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Abstract This paper consists of three parts : in the first part, we describe a family of
generalized gamma convoluted (abbreviated as GGC) variables. In the second part, we use
this description to prove that several r.v.’s, related to the length of excursions away from 0 for
a recurrent linear diffusion on Ry, are GGC. Finally, in the third part, we apply our results
to the case of Bessel processes with dimension d =2(1 —a) (0 <d <2, 0r 0 < a < 1).
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0 Notation and Introduction

0.1 Let!:R; — R, denote a Borel function such that :

/ml()dz<oo (0.1)
0

z

Without loss of generality, we assume that :

/Dol()d_1 (0.2)
0

z

With [, we associate a r.v. Y on R} whose probability density fy is given by :

fy (u) = /0 T e (N (u>0) (0.3)

Indeed, due to (0.2), we get :

/fy du—/ du/ e 1(z dz_/ool()d =1 (0.4)

To emphasize the relation between Y and [, we shall (sometimes) write Y;.

We denote by ¢; = ¢y, the Laplace transform of Y] :
A =) = B = [T e

_ /Ooo Al(j)z dz (0.5)

Thus, since fy, is the Laplace transform of [, ¢; is the Stieltjes transform of /.




0.2 A reminder about GGC variables
Let i denote a positive, o-finite measure on R,. We recall (see [Bon]) that a positive r.v. Y
is a GGC variable with Thorin measure p if :

E(e™) =exp {— /000(1 — e ) dz /OOO e—ﬂcm(dz)} (A>0) (0.6)

X

Such a r.v. is self-decomposable, hence infinitely divisible.

The GGC r.v.’s Y whose Thorin measure p has a finite total mass, equal to m, are charac-
terized by (see [JRY]) :

E(e™Y) =exp {—m/ooo(l — e ) dr E(exG)} (0.7)

x
where G is an R -valued r.v. such that E(log*(1/G)) < oc.

Such a r.v. is a gamma-m mixture, i.e. it satisfies ! :

1
y (1aw) - 7 (0.8)
where 7, is a gamma variable with parameter m, independent from the R, -valued variable
Z. We note that any r.v. which is a gamma-m mixture is also a gamma-m’ mixture, for any
m' > m, since there is the identity :

(law)
Tm = TYm/ 'ﬁm,m/fm (09)

where 7, is a gamma variable with parameter m’ and B, m/—m is a beta variable with
parameters (m, m’ —m) independent from ~,,.

We also recall (see [Bon], p. 51) that the parameter m of a GGC r.v. Y, with Thorin measure
with total mass m, may be obtained from the formula :

m = sup {5 >0; IH)H ‘)2;(1? = O} (0.10)
ul04

1 A family of GGC variables

The aim of this part is to present a sufficient condition on [ which implies that the associated
variable Y; is GGC.

Definition 1 A function ! which satisfies (0.1) belongs to the class C if there exist a > 0,
b>a, c>0and §: Ry — RU(+00) a Borel, decreasing function, which is identically equal
to 400 on [0, al, such that :

l(z):exp{a—i-/bzg(yy)dy} (1.1)

Tt would be more correct to say that : the law of such a r.v. is a gamma-m mixture ; however, such abuse
is usual, and should not lead to confusion.




Of course, if (1.1) is satisfied with @ > 0, then the function [ is identically 0 on [0, af.
On the other hand, if [ is identically 0 on [0, a[ and differentiable on ]a, oo[, then I belongs to
the class C if and only if the function :

y —y (log 1) (y) = 0(y) (1.2)

is decreasing on [a, oo[.

The following properties are elementary :

o Ifl e, then for every u > 0, v — l(uz) € C (1.3)
o Tfiy,ly€C, thenly Iy €C (1.4)
e For every areal, z — 2% € C (1.5)
o Foreveryk<0andvy>0, z— (z+7)eC (1.6)

Theorem 2 Let | which satisfies (0.2) and belongs to C, and let Y; denote the r.v. associated
with . Then :

Y; is a GGC r.v. whose Thorin measure p has total mass m smaller than or equal to 1. In
other terms, there exists a r.v. G taking values in Ry, and satisfying E(log“‘(l/G)) < 0
and m <1 such that :

