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Abstract

We consider the convergence of the approximation schemes related to Itô’s
integral and quadratic variation, which have been developed in [8]. First,
we prove that the convergence in the a.s. sense exists when the integrand is
Hölder continuous and the integrator is a continuous semimartingale. Second,
we investigate the second order convergence in the Brownian motion case.
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1 Introduction

We consider a complete probability space (Ω,F ,Ft, P ), which satisfies the
usual hypotheses. The notation (ucp) will stand for the convergence in prob-
ability, uniformly on the compact set in time.

1. Let X be a real continuous (Ft)-semimartingale. In the usual stochastic
calculus, the quadratic variation and the stochastic integral with respect to X
play a central role. In [5], [6] and [7], Russo and Vallois extended these notions
to continuous processes. Let us briefly recall their main definitions.

Definition 1.1 Let X be a real-valued continuous process, (Ft)-adapted, and
H be a locally integrable process. The forward integral

∫ t

0
Hd−X is defined as

∫ t

0

Hd−X = lim
ǫ→0

(ucp)
1

ǫ

∫ t

0

Hu (Xu+ǫ − Xu) du,

if the limit exists. The quadratic variation is defined by

[X]t = lim
ǫ→0

(ucp)
1

ǫ

∫ t

0

(Xu+ǫ − Xu)
2 du

1



if the limit exists.

In the article, X will stand for a real-valued continuous (Ft)-semimartingale
and (Ht)t>0 for a (Ft)-adapted process. If H is continuous, then, according
to Proposition 1.1 of [5], the limits in (1.1) exist and coincide with the usual
objects. In order to work with adapted processes only, we change u + ǫ into
(u + ǫ) ∧ t in the integrals. This change does not affect the limit by (3.3) of
[8]. Consequently,

∫ t

0

HudXu = lim
ǫ→0

(ucp)
1

ǫ

∫ t

0

Hu

(

X(u+ǫ)∧t − Xu

)

du, (1.1)

and

< X >t= lim
ǫ→0

(ucp)
1

ǫ

∫ t

0

(

X(u+ǫ)∧t − Xu

)2
du (1.2)

where
∫ t

0
HudXu is the usual stochastic integral and < X > is the usual

quadratic variation.

2. First, we determine sufficient conditions under which the convergences in
(1.1) and (1.2) hold in the almost sure sense. Let us mention that some results
in this direction have been obtained in [2].

We say that a process Y is locally Hölder continuous if, for all T > 0, there
exist α′ ∈]0, 1] and CT ∈ L2(Ω) such that

|Ys − Yu| 6 CT |u − s|α′ ∀u, s ∈ [0, T ], a.s.

Our first result related to stochastic integral is the following.

Theorem 1.2 If (Ht)t>0 is adapted and locally Hölder continuous, then

lim
ǫ→0

1

ǫ

∫ t

0

Hu(X(u+ǫ)∧t − Xu)du =

∫ t

0

HudXu, (1.3)

in the sense of almost sure convergence, uniformly on the compact sets in time.

Proposition 1.3 If X is locally Hölder continuous, then

lim
ǫ→0

1

ǫ

∫ t

0

(X(u+ǫ)∧t − Xu)
2du =< X >t,

in the sense of almost sure convergence, uniformly on the compact sets in time.
Moreover, if H is a continuous process,

lim
ǫ→0

1

ǫ

∫ t

0

Hu(X(u+ǫ)∧t − Xu)
2du =

∫ t

0

Hud < X >u, (1.4)

in the sense of almost sure convergence.
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3. Let us now consider the case where X is the standard Brownian motion B.
Since B is a locally Hölder continuous martingale, the conditions in Theorem
1.2 and Proposition 1.3 are fulfilled. Then, it seems natural to determine the
rate of convergence in (1.3) and (1.4), i.e. a second order convergence. Note
that in [2], some related results have been proven.

Let us consider

∆ǫ(H, t) =
1√
ǫ

[

1

ǫ

∫ t

0

Hu(B(u+ǫ)∧t − Bu)du −
∫ t

0

HudBu

]

, (1.5)

∆(2)
ǫ (H, t) =

1√
ǫ

[

1

ǫ

∫ t

0

Hu(B(u+ǫ)∧t − Bu)
2du −

∫ t

0

Hudu

]

, (1.6)

where H is a progressively measurable process such that
∫ t

0
H2

s ds < ∞, for
every t > 0.

We begin with Ht = Bt. In this case, we have:

∆ǫ(H, t) = Wǫ(t) + Rǫ(t),

where

Wǫ(t) =

∫ t

0

Gǫ(u)dBu, Gǫ(u) =
1

ǫ
√

ǫ

∫ u

(u−ǫ)+
(Bu − Bs)ds, (1.7)

and

Rǫ(t) =
1√
ǫ

∫ t

0

(

1

ǫ

∫ u

0

Bsds − u − ǫ

ǫ
Bu

)

dBu.

It is easy to verify that Rǫ(t) → 0, as ǫ → 0, in L2(Ω), and therefore does not
contribute to the limit.

Theorem 1.4 (Wǫ(t), Bt)t>0 converges in distribution to (σWt, Bt)t>0, as ǫ →
0, where W is a standard Brownian motion, independent from B, and σ2 = 1

3
.

We now investigate the convergence of (∆ǫ(H, t))t>0. We restrict ourselves to
processes H of the type Ht = H0 + Mt + Vt where

1. H0 is F0-measurable,

2. Mt is a Brownian martingale, i.e. Mt =
∫ t

0
ΛsdBs, where (Λt) is progres-

sively measurable and satisfies
∫ t

0
Λ2

sds < ∞,

3. V is a continuous process, which is Hölder continuous with order α > 1/2,
vanishing at time 0.

Note that if Vt =
∫ t

0
Φsds, where (Φt)t>0 is adapted and locally bounded, then

(3) holds with α = 1 and Ht is a semimartingale.

