orbit of the macro-particle, and k = 10.

Then, the amplitude X is tuned around 0, and the residue
R of the central periodic orbit O is tracked (see Fig.3) :
when the latter goes above 1, it means that the central
orbit turned hyperbolic, and that chaos might have locally
appeared. This occurs for values of |\| larger than A\, =~
0.07. An inspection of the Poincaré section confirms this
prediction, as there is no more island with a central periodic
orbit of period 27 /w;. Actually, no more elliptic island can
be detected, apart from the borders of the water bag : thus,
though the hyperbolicity of O; only guarantees local chaos,
the resonance is now fully chaotic, which emphasizes that
the study of a few periodic orbits may give quite global
information on the dynamics.

This control strategy can then be generalized to the self-
consistent interaction, by introducing a test-wave similar
to (4) in the original N-particle Hamiltonian (1) :
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Figure 4. Left : Normalized intensity I /N for Hamiltonian (5). Right :
Ratio Ny, /N of particles with regular trajectories, for Hamiltonian
(5), as a function of the control parameter A. AI corresponds to the
mean fluctuations of the intensity.
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—/\CZcos (k(0; — wit)), (5)

Though the control dedicated to the mean-field model
lost some of its relevance, due to the presence in the original
model of the feedback of the electrons on the wave, the
controlled dynamics of the particles is qualitatively similar
to the one obtained in the mean-field framework. After an
initial growth of the wave, the particles organize themselves
in a water bag, but only few of them still display a regular
trajectory : from 65% in the uncontrolled regime, the ratio
has collapsed to about 6% for A = A, (cf Fig.3). As for
the wave, the intensity rapidly stabilizes, after the initial
growth. The relevance of a control based on a modification
of the macro-particle is thus confirmed. This is in agreement
with the experimental results of Dimonte [11], who observed
that one could destroy the oscillations of the intensity with
unstable test-waves.

Finally, let us note that controlling with a weaker
test-wave (A < 0.07) only partially chaotizes the macro-
particle : the intensity of the wave still stabilizes, though
not as much as for A = )\, (see Fig.4). Then, a stronger
test-wave does not provide a better control, due to the
creation of new resonance islands in the test-particle phase
space for larger A.

Conclusion

We proposed in this paper a method to stabilize the in-
tensity of a wave amplified by a beam of particles. This is
achieved by destroying the coherent structures of the parti-
cles dynamics. By studying a mean-field version of the orig-
inal Hamiltonian setting and putting forward an analysis
of the linear stability of the periodic orbit, we were able to
enhance the degree of mixing of the system: Regular trajec-
tories are turned into chaotic ones as the effect of a properly
tuned test-wave, which is externally imposed. The results
are then translated into the relevant N-body self consistent
framework allowing us to conclude upon the robustness of
the proposed control strategy.
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