> d

BE(e™™1) = exp {—m/ (1-e?) = E(e‘”G)} (A >0) (1.7)
0 Xz

Proof of Theorem 2

1. It suffices to show that Y; is GGC since, if so, then the total mass m of its Thorin measure

equals, from (0.3) and (0.10) :

1 oo
m:sup{5>0 lilm 51/ e“zl(z)dz:O}
0

and, of course, m < 1 since, for 6 =1 :

1 o0 o0 o0
—uz _ —uz
u(s_l/o e l(z)dz—/o e l(z)dzm ; l(z)dz >0
2. To show that Y; is GGC, we shall use the following characterization (see [Bon|, Th. 6.1.1,
p. 90) of these r.v.’s :
Y is GGC if and only if its Laplace transform ¢y is hyperbolically completely monotone, that
is it satisfies : for every u > 0, the function H,, defined by :

1
H,(w) = py(uv) - vy (%) , wherew =v+ " (1.8)

is a completely monotone function, i.e. it is the Laplace transform of a positive measure
carried by R.

In our framework, this criterion becomes : for every u > 0, H,, is completely monotone with,
from (0.5) :

H,(w) = /oo /OO @ :gl(yyl y dx dy <w =v+ i) (1.9)

- // x+v )}))dxdy 0




(after the change of variables x = ux’, y = uy’).

Our aim being to show that the hypothesis : [ € C implies that H, is completely monotone,
and since  — [(uz) belongs to C if I € C (from (1.3)), it suffices to see that the function H

defined by :
/ / dx d <w—v—|—1> (1.11)
:E—i—v ) Y B v '

is completely monotone.

3. We show that H, defined by (1.11), is completely monotone :
i ) We write :

// (z + v)( y+)d“"”dy—/ /Oool(ﬂf)l(y)

(by symmetry)

2 -1 1 y?—1 1
— . . 1.12
2/0 /0 H)i(y) [:):y—l 2 +aw+1 +acy—l y2+yw+1] dz dy (1.12)

(after reducing both reciprocals to the same denominator and decomposing into simple ele-
ments)

2
= / / y)dx dy [x —1 / —b(z 2+xw+1)db+ y? -1 / b(y2+yw+1)db]
zy—1J Ty — 1

- / / y)dz dy - [332 1 ~1/OO e—bw—b(w+%)db+ -1 1e—bw—b(y+i)db]
zy—1 x Jy zy—1y

(after making the change of variables bx = V', by = V')

_ o—bw a? -1 —b(at 1)
= / db </ / xy TR e d:cdy) (1.13)

after interverting the orders of integration.

We note that the preceding computation is a little formal : we have transformed an absolutely
convergent integral in an integral which is no longer absolutely convergent ; however, this does
not matter for our purpose, as we shall soon gather the different terms in another way.

H(w

Etow+h) @t hHy+o)

] dx dy

ii) Thus, we need to show, from (1.13), that, for every b >0 :

I, _/ / vl bt dg dy > 0 (1.14)

(zy — )z

e Let us show (1.14). For this purpose, we define the 4 domains :

1 1
N1={O<x§1,y>$}, N2={$ZLZ/<$}

1 1
Plz{x21,y>$}, 732:{0<:L‘§1,y<x}



@ mz. '36'3:4

Figure 1

Let us define :

L :UQ —1 —b(z+1)

It is clear that 1) is negative on A7 and N5 and positive on P; and P,. We note :

N | /N o dedy (G=1,2

P [ [ vewdedy =12
Pi

(1.15)

e To prove (1.14) it suffices to see that : N; < P; (i = 1,2). To compute N; and P, ( C

{(z,y) € RZ; = < 1}), we make the change of variables for z €]0,1], t > 2: z =

1 t+Vt2—4 1 2 —1
O : = —
2

, T+ — =1, 5— dx = dt. We obtain :
x x

x

oo FoVEd ot
M= /2 dt/w@dyl( 2 )l(y)y_wém

= /mdt/wdzl<t_\/fﬁ>z<<t+\/§2ﬁ> (1+z)>6_bt
2 0 z

t—VE2—4

)

(1.16)