Using a functional theorem of convergence (Proposition 3.2 and Theorem 5.1
in [3]) and Theorem 1.4, we obtain the following result.
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Theorem 1.5 1. For any 0 < t1 < · · · < tn, the random vector (∆ǫ(H0, t1),
. . . , ∆ǫ(H0, tn)) converges in law to (σH0N0, . . . , σH0N0), where N0 is a
standard Gaussian r.v, independent from F0.

2. If V is a process which is locally Hölder continuous of order α > 1
2
, then

∆ǫ(V, t) converges to 0 in L2(Ω) as ǫ → 0, uniformly on the compact set
in time.

3. If Mt =
∫ t

0
ΛsdBs, where Λs = f(Bu, u 6 s) is a continuous function of

the trajectory (Bu, u 6 s) such that t → Λt is a continuous map from
R

+ to L2(Ω), then the process (∆ǫ(M, t))t>0 converges in distribution to

(σ
∫ t

0
ΛudWu)t>0 as ǫ → 0.

4. If H0 = 0, M and V are as in point (2)−(3), then (∆ǫ(H, t))t>0 converges

in law to (σ
∫ t

0
ΛudWu)t>0 as ǫ → 0.

The conditions of Theorem 1.5 related to the process H are likely too strong. In
particular, the continuity of t → Ht and the fact that H is a semimartingale are
not needed. Indeed, there exist adapted stepwise processes H so that ∆ǫ(H, t)
converges in distribution as ǫ → 0, for any t > 0. More precisely, we have the
following result.

Theorem 1.6 Let (ai)i∈N be an increasing sequence of real numbers which
satisfies a0 = 0 and an → ∞. Let h, (hi)i∈N be r.v.’s such that hi is Fai

-
measurable, h is F0-measurable and supi∈N

‖hi‖∞ < ∞. Let H be the adapted
and stepwise process:

Ht = h1I{t=0} +
∑

i>0

hi1I{t∈]ai,ai+1]}.

Then,

1. 1
ǫ

∫ t

0
Hs(B(s+ǫ)∧t −Bs)ds converges almost surely to

∫ t

0
HsdBs, uniformly

on the compact set in time, as ǫ → 0.

2. There exists a sequence of i.i.d. r.v’s (Ni)i∈N with Gaussian law N (0, 1),
independent from B such that the r.v. ∆ǫ(H, t) converges in law to

h0√
3
N0 +

∑

i>1

(hi − hi−1)√
3

Ni1I{t6ai+1},

as ǫ → 0, for fixed time t.

A proof of Theorem 1.6 can be found in Section 6.3 of [1].

4. Let us finally present our second order result of convergence related to
quadratic variation.
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Proposition 1.7 Let Hs = f(Bu, u 6 s) be a continuous function of the
trajectory (Bu, u 6 s) such that s → Hs is locally Hölder continuous. Then,

(∆
(2)
ǫ (H, t))t>0 converges in distribution to (σ

∫ t

0
HudWu)t>0, as ǫ → 0.

5. Let us briefly detail the organization of the paper. Section 2 contains the
proofs of the almost convergence results, i.e. Theorem 1.2 and Proposition 1.3.
Then, the proof of Theorem 1.4 (resp. Proposition 1.7 and Theorem 1.5) is
(resp. are) given in Section 3 (resp. Section 4).

In the calculations, C will stand for a generic constant (random or not). If C
is random, then C ∈ L2(Ω). We will use several times a stochastic version of
Fubini’s Theorem, which can be found in Section IV.5 of [4].

2 Proof of Theorem 1.2 and Proposition 1.3

We begin with the proof of Theorem 1.2 in Points 1-4 below. Then, we deduce
Proposition 1.3 from Theorem 1.2 in Point 5.

1. Let T > 0. We suppose that (Ht)t>0 is locally Hölder continuous of order
α′ and we study the almost sure convergence of

Iǫ(t) :=
1

ǫ

∫ t

0

Hu(X(u+ǫ)∧t − Xu)du to I(t) :=

∫ t

0

HudXu,

as ǫ → 0, uniformly on t ∈ [0, T ].

By stopping, we can suppose that (Xt)06t6T and < X >T are bounded by a
constant, and there exists a constant C > 0 such that

∀u, s ∈ [0, T ], |Hs − Hu| 6 C|u − s|α, for some α ∈]0, α′[. (2.1)

Let X = X0 + M + V be the canonical decomposition of X, where M is a
continuous local martingale and V is an adapted process with finite variation.
It is clear that Iǫ(t) − I(t) can be decomposed as

Iǫ(t) − I(t) =

(

1

ǫ

∫ t

0

Hu(M(u+ǫ)∧t − Mu)du −
∫ t

0

HudXu

)

+

(

1

ǫ

∫ t

0

Hu(M(u+ǫ)∧t − Mu)du −
∫ t

0

HudXu

)

.

Theorem 1.2 will be proved as soon as Iǫ(t) − I(t) converges to 0, in the case
where X is either a continuous local martingale or a continuous finite variation
process.

We deal with the finite variation case in Point 2. As for the martingale case,
the study is divided in two steps:

5



1. First, we prove that there is a sequence (ǫn)n∈N such that Iǫn
(t) converges

almost surely to I(t) and ǫn → 0 (see Point 3 below).