(after making the change of variable y = (1 + z2) (Hi V2tL4)>

o0 1 t—Vt2—4 t+Vt2—4 —bt
P :/ dt/ dz ( l trvim—4 (1—2) ¢ (1.17)
2 0 2 2 z
To compute Ny and P; ( C {(z,y) € R%; z > 1}) for > 1, t > 2 we make the change of
t+Vt2—4 1 t—Vt2—4 1 21
variable : x = ; So - = —7 ——— x dx = dt. We obtain :

,x+ — =tand
x

2 09: 2 22

NQ:/;Odt/Oldzl<t+ ”;_4>z<<t_52_4) (1—z)>ezbt (1.18)
Plz/Qoodt/Ooodzl<H_2tQ_4>l<<t_2t2_4> (1+z)>€zbt (1.19)

We shall now use the hypothesis : [ belongs to C to show that :
P >N and P, > No

which will end the proof of our Theorem.

e Comparing (1.19) and (1.16), it suffices, to prove that P, > N; to show that :

(o () (e
ie. : z(i) l(cz) > Z(x)-z(f) (1.20)

with z <1 and ¢ > 1.

If a > 1 (a being featured in the definition of C), the relation (1.20) is trivially satisfied since
l(x) =0for x <a (and = < 1).

We now examine the case 0 < a < 1.

If x < a, the relation (1.20) is again trivially satisfied. Thus, let us assume that 1 > x > a.
Relation (1.20) is equivalent to

log 1 (i) —log l(z) > log [ (%) —log (cx)

or also to :
1/x c/x
/ e(y)dy—/ Mdyzo (1.21)
x y cx y
(since log l(z) = o —i—/ o) dy, from (1.1)).
b Y
Thus, (1.21) is equivalent to :
1/x 1/x 1/z _
x Y x cy x Y



and (1.22) is satisfied since 6 is decreasing (and ¢ > 1). We have shown that P; > Nj.
We now show that P, > N :
This time, using (1.17) and (1.18) it suffices to show that :

l(t— t2—4)l<t+\/2152ﬁ(1_2)> zl(H\/;Qﬂ)l(t_ 2152—4(1_2))

2

or, equivalently :

I(z) 1 (

Relation (1.23) is trivial for < a (since cz < a and I(cz) = 0). It remains to examine the
case * > a, a < 1. Relation (1.23) is then equivalent to :

/ze(y)dy_/;a(;)dyzo, ie. /ie(cy)_e(y)dyzo-

r Y Y

The latter relation is obvious since # is decreasing (and ¢ < 1). This ends the proof of
Theorem 2. |

1
E) > <> l(cx) withz <lande<1 (1.23)
x x

Remark 3 Recall (see (1.8) above) that a function ¢ : R; — R is said to be hyperbolically
completely monotone (HCM) if, for every u > 0, the function of w :

1
v+ — =w — p(uv)p <E> (with v > 0)
v v

is completely monotone. Thus, from (0.5), our Theorem 2 may be stated as follows : if
belongs to C then its Stieltjes transform is HCM.

2 Application to some r.v.’s related to recurrent linear diffu-
sions

2.1 Our notation and hypotheses are now those of Salminen-Vallois-Yor ([SVY]) to which
we refer the reader. (X, ¢t > 0) denotes a R -valued diffusion which is recurrent ; we denote
its speed measure (assumed to have no atoms) by m and its scale function by S. (L, t > 0)
denotes the (continuous) local time at 0 and (7, u > 0) its right-continuous inverse :

Ty :=1nf{t > 0; L; > u} (2.1)

(Tu, u > 0) is a subordinator whose Lévy measure admits a density (see [SVY]) which we
shall denote by v :

E(exp —A1y,) = exp {—u/ (1-— e_Ax)u(x)dm} (2.2)
0
In fact, v may be expressed in the form :
v(z) :/ e *K(dz) (2.3)
0

where K - the Krein measure - (see Kotani-Watanabe [K.W], Knight [K]) satisfies :

* K(dz) * K(dz) ~
/0 A+ < 00 and /o = (2.4)




2.2 Let, for every t >0 :
gt = Sup{sgt; Xs:(]}, di := inf{sZt; XSZO} (25)

and denote by ¢, (p > 0) an exponentially distributed variable with parameter p, i.e. with

density f.,(u) = p e P"1,>0 ; ¢, is assumed to be independent from (X, t > 0). We define :
Y;l) =€) — G, Yp(z) =de, — ¢ Yp(?’) = de, — Ge, (2.6)

It is shown in [SVY], Theorem 16, that for i = 1,2, 3, Yp(i) is infinitely divisible.