2. Second, we show that Iǫ(t) converges almost surely to 0, uniformly for
t ∈ [0, T ] (see Point 4 below).

2. Suppose that X has a finite variation, writing X(u+ǫ)∧t −Xu =
∫ u

(u+ǫ)∧t
dXs

and using Fubini’s theorem yield to:

Iǫ(t) − I(t) =

∫ t

0

(

1

ǫ

∫ s

(s−ǫ)+
Hudu − Hs

)

dXs,

=

∫ t

0

(

1

ǫ

∫ s

(s−ǫ)+
(Hu − Hs)du

)

dXs −
∫ ǫ

0

ǫ − s

ǫ
HsdXs.

Using the Hölder property (2.1) (in the first integral) and the fact that H is
bounded by a constant (in the second integral), we have for all t ∈ [0, T ]:

|Iǫ(t) − I(t)| 6

∫ T

0

(

1

ǫ

∫ s

(s−ǫ)+
C|u − s|αdu

)

d|X|s +

∫ ǫ

0

ǫ − s

ǫ
C d|X|s,

6 Cǫα|X|T + C(|X|ǫ − |X|0).

Consequently, Iǫ(t) − I(t) converges almost surely to 0, as ǫ → 0, uniformly
on any compact set in time.

3. In the two next points, X is a continuous martingale. We proceed as in
step 2 above: observing that X(u+ǫ)∧t − Xu =

∫ u

(u+ǫ)∧t
dXs and using Fubini’s

stochastic theorem come to

Iǫ(t) − I(t) =

∫ t

0

(

1

ǫ

∫ s

(s−ǫ)+
Hudu − Hs

)

dXs.

Thus, (Iǫ(t) − I(t))t∈[0,T ] is a continuous local martingale. Moreover, E(<
Iǫ − I >t) is bounded since H and < X > are bounded on [0, T ].

Let us introduce p = 2(1−α)
α2 + 1. This explicit expression of p in terms of α

will be used later at the end of Point 4. Burkholder-Davis-Gundy inequalities
give:

E

(

sup
t∈[0,T ]

|Iǫ(t) − I(t)|p
)

6 cpE





(

∫ T

0

(

1

ǫ

∫ s

(s−ǫ)+
Hudu − Hs

)2

d < X >s

)
p

2



 .

The Hölder property (2.1) implies that:

∣

∣

∣

∣

1

ǫ

∫ s

(s−ǫ)+
Hudu − Hs

∣

∣

∣

∣

6
1

ǫ

∫ s

(s−ǫ)+
|Hu − Hs| du 6 Cǫα.
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Consequently,

E

(

sup
t∈[0,T ]

|Iǫ(t) − I(t)|p
)

6 CǫαpE[< X >T ]
p

2 6 Cǫαp.

Then, for any δ > 0, Markov inequality leads to :

P

(

sup
t∈[0,T ]

|Iǫ(t) − I(t)| > δ

)

6
Cǫαp

δp
. (2.2)

Let us now define (ǫn)n∈N⋆ by ǫn = n− 2
pα for all n > 0. Replacing ǫ by ǫn in

(2.2) comes to:

P

(

sup
t∈[0,T ]

|Iǫn
(t) − I(t)| > δ

)

6
C

δp
n−2.

Since
∑∞

n=1 n−2 < ∞, the Borel-Cantelli lemma implies that:

lim
n→∞

sup
t∈[0,T ]

|Iǫn
(t) − I(t)| = 0, a.s. (2.3)

4. For all ǫ ∈]0, 1[, let n = n(ǫ) denote the integer such that ǫ ∈]ǫn+1, ǫn].
Then, we decompose Iǫ(t) − I(t) as follows:

Iǫ(t) − I(t) = (Iǫ(t) − Iǫn
(t)) + (Iǫn

(t) − I(t)).

(2.3) gives the almost sure convergence of Iǫn
(t) to I(t), uniformly on [0, T ].

Therefore, the a.s convergence of Iǫ(t)− I(t) to 0 , uniformly on [0, T ], will be
obtained as soon as Iǫ(t) − Iǫn

(t) goes to 0, uniformly on [0, T ].

From the definition of Iǫ(t), it is easy to deduce that we have:

Iǫ(t) − Iǫn
(t) =

1

ǫ

(
∫ t

0

Hu(X(u+ǫ)∧tdu −
∫ t

0

HuX(u+ǫn)∧t)du

)

+

(

1

ǫ
− 1

ǫn

)(
∫ t

0

Hu(X(u+ǫn)∧t − Xu)du

)

.

The changes of variable either v = u + ǫ or v = u + ǫn lead to

Iǫ(t) − Iǫn
(t) =

1

ǫ

∫ t

ǫ

(Hv−ǫ − Hv−ǫn
) Xvdv (2.4)

+
ǫn − ǫ

ǫǫn

(
∫ t

ǫn

(Hv−ǫn
− Hv) Xvdv

)

+ Rǫ(t),

where we gather under the notation Rǫ(t) all the remaining terms. Let us

observe that Rǫ(t) is the sum of terms which are of the form 1
ǫ

∫ b

a
. . . dv where

7



|a − b| 6 ǫn − ǫ or
(

1
ǫ
− 1

ǫn

)

∫ b

a
. . . dv where |a − b| 6 ǫn. Since H and X are

bounded on [0, T ], we have

|Rǫ(t)| 6 C
ǫn − ǫ

ǫ
∀t ∈ [0, T ]. (2.5)

By the Hölder property (2.1), we get

|Hv−ǫ − Hv−ǫn
| 6 C(ǫn − ǫ)α, |Hv−ǫn

− Hv| 6 Cǫα
n. (2.6)

Since X and H are bounded, we can deduce from (2.4), (2.5) and (2.6) that:

|Iǫ(t) − Iǫn
(t)| 6 C

(ǫn − ǫ)α

ǫ
+ C

(ǫn − ǫ)ǫα
n

ǫǫn

+ C
ǫ − ǫn

ǫ
, ∀t ∈ [0, T ].

Using the definition of ǫn, we infer

ǫn − ǫ

ǫ
6 Cn−1,

(ǫn − ǫ)α

ǫ
6 Cn

2(1−α)
pα

−α,
(ǫn − ǫ)ǫα

n

ǫǫn

6 n− 2
p
−1+ 2

pα 6 n
2(1−α)

pα
−α.

Note that p = 2(1−α)
α2 + 1 implies that 2(1−α)

pα
−α < 0. As a result, Iǫ(t)− Iǫn

(t)

goes to 0 a.s, uniformly on [0, T ], as ǫ → 0.

5. In this item, it is supposed that X is a semimartingale, locally Hölder
continuous. It is clear that 1

ǫ

∫ t

0
(X(u+ǫ)∧t − Xu)

2du equals

1

ǫ

[
∫ t

0

X2
(u+ǫ)∧tdu −

∫ t

0

X(u+ǫ)∧tXudu −
∫ t

0

Xu(X(u+ǫ)∧t − Xu)du

]

.

Thanks to the change of variable v = u + ǫ in the first integral, after easy
calculations, we get

1

ǫ

∫ t

0

(X(u+ǫ)∧t − Xu)
2du = X2

t − 1

ǫ

∫ ǫ

0

X2
v∧tdv − 2

ǫ

∫ t

0

Xu(X(u+ǫ)∧t − Xu)du.

Since X is continuous, 1
ǫ

∫ ǫ

0
X2

v∧tdv tends to X2
0 a.s, uniformly on [0, T ]. Ac-

cording to Theorem 1.2, we have

lim
ǫ→0

1

ǫ

∫ t

0

(X(u+ǫ)∧t − Xu)
2du = X2

t − X2
0 − 2

∫ t

0

XudXu.

Itô ’s formula implies that the right-hand side of the above identity equals to
< X >t.

Replacing (u+ ǫ)∧ t by (u+ ǫ)+ does not change the limit. Then, the measure
1
ǫ
(X(u+ǫ)+ − Xu)

2du converges a.s. to the measure d < X >u. It leads to

the convergence a.s. of 1
ǫ

∫ t

0
Hu(X(u+ǫ)∧t − Xu)

2du to
∫ t

0
Hud < X >u, for H

continuous process.

8



3 Proof of Theorem 1.4

Recall that Wǫ(t) and Gǫ(t) are defined by (1.7). We study the convergence in
distribution of the two dimensional process (Wǫ(t), Bt), as ǫ → 0.

First, we determine the limit in law of Wǫ(t). In Point 1 we demonstrate
preliminary results. Then, we prove the convergence of the moments of Wǫ(t)
in Point 2. By the method of moments, the convergence in law of Wǫ(t) for a
fixed time is proven in Point 3. We deduce the finite-dimensionnal convergence
in Point 4. Finally, Kolmogorov criterion concludes the proof in Point 5. Then,
we briefly sketch in Point 6 the proof of the joint convergence of (Wǫ(t))t>0

and (Bt)t>0. The approach is close to the one of (Wǫ(t))t>0.

1. We begin by calculating the moments of Wǫ(t) and Gǫ(u). We denote by
L
= the equality in law.

Lemma 3.1 E
[

|Gǫ(u)|2
]

= (u∧ǫ)3

ǫ3
σ2. Moreover, for all k ∈ N, there exists a

constant mk such that E
[

|Gǫ(u)|k
]

6 mk, ∀u > 0, ǫ > 0.

Proof. First, we apply the change of variable s = u− (u∧ ǫ)r in (1.7). Then,

using the identity (Bu − Bu−v; 0 6 v 6 u)
L
= (Bv; 0 6 v 6 u) and the scaling

property of B, we get

Gǫ(u)
L
=

(u ∧ ǫ)
√

u ∧ ǫ

ǫ
√

ǫ

∫ 1

0

Brdr.

Since
∫ 1

0
Brdr

L
= σN , where σ2 = 1/3 and N is a standard gaussian r.v, we

obtain

E
[

|Gǫ(u)|k
]

=
(u ∧ ǫ)

3k
2

ǫ
3k
2

σkE
[

|N |k
]

. (3.1)

Taking k = 2 gives E
[

|Gǫ(u)|2
]

= (t∧ǫ)3

ǫ3
σ2. Using u ∧ ǫ 6 ǫ and (3.1), we get

E[|Gǫ(u)|k] 6 mk with mk = σkE
[

|N |k
]

.

Lemma 3.2 For all k > 2, there exists a constant C(k) such that

∀t > 0, E
[

|Wǫ(t)|k
]

6 C(k) t
k
2 .

Moreover, for k = 2, we have

E
[

(

Wǫ(u) − Wǫ((u − ǫ)+)
)2
]

6 σ2ǫ, ∀u > 0.

Proof. The Burkhölder-Davis-Gundy inequality and (1.7) give

E
[

|Wǫ(t)|k
]

6 c(k)E

[

(
∫ t

0

(Gǫ(u))2 du

)

k
2

]

.
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Then, Jensen inequality implies:

E

[

(
∫ t

0

(Gǫ(u))2 du

)

k
2

]

6 t
k
2
−1E

[
∫ t

0

|Gǫ(u)|k du

]

.

Finaly, applying Lemma 3.1 comes to

E
[

|Wǫ(t)|k
]

6 c(k)mkt
k
2 .

The case k = 2 can be easily treated via (1.7) and Lemma 3.1:

E
[

(

Wǫ(u) − Wǫ((u − ǫ)+)
)2
]

=

∫ u

(u−ǫ)+
E
[

(Gǫ(v))2] dv,

=

∫ u

(u−ǫ)+
σ2 (v ∧ ǫ)3

ǫ3
dv 6 σ2ǫ.