More precisely, concerning Yp(3), it is shown that Y;(?’) is a gamma-2 mixture, which implies

from Kristiansen (see [Kr]) that Y;D(?’) is infinitely divisible.

The aim of the following Theorem 4 is to improve, if possible, the results we just recalled.

More precisely, we shall prove that, under certain hypotheses the r.v.’s Yp(Q) (1 =1,2,3) are

GGC r.v.’s whose Thorin measures have total masses m < 1. Thus, these variables :

- are GGC, hence are self-decomposable, and a fortiori are infinitely divisible,
- are gamma-m mixtures, with m < 1, and not only gamma-2 mixtures (see (0.9)).

Theorem 4 We assume that Krein’s measure K (deﬁned by (25’)) admits a differentiable

density k.
1. Assume that :
K 1 6
E(x) = + m, with 6 decreasing, (2.7)

then Y}J(l) is a GGC r.v. whose Thorin measure is a subprobability.
2. Assume that :
K 1 ()

- (z) = pra + o with 0 decreasing (2.8)

then Y};(Q) is a GGC r.v. whose Thorin measure is a subprobability.
3. Assume that :

]:(z) = 0(;) for z < p
K(z)—k'(z—p)  6(z) (2.9)
W) kGop) = FEP

with 6 decreasing

Then Yég) is a GGC r.v. whose Thorin measure is a subprobability.



Proof of Theorem 4 '
We denote by f, ) the density of Y}.@. From [SVY], p. 115, we have :
P

k(z —p)

Fyo( =) [~ e B g (2.10)
fyp(z) (u) = Ca(p) /OOO e v* jfﬁ; dz (2.11)
fyp(3> (u) = C3(p) /OOO e (k(z) = 1pspy k(2 — p))dz (2.12)

where C;(p), ¢ = 1,2,3 are three normalising constants. We shall now use Theorem 2 with,
successively :

(@) = 1) ", (2.13)
1@ (z) = Ca(p) a]:(fzo (2.14)
19)(2) = Ca(p) (h(x) — Lozy k(z — ) (2.15)
We already note that, for i = 1,2, 3, /OO lmﬂ dx < co. Indeed :
0 x
1) Xke-p) * k(@)
/0 . dr = C’l(p)/p x(x_p)dzx—cl(p)/o x(:r—l—p)dx

< o0 (from (2.4))

* 1®() = v _kle) r <oo (from
/0 de = C’g(p)/o :z(:c+p)d < (£ (2.4))

/OOO z<3>$(x) de = Cs(p) /000 k(z) (i— xip) da

= pCs(p) /000 a:(];’(f-)p) dr < oo (from 2.4))

Finally, it remains to observe that hypothesis (2.7) (resp. (2.8), resp. (2.9)) implies that
1M € C (resp. 1? €, resp. 1®) €0). [ |

3 Application to recurrent Bessel processes

3.1  The notation is the same as in the preceding part, but, now (X, t > 0) is a Bessel
process with dimension d = 2(1 — «)) with 0 < d < 2, or equivalently 0 < o < 1.

Theorem 5 For any « €]0,1[, for any p > 0, the r.v.’s

Y’él) =¢p— Gep> }/10(2) = dep — &p, ’Yp(3) = lep, — Gep

are GGC r.v.’s whose Thorin measures have the same total mass : 1 —a =

d
5(< 1).