2. Let us now study the convergence of the moments of Wǫ(t).

Proposition 3.3

lim
ǫ→0

E
[

(Wǫ(t))
2n
]

= E
[

(σWt)
2n
]

, ∀n ∈ N, t > 0. (3.2)

Proof. a) We prove Proposition 3.3 by induction on n > 1.

For n = 1, from Lemma 3.1, we have:

E
[

(Wǫ(t))
2
]

=

∫ t

0

E
[

(Gǫ(u))2] du =

∫ t

0

σ2 (u ∧ ǫ)3

ǫ3
du.

Then, E [(Wǫ(t))
2] converges to σ2t = E[(σWt)

2].

Let us suppose that (3.2) holds. First, we apply Itô’s formula to (Wǫ(t))
2n+2.

Second, taking the expectation reduces to 0 the martingale part. Finally, we
get

E
[

(Wǫ(t))
2n+2] =

(2n + 2)(2n + 1)

2

∫ t

0

E
[

(Wǫ(u))2n (Gǫ(u))2] du. (3.3)

b) We admit for a while that

E
[

(Wǫ(u))2n (Gǫ(u))2] −→ σ2E
[

(σWu)
2n
]

, ∀u > 0. (3.4)

Using Cauchy-Schwarz inequality and Lemmas 3.1, 3.2 give:

E
[

(Wǫ(u))2n (Gǫ(u))2]
6

√

E
[

(Wǫ(u))4n
]

E
[

(Gǫ(u))4]

6
√

C(4n)u2nm4 6
√

C(4n)m4u
n.

10



Consequently, we may apply Lebesgue’s theorem to (3.3), we have

lim
ǫ→0

E
[

(Wǫ(t))
2n+2] =

(2n + 2)(2n + 1)

2
σ2

∫ t

0

E
[

(σWu)
2n
]

du,

=
(2n + 2)(2n + 1)

2
σ2n+2

∫ t

0

un (2n)!

n! 2n
du,

=
(2n + 2)!

(n + 1)! 2n+1
(σ
√

t)2n+2 = E
[

(σWt)
2n+2] .

c) We have now to prove (3.4). If u = 0, E
[

(Wǫ(0))2n (Gǫ(0))2] = 0 =

σ2E
[

(σW0)
2n
]

. If u > 0, it is clear that:

E
[

(Wǫ(u))2n (Gǫ(u))2] = E
[

(

Wǫ((u − ǫ)+)
)2n

(Gǫ(u))2
]

+ ξǫ(u), (3.5)

where
ξǫ(u) = E

[{

(Wǫ(u))2n −
(

Wǫ((u − ǫ)+)
)2n
}

(Gǫ(u))2
]

.

Since Gǫ(u) is independent from F(u−ǫ)+ , we have

E
[

(

Wǫ((u − ǫ)+)
)2n

(Gǫ(u))2
]

= E
[

(

Wǫ((u − ǫ)+)
)2n
]

E
[

(Gǫ(u))2] .

Finally, plugging the identity above in (3.5) gives:

E
[

(Wǫ(u))2n (Gǫ(u))2] = E
[

(Wǫ(u))2n
]

E
[

(Gǫ(u))2]+ ξǫ(u) + ξ̃ǫ(u),

where
ξ̃ǫ(u) = E

[

(

Wǫ((u − ǫ)+)
)2n − (Wǫ(u))2n

]

E
[

(Gǫ(u))2] .

Lemma 3.1 implies that E
[

(Gǫ(u))2] tends to σ2 as ǫ → 0. The recurrence

hypothesis implies that E
[

(Wǫ(u))2n
]

converges to E
[

(σWu)
2n
]

as ǫ → 0. It

remains to prove that ξǫ(u) and ξ̃ǫ(u) tend to 0 to conclude the proof.

The identity a2n − b2n = (a− b)
∑2n−1

k=0 akb2n−1−k implies that ξǫ(u) is equal to
the sum

∑2n−1
k=0 Sk(ǫ, u), where

Sk(ǫ, u) = E
[(

Wǫ(u) − Wǫ((u − ǫ)+)
)

(Gǫ(u))2 (Wǫ(u))k(Wǫ((u − ǫ)+))2n−1−k
]

.

Applying four times the Cauchy-Schwarz inequality comes to:

|Sk(ǫ, u)| 6

[

E
(

Wǫ(u) − Wǫ((u − ǫ)+)
)2
]

1
2 [

E (Gǫ(u))8]
1
4

×
[

E(Wǫ(u))8k
]

1
8
[

E(Wǫ((u − ǫ)+))16n−8−8k
]

1
8 .

Lemmas 3.1 and 3.2 lead to

|Sk(ǫ, u)| 6 C(k)T n− 1
2
√

ǫ, ∀u ∈ [0, T ].

Consequently, ξǫ(u) tends to 0 as ǫ → 0. Using the same method, it is easy to
prove that ξ̃ǫ(u) tends to 0 as ǫ → 0.

3. From Proposition 3.3, it easy to deduce the convergence in law of Wǫ(t) (t
being fixed).
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Proposition 3.4 For any fixed t > 0, Wǫ(t) converges in law to σWt, as
ǫ → 0.

Let us recall the method of moments.

Proposition 3.5 Let X, (Xn)n∈N be r.v’s such that E(|X|k) < ∞, E(|Xn|k) <
∞,∀k, n ∈ N and

limk→∞
[E(X2k)]

1
2k

2k
< ∞. (3.6)

If for all k ∈ N, limn→∞ E(Xk
n) = E(Xk), then Xn converges in law to X as

n → ∞.