Proof of Theorem 5
We already note that, since :

o0
v(a) = / e * K(dz) (from (2.3))
0
1 1
QO‘F(CM) aotl
then the density k& of Krein’s measure equals here :
1
I{/’ pr—
(@) = ST D

and  v(a) =

(from [D-M, RVY], p. 5)

a® (a>0) (3.1)

1. We begin by proving Theorem 5 for the r.v. Y2,

(To simplify the notation, we write Y@ instead YZD(Q)). To see that Y is GGC, it suffices,
from Theorem 2, to show that [(2) € C where here :

a

1D(z)=C xip (from (3.1) and (2.14)) (3.2)
Thus :
log IOV (1) = — -2 — g — 14+ P
z(log ') (z) = « T+p « +x+p

is a decreasing function of z, hence 1(?) € C from (1.2). It remains to see that the total mass
of the Thorin measure of Y equals 1 — o. Now, from (0.10), this total mass m equals :

1
m = sup{(SZO lﬁ]n —— fye(u) = 0}
C o0 o
= supgd>0; lim 51/ e L gy =0 (3.3)
ulO0y U 0 rT+p
«
However, since the function z — n decreases for x large enough and is equivalent to x®~!
r—Tp
when z — oo, the Tauberian Theorem implies :
Cl
fy@(u) 0 U (3.4)

It is then clear that (3.3) and (3.4) imply m =1 — a.

2. We now prove Theorem 5 for the r.v. Y1),
For this purpose, we shall use a more direct method than relying on Theorem 2. Indeed, we
have, from (0.5), (2.13) and (3.1) :

oo l(l)( ) © 1
By = / dz = / —p)*ld
) ) e BTO) xRl
oo 1 o0 o0
= C'/ za_ldz:C’/ za_ldz/ e~ A Fpt2)u gy,
0o Atp+=z 0 0

= C/ —(A+p) “du/ e #2dy
0

= (@) / ~(vppu B = A +p)*lCT(a)T(1 — @)
0 ue

(o

10



since the Laplace transform E (e*)‘y(l)) equals 1 for A = 0. Thus :

law) 1
y® Uaw) Z; Y1—o Where y1_, is a gamma r.v. with parameter 1 — «, i.e. (3.6)

with density :

e v _
] U 1y>0

Jr-a (u) == F(i

11—«

It follows clearly from (3.5) that :
Ay A
E(e ) = exp{—(l—a) log <1+p>}
> -z du —x
= expq —(1—a) (I1—e ™) —e ™ (3.7)
0

T

Thus, from (0.7), formula (3.7) shows that Y} is a GGC variable with Thorin measure
(1 —a)d,.

3. We now prove Theorem 5 for the r.v. Yp(g).

In fact, this result - Y® is a GGC variable whose Thorin measure has total mass equal to
1 —a - has already been proven in [BFRY] (with p = 1, but this involves no loss of generality).
The proof we shall give now is a totally different one from that of [BFRY]. We also assume

here, for simplicity, that p = 1 and we denote Y ® instead of Yl(g).
Following the arguments of the proof of Theorem 2, we need to show, from (1.16), (1.17),
(1.18) and (1.19) that, for every = € [0,1] :

A = /OOO {l (i) (1l +2)) =)l (iu - z)) } %
+ /01 {l(x)l (i(l - z)> = (i) 11— z))} Lo (3.8)

where the function I(= 1®)) equals here, from (3.1) and (2.15) :

(y) =y =1y (y—=1D)* (y>0) (3.9)

Thus, we need to show (3.8). For this purpose, we need to compute the integrals featured in

1 1

~( ~(1-2) and
x( +2), ac( z) an
x(1 — z) with respect to 1. We consider the first integral in (3.8) for (14 2) > 1 (hence, a

(3.8) hence, given (3.9) to discuss, owing to the positions of z(1 + z),

11



1
fortiori —(1 4 z) > 1 since x < 1). This first term equals :
x

Al(l’)

_ /;1 {(; _ <i - 1>a> (2914 2)° — (214 2) 1))
o {(;(1 +z)°‘> - (ia +2)— 1)1 } %

~—~

_ /:o 1—(1—w)a)((14—2)“—<1+z—i>a)—((1+z)°‘—(1+z—x)a)Z
-/ [(l—i-z—x)a—(l—&-z—1>a]—[(l—x)a(l—i-z)a—((l—x)(l—i-z)—

Let us examine Agl)(:n) :

AD@) = /101 {(14—2—:3)0‘— <1+Z_;>a] %

x
s 1+z—x

= — au® tdu
1 Z 1
z-1 142z—2

A N =2+ -
=24 1-4
l
Bty o e
x I
1
|
b —
o A ’
-.5:--4
Figure 2

Now, we apply Fubini’s Theorem :

z-1 vl g o0
Agl)(aj) = / auo‘ldu/ Z—i—/ auo‘ldu/
0 13 z ! u

21 1 ur+1—x > 1
= / au® " log () du+/ au* " log [ —&F2—
0 1—2 1 4

12

1
ute—ldz

dz

1—=x

)]y

dz
z



We compute thus each term of A(x) and we obtain, after some simple, although tedious,
computations :