Proof of Proposition 3.4. Let t > 0 be a fixed time. The odd moments of
Wǫ(t) are null. By Proposition 3.3, the even moments of Wǫ(t) tends to σWt.
Since σWt is a Gaussian r.v. with variance σ

√
t, it is easy to check that (3.6)

holds. As a result, Wǫ(t) converges in law to σWt.

4. Next, we prove the finite-dimensionnal convergence.

Proposition 3.6 Let 0 < t1 < t2 < · · · < tn. Then, (Wǫ(t1), . . . ,Wǫ(tn))
converges in law to (σWt1 , . . . , σWtn), as ǫ → 0.

Proof. We take n = 2 for simplicity. We consider 0 < t1 < t2 and ǫ ∈
]0, t1 ∧ (t2 − t1)[. Since t1 > ǫ, note that (u − ǫ)+ = u − ǫ for u ∈ [t1, t2]. We
begin with the decomposition:

Wǫ(t2) = Wǫ(t1) +
1

ǫ
√

ǫ

∫ t2

t1+ǫ

(
∫ u

u−ǫ

(Bu − Bs)ds

)

dBu + R1
ǫ (t1, t2),

where R1
ǫ (t1, t2) = 1

ǫ
√

ǫ

∫ t1+ǫ

t1

(

∫ u

u−ǫ
(Bu − Bs)ds

)

dBu. Let us note that Wǫ(t1)

is independent from 1
ǫ
√

ǫ

∫ t2

t1+ǫ

(

∫ u

u−ǫ
(Bu − Bs)ds

)

dBu.

Let us introduce B′
t = Bt+t1 − Bt1 , t > 0. B′ is a standard Brownian motion.

The changes of variables u = t1+v and r = s−t1 in
∫ t2

t1+ǫ

(

∫ u

u−ǫ
(Bu − Bs)ds

)

dBu

leads to
Wǫ(t2) = Wǫ(t1) + Θǫ(t1, t2) + R2

ǫ (t1, t2) + R1
ǫ (t1, t2), (3.7)

where

Θǫ(t1, t2) =
1

ǫ
√

ǫ

∫ t2−t1

0

(
∫ v

(v−ǫ)+
(B′

v − B′
r)dr

)

dB′
v,

R2
ǫ (t1, t2) =

1

ǫ
√

ǫ

∫ ǫ

0

(
∫ v

0

(B′
v − B′

r)dr

)

dB′
v.

Straightforward calculation shows that E
[

(R1
ǫ (t1, t2))

2
]

and E
[

(R2
ǫ (t1, t2))

2
]

are bounded by Cǫ. Thus, R1
ǫ (t1, t2) and R1

ǫ (t1, t2) converge to 0 in L2(Ω).
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Proposition 3.4 gives the convergence in law of Θǫ(t1, t2) to σ(Wt2 −Wt1) and
the convergence in law of Wǫ(t1) to σWt1 , as ǫ → 0.

Since Wǫ(t1) and Θǫ(t1, t2) are independent, the decomposition (3.7) implies
that (Wǫ(t1), Wǫ(t2) − Wǫ(t1)) converges in law to (σWt1 , σ(Wt2 − Wt1)), as
ǫ → 0. Proposition 3.4 follows immediately.

5. We end the proof of the convergence in law of the process (Wǫ(t))t>0 by
showing that the family of the laws of (Wǫ(t))t>0 is tight as ǫ ∈]0, 1].

Lemma 3.7 There exists a constant K such that

E
[

|Wǫ(t) − Wǫ(s)|4
]

6 K|t − s|2, 0 6 s 6 t, ǫ > 0.

Proof. Applying Burkhölder-Davis-Gundy inequality, we obtain:

E
[

|Wǫ(t) − Wǫ(s)|4
]

6 cE

[

(
∫ t

s

(Gǫ(u))2 du

)2
]

6 c(t−s)

∫ t

s

E
[

(Gǫ(u))4
]

du.

Using Lemma 3.1, we get E
[

|Wǫ(t) − Wǫ(s)|4
]

6 c m4(t − s)2 and ends the
proof (see Kolmogorov Criterion in Section XIII-1 of [4]).

6. To prove the joint convergence of (Wǫ(t), Bt)t>0 to (σWt, Bt)t>0, we mimick
the approach developed in Points 1-5 above.

6.a. Convergence (Wǫ(t), Bt) to (σWt, Bt), t being fixed.

First, we prove that

lim
ǫ→0

E(W p
ǫ (t)Bq

t ) = E((σWt)
pBq

t ), p, q ∈ N. (3.8)

Let us note that the limit is null when either p or q is odd.

Using Itô’s formula, we get

E [(Wǫ(t))
p Bq

t ] =
p(p − 1)

2
α1(t, ǫ) +

q(q − 1)

2
α2(t, ǫ) + pqα3(t, ǫ),

where

α1(t, ǫ) =

∫ t

0

E
[

(Wǫ(u))p−2 Bq
u(Gǫ(u))2

]

du,

α2(t, ǫ) =

∫ t

0

E
[

(Wǫ(u))p Bq−2
u

]

du,

α3(t, ǫ) =

∫ t

0

E
[

(Wǫ(u))p−1 Bq−1
u Gǫ(u)

]

du.

To demonstrate (3.8), we proceed by induction on q, then by induction on p,
q being fixed.
First, we apply (3.8) with q − 2 instead of q, then we have directly:

lim
ǫ→0

α2(t, ǫ) =

∫ t

0

E [(σWu)
p] E

[

Bq−2
u

]

du.

13



As for α1(t, ǫ), we write

(Wǫ(u))p−2 = (Wǫ(u))p−2 −
(

Wǫ((u − ǫ)+)
)p−2

+
(

Wǫ((u − ǫ)+)
)p−2

Bq
u = Bq

u − Bq

(u−ǫ)+ + Bq

(u−ǫ)+ .

We proceed similarly with α3(t, ǫ). Reasoning as in Point 2 and using the two
previous identities, we can prove:

lim
ǫ→0

α1(t, ǫ) = σ2

∫ t

0

E
[

(σWu)
p−2]E [Bq

u] du and lim
ǫ→0

α3(t, ǫ) = 0.

Consequently, when either p or q is odd, then limǫ→0 αi(t, ǫ) = 0, (i = 1, 2)
and therefore:

lim
ǫ→0

E(W p
ǫ (t)Bq

t ) = 0 = E((σWt)
pBq

t ).

It remains to determine the limit in the case where p and q are even. Let us
denote p = 2p′ and q = 2q′. Then we have

lim
ǫ→0

α1(t, ǫ) =

∫ t

0

σ2 (p − 2)!

2p′−1(p′ − 1)!
up′−1σp−2 q!

2q′ (q′)!
uq′du

=
(p − 2)! q!

2p′+q′−1 (p′ − 1)! (q′)! (p′ + q′)
σptp

′+q′ ,

lim
ǫ→0

α2(t, ǫ) =

∫ t

0

p!

2p′ (p′)!
σpup′ (q − 2)!

2q′−1 (q′ − 1)!
uq′−1du

=
p! (q − 2)!

2p′+q′−1 (p′)! (q′ − 1)! (p′ + q′)
σptp

′+q′ .

Then, it is easy to deduce

lim
ǫ→0

E [(Wǫ(t))
p Bq

t ] =
p!

2p′ (p′)!
σptp

′ q!

2q′ (q′)!
tq

′

= E [(σWt)
p] E [Bq

t ] .

Next, we use a two dimensional version of the method of moments:

Proposition 3.8 Let X, Y, (Yn)n∈N(Xn)n∈N be r.v. whose moments are finite.
Let us suppose that X and Y satisfy (3.6) and that ∀p, q ∈ N, limn→∞ E(Xp

nY q
n )

= E(XpY q). Then, (Xn, Yn) converges in law to (X, Y ) as n → ∞.

Since Wt and Bt are Gaussian r.v’s, they both satisfy (3.6). Consequently,
(Wǫ(t), Bt) converges in law to (σWt, Bt) as ǫ → 0.

6.b. Finite-dimensional convergence. Let 0 < t1 < t2. We prove that
(Wǫ(t1), Wǫ(t2), Bt1 , Bt2) converges in law to (σWt1 , σWt2 , Bt1 , Bt2). We apply
decomposition (3.7) to Wǫ(t2).

By Point 6.a, (Wǫ(t1), Bt1) converges in law to (σWt1 , Bt1) and (Θǫ(t1, t2), Bt2−
Bt1) converges to (σWt2 − σWt1 , Bt2 − Bt1). Since (Θǫ(t1, t2), Bt2 − Bt1) is
independent from (Wǫ(t1), Bt1), we can conclude that (Wǫ(t1), Wǫ(t2), Bt1 , Bt2)
converges in law to (σWt1 , σWt2 , Bt1 , Bt2).
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4 Proofs of Theorem 1.5 and Proposition 1.7

1. Convergence in distribution of a family of stochastic integrals

with respect to Wǫ.

Recall that Wǫ is a continuous martingale, which converges in distribution to
σW as ǫ → 0. Then, by Proposition 3.2 of [3], Wǫ satisfies the condition of
uniform tightness.

Consequently, from Theorem 5.1 of [3], we can deduce that for any càdlàg pre-
dictable process Λ such that (Λ, Wǫ) converges in distribution to (Λ, W ), then

the process
(

∫ t

0
ΛudWǫ(u)

)

t>0
converges in distribution to

(

σ
∫ t

0
ΛudWu

)

t>0

as ǫ → 0.

2. Proof of Proposition 1.7. Recall that ∆
(2)
ǫ (H, t) is defined by (1.6).

First, let us consider the case Ht = 1 for all t > 0. Using Itô’s formula, we
obtain:

(B(s+ǫ)∧t − Bs)
2 = 2

∫ (s+ǫ)∧t

s

(Bu − Bs)dBu + (s + ǫ) ∧ t − s.

Reporting in ∆
(2)
ǫ (t) and applying stochastic Fubini’s theorem come to

∆(2)
ǫ (1, t) = 2Wǫ(t) +

1√
ǫ

(
∫ t

0

(s + ǫ) ∧ t − s

ǫ
ds − t

)

.

More generally, if we consider Hs = f(Bu, u 6 s) a continuous function of the
trajectory so that t → Ht is locally Hölder continuous, we can write a similar
decomposition:

∆(2)
ǫ (H, t) = 2

∫ t

0

HudWǫ(u) + Rǫ(t),

where
Rǫ(t) = 2

ǫ
√

ǫ

∫ t

0

[

∫ u

(u−ǫ)+
(Hs − Hu)(Bu − Bs)ds

]

dBu + 1
ǫ
√

ǫ

∫ t

(t−ǫ)+
Hs(t−s−ǫ)ds.

Since s → Hs is continuous, then a.s.

lim
ǫ→0

sup
t∈[0,T ]

∣

∣

∣

∣

1

ǫ
√

ǫ

∫ t

(t−ǫ)+
Hs(t − s − ǫ)ds

∣

∣

∣

∣

= 0.