1 4 1z
Az) = / log <1x> cau®tdu +/ log <u:1:1—|—xx) au®du
0 - 0 -
> 1 u+%_1 a—ld 33(1—1)1 l—z—wu a—ld
+/1—9; og wrr—1 au u—l—/o og 7(1_30)2 au U

1 _q u 1 u 1
L A4l %0 4l
—/ log Hlix aualdu—/ log [ 22— | au®tdu (3.10)
0 = —1 11 11—z 1
x T x

We note that, since z € [0, 1], we have :

1 1
z(l—z)<l—-az<—-—-1<-—x
x x

and that all the integrals found in (3.10) are positive. In (3.10) we shall gather the terms
with opposite signs. For example, we have :

o0 w411 o0 241
/ log | —2— | au*tdu —/ log U”uix auldu
1_. U+l'_1 1_. Tx_l

[ee] 1 _
_ / log (X L=2) N | a-1g,
1_, ur + (1 —x)?

T

8=

and this last integral is positive since (1 —z)? < 1 — 2. Gathering thus all the terms in A(x),
we obtain :
1

* ur +1—2x 1 e 1—2 _1
A = 1 A “rdu — 1 i — *~d
@ = e () e e [ om (Gt ) e
z(1-2) l—z—u a1
EA R 1
— 1—2)% a=1] -
o [T Og(xw—l))

zv—1 \*! r2e w—1\*" 1-z a1
—— + —v dv
1+v—av (1+z—2v)? z(v—1) x(v—1)2

after making the changes of variables :

ur+1—=x 1 ' .
uz + (1 — )2 - 2(v—1) in the first integral of (3.11)
u=(1—2z)v in the second integral of (3.11)
1 — T —U B 1

A—2?  2(—1) in the third integral of (3.11)

11
Thus, to conclude, it remains to show that, for every v € [, -+ 1} :
x oz

e ww—1 \*' 1 T n w—1\*" 1-z (3.12)
“\l+z—av o=l (142 —av)? x(v—1) (v —1)2 ’

13



or, equivalently that :

v —1 1_a< x +1—:n 1 (3.13)
v ~ 14z —av)tt x  (v—1)atl ’

Now, this last inequality is obvious ; indeed, since f;(v) :=

is increasing as well

x
(1+z—av)ot!

1 r \7° 1 1
f1<x+1>:(1+x) Sl§f2<x):xo‘

since z € [0,1]. This shows that Y®) is GGC. Finally, it is not difficult to prove that

the total mass of the Thorin measure equals 1 — « : this follows from the fact that since

1®)(2) = C(2* = 1y>1(z — 1)) then 1®)(z) ~ C2°! hence, from the Tauberian Theorem,
- T—00

as fa(v) :=

it suffices to verify that f; <

8|~

+1) < fo <i> - We have :

fy e (u) ~ %, and we finally use (0.10). [ ]
u—0 U

3.2 Description of the r.v.’s Gg) (1=1,23;0<a<1)
In the sequel, it will convenient to assume that p = 1 and we write simply Y@ for the r.v.’s
Yl(l) (i =1,2,3). Theorem 5 implies, from (0.7), the existence of r.v.’s

G (i=1,2,3; a €]0,1]) such that E(log*(l/Gg))) < oo and :
Ee M) = exp {—(1 —a) / (1— e E(e—ﬂCGS))} (3.14)
0

X

The aim of this section is to identify the (laws of the) r.v.’s Gg) and to describe some of their
properties.

i) The case i =1
Formula (3.6) implies that the r.v. GS) is a.s. equal to 1, i.e. its distribution is 41, the Dirac
measure at 1. In particular, this distribution does not depend on a.

i1) The case i = 3

In [BFRY] a complete study of the r.v.’s G - denoted as G, in [BFRY] - has been undertaken.
We refer the reader to [BFRY]. In particular, it is shown there that the density fG(s) of Gg)
equals :

asin o w1 — ) !
fG(3) (u) = 2
a (1—a)r (1 —u)?®—2(1 —u)*ucos(ma) + 1

10.4] (u) (3.15)

Thus, Gg% is arc-sine distributed :

1 1
ng)Q (u) = p \/ﬁ Ljo,1) (u)

(3.16)
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and the r.v.’s G&S) converge in law, as @ — 0 and a — 1 respectively towards G(()g) and Ggg),

where :

@l 1 d h 1
Gy’ = T oxp nC with C' a standard Cauchy r.v. (3.17)
Ggg) Uzw) U, with U uniform on [0, 1] (3.18)

i11) The case i = 2
Theorem 6 For every o €0, 1]

) y@ @), Ji—a @aw)  Bioaa
) ) Yo 1- ﬂl—a,oc

(3.19)

where ¢, Y1—q, Yo are independent, with respective laws the standard exponential and the gamma
distributions with respective parameters (1—«) and o, and where e and $1—q,o are independent
with respective distributions the standard exponential and the beta distribution with parameters
(1—-a,a).

AY—1

i) Ee™?) = So7 (Eaeifa=1) (120 (3.20)

2) Y@ is a gamma-(1 — o) mizture, i.e. :

Y® =~,_, - D? (3.21)

11—«

where y1_q is a gamma (1 — «) variable, independent from the positive r.v. Dgz_)a. Further-
more :

p?) law € 3.22
11—« o ( )
B @) 1 0o 3 ya 00 e—Ay

E(e Piza :/ v dy = / - d 3.23
= XYy T Y (3:23)

The density fpe) of D§2_)a equals :

11—«
a

fD@a (u) = W 1[o,oo[(u) (3.24)

3) i) The density fG(z) of (Gg) equals :

asin(ra) w1

(1 —a)m u?® —2u®cos(ma) + 1

foo (u) = 110,00 (1) (3.25)

it) The r.v.’s Gg) are related to the r.v.’s G&B) via the identity is law :

G (aw (o) GO

w GS’) , or, equivalently, G&Q) = 17@(3) (3.26)
aw) 1
i) @) - (3.27)
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iw) Asa— 0 and o — 1, Gg) converges in law towards, respectively

G(()Q) (law) expnw C and G(IQ) (law) % (3.28)
with C' a standard Cauchy r.v. and U uniform on [0, 1].

4) Let p €]0,1[ and T, denote the positive stable r.v. with index p whose law is charac-
terized by :

E(e i) = exp(—=\*) (A>0)

Then :

11—«

aw T _ o
c® (1:)< 1 a> (3.29)
¢ T,

where T

1_q 15 an independent copy of Th—q.

it) An equivalent way of writing (3.29) is :

1

(aw) [ M_ a
GP = ( M{_Z> (3.30)

where Mi_o and M| _,, are two independent Mittag-Leffler r.v.’s with parameter 1 — «, whose
common law is characterized by :

E(expAMia) = n; T +ni—a) M= ra =)
-«
M (lazw) <T11_a> (3.31)

(see [CY], p.114, Exercise 4.19 )

Proof of Theorem 6

1) 1) We prove (3.19)
Denoting by (R, t > 0) a Bessel process with dimension 2(1 — «) (0 < a < 1) starting from
0, we have by scaling :

law law R2
y ) :de—e(:)e(dl - 1)(:)e <2’yl>

(see [BFRY]) where Rf is the value of R} for ¢ = 1. Hence :

(12") MN—a e ﬂl—a,a

y®2) _
Yo 1- ﬁlfa,a

(from the classical "beta-gamma algebra”).
i1) We prove (3.20)
We have, from (3.1) and (3.2) :

sin(ra)

x
T 1+« -

1% () =

16



ro~! sin(ma)

d p—
1+ v

o0 1(2)
(We note that/ dC))

0 xr

s sin(ma) /OO
0

s

I'(1—a)=1 (see [L], p. 3 and 13)). Hence from (0.3), fy, the density of Y?), equals :

‘,L,()f

1+=x

sin(ma)

fye(u) = da

™

00
/ e uT
0

(we might also have derived this formula from (3.19)).

i11) We now compute the Laplace transform of y®

B(a,1—a)