Using the Hölder property of H and Doob inequality, we easily obtain

E

[

sup
t∈[0,T ]

(

2

ǫ
√

ǫ

∫ t

0

[
∫ u

(u−ǫ)+
(Hs − Hu)(Bu − Bs)ds

]

dBu

)2
]

6 Cǫ2α.

Since Hs = f(Bu, u 6 s) is a continuous function of the trajectory and (Wǫ, B)
converges in distribution to (σW,B) (cf. Theorem 1.4), applying Point 1 with
Λ = H leads to Proposition 1.7.

3. Proof of Point (2) of Theorem 1.5. Recall that ∆ǫ(H, t) is defined by
(1.5). Since V vanishes at time 0, we prolong V to ]−∞, +∞[, setting Vs = 0
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if s 6 0. Using B(s+ǫ)∧t − Bs =
∫ (s+ǫ)∧t

s
dBu, then Fubini’s stochastic theorem

yields to

∆ǫ(V, t) =

∫ t

0

(

1

ǫ
√

ǫ

∫ u

u−ǫ

(Vs − Vu)ds

)

dBu.

Consequently,

E

(

sup
t∈[0,T ]

|∆ǫ(V, t)|2
)

6 4

∫ T

0

E

(

1

ǫ
√

ǫ

∫ u

u−ǫ

(Vs − Vu)ds

)2

du.

Let us bound the term in parenthesis. Since V is Hölder continuous, we have
∣

∣

∣

∣

1

ǫ
√

ǫ

∫ u

u−ǫ

(Vs − Vu)ds

∣

∣

∣

∣

6
1

ǫ
√

ǫ

∫ u

u−ǫ

C |s − u|α ds 6 Cǫα− 1
2 .

Consequently,

E

(

sup
t∈[0,T ]

|∆ǫ(V, t)|2
)

6 CTǫα− 1
2 .

Since α > 1
2
, item (2) of Theorem 1.5 is proved.

4. Proof of Point (3) of Theorem 1.5.

Let Λs = f(Bu, u 6 s) be a continuous function of the trajectory, such that
t → Λt is a continuous map from R

+ to L2(Ω). Suppose moreover that Mt =
∫ t

0
ΛudBu. Proceeding as in Point 3 of section 2, we have

∆ǫ(M, t) =

∫ t

0

1√
ǫ

[

1

ǫ

∫ u

(u−ǫ)+
Msds − Mu

]

dBu.

Using the identity Mu = u−(u−ǫ)+

ǫ
Mu+ (ǫ−u)+

ǫ
Mu leads to ∆ǫ(M, t) = ∆′

ǫ(M, t)−
Rǫ(t), where

∆′
ǫ(M, t) = −

∫ t

0

(

1

ǫ
√

ǫ

∫ u

(u−ǫ)+
(Mu − Ms)ds

)

dBu,

and Rǫ(t) =
∫ ǫ

0
ǫ−u

ǫ
√

ǫ
MudBu. We claim that Rǫ(t) is a remainder term. Indeed,

Doob’s inequality gives

E

[

sup
t∈[0,T ]

Rǫ(t)
2

]

6 4

∫ ǫ

0

(ǫ − u)2

ǫ3
E[

∫ u

0

ΛvdBv]
2du 6

4

ǫ

∫ ǫ

0

∫ u

0

E[Λ2
v]dvdu.

Consequently, Rǫ(t) does not contribute to the limit in law of ∆ǫ(M, t).

Using the identity Mu −Ms = Λu(Bu −Bs) +
∫ u

s
(Λr −Λu)dBr, we decompose

∫ u

(u−ǫ)+
(Mu − Ms)ds as

Λu

∫ u

(u−ǫ)+
(Bu − Bs)ds +

∫ u

(u−ǫ)+

(
∫ u

s

(Λr − Λu)dBr

)

ds

= Λu

∫ u

(u−ǫ)+
(Bu − Bs)ds +

∫ u

(u−ǫ)+
(r − (u − ǫ)+)(Λr − Λu)dBr.
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Consequently:

∆′
ǫ(M, t) = −

∫ t

0

ΛudWǫ(u) + R′
ǫ(t),

where

R′
ǫ(t) = − 1

ǫ
√

ǫ

∫ t

0

(
∫ u

(u−ǫ)+
(r − (u − ǫ)+)(Λr − Λu)dBr

)

dBu.

It can be proved, as it is shown previously, that R′
ǫ(t) goes to 0 in L2(Ω) as

ǫ → 0. The convergence in law of (−
∫ t

0
ΛudWǫ(u))t>0 to (σ

∫ t

0
ΛudWu)t>0 is a

direct consequence of item 1 above.

5. Proof of Point (1) of Theorem 1.5. We have, for a fixed t and for all
ǫ < t:

∆ǫ(H0, t) =
H0√

ǫ

[

1

ǫ

∫ t

0

(B(s+ǫ)∧t − Bs)ds −
∫ t

0

dBs

]

.

Since B(s+ǫ)∧t − Bs =
∫ (s+ǫ)∧t

s
dBu, using Fubini’s Theorem allows to gather

the integrals and we get

∆ǫ(H0, t) =
H0√

ǫ

[
∫ t

0

u − ǫ − (u − ǫ)+

ǫ
dBu

]

=
H0√

ǫ

[
∫ ǫ

0

u − ǫ

ǫ
dBu

]

= H0Nǫ,

where

Nǫ =

∫ ǫ

0

u − ǫ

ǫ
√

ǫ
dBu.

The r.v Nǫ does not depend on t anymore and is independent from F0. More-
over Nǫ has a centered Gaussian distribution, with variance

E(N2
ǫ ) =

∫ ǫ

0

(u

ǫ
− 1
)2 du

ǫ
=

1

3
.

Finally, Nǫ follows the Gaussian law N (0, σ).

Note that ∆ǫ(H0, 0) = 0. Consequently, the process (∆ǫ(H0, t))t>0 cannot
converge in distribution as ǫ → 0.
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