E(efAY@)) sin(ma) /Oo e Mdu /OO e a dx
T 0 0 ]. +x
_ sin ) / x de
T 0o I4+z)(A+2)
1 sin(ma) /‘X’ 1 1
- « — d
-1 7 J, " [l—i-x )\—i-x} v
[ rA o 4 o
~ i LS / T gr— e / A
A—o0 )\ — 1 i 0 ]. +x 0 1 +x
1 [ rA a—1 4 a—1
= lim _1 sin(ra) / ot dr — \* / T pot dz
A—o0 )\ — 1 T 0 1 +x 0 ]. +x
) 1 sin(ra) [ A% % pa-l A* AN o pa-l
= lim —— — - -—— = A d
AN 1 7 e /0 1+z a \ A + /0 11z
a_ 1 oo .a—1 a_ 1 g
_ A sin(ma / x dp — A sin(ma) Bla,1 - a)
A—1 7r o l4+=z A—1
oA =1
oA-1
. T
(smce (see [L], p. 3) B(a,1—a)=T(a)l(1-a)= sin(7ra)>‘
2) Let us show (3.25)
By taking the logarithmic derivative of (3.20) :
a_q 00
By =AM ol a) / (1 )% g6y
A—1 0 T
we obtain :
1 1 1 ax!
E = — .32
A+GP -« [1—/\ )\a—l} (3:32)

Thus, we have just computed the Stieltjes transform of the r.v. Gg

17
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for the Stieltjes transform (see [W], p. 345) leads us to :

1 [ 1 a(—u —in)*1 B 1
1-=XN-u—1in) (—u—in)*—1 1—=X—-u+1n)

— li
Jo (@) 2im(1 — ) n0

a(—u+ in)a_l (u>0)
(—u+in)*—1
—a _ua—l e—iﬂa ua—l eiwa
= . . >0
2im(l — ) [uo‘ e~ — 1 y®elme — 1] (u>0)
1
(We note that, in the preceding limit, the contribution of the term T is 0).
_ —a _u2a71 + uozfl e*iﬂ'a + u2a71 _ uozfl ei7ro¢ (u . O)
 2im(1 —a) ue — @ e — @ e—ima 4
_ asin(ra) ue~t .
T (1—a)r w2 —2utcos(ma) +1 (W0
3) We now show (3.26)
For every h Borel and positive, we have :
zln G _ asin(ra) /°° n u! du
1+GY (1—a)r Jy 14+u /) u?® — 2u®cos(ma) + 1
(from (3.25))
Thus, making the change of variable =x:
(2) . 1 d L_al_
Eh < e (2)> - alsm(ﬂa) / h(zx) 1 - 2 L2 (1_2?05(7;):(:(1
116@ )| T Taym T 0p e
asin(ra) [1 ro (1 — ) !
= (.T) 200 _ a1l o _ 2c dx
(1—a)m J x 2x%(1 — x)* cos(ma) + (1 — x)
= E[nGP)]  from (3.15)
4) We now prove (3.27)
It is shown in [BFRY], p. 319, (1.27) that :
Gc® 12 _g® (3.33)

which is, indeed, obvious ! Thus, from (3.26) :

1462 -2

q@ (e GY (law) 1 — GY __14G6Y)  (aw) 1
« (3) (3) 2) (2)
1-— Ga Ga 1fé£¥2) Ga

5) The relation (3.28) follows immediately from (3.26) and from (3.17) and (3.18).
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6) We prove (3.29)
It is shown in [BFRY], p. 320, that :

1-a 1
c® 2 (Mio) = 4 @0 (Mia)e (3.34)
(T o) = +(Tha) = (Mi—o)o + (M]_p)=
Thus, from (3.26) and (3.34) :
(3) (3”1_04)177& T 1-a
(law) Gg (T]_) & +(T1—a) & Ti o) @
G (2 5 = et _ (T, ) (3.35)
1-— Ga (17_,) "= 11—«
(T]_o) & +(T1—a) =

We note that (3.35) implies (3.27) and that (3.30) may be obtained from (3.35), in the same
manner as (3.35).

7) We now prove point 2 of Theorem 6

The formula (3.21) D%Q_)a (law) €
i

a

is an immediate consequence of (3.19) :

y (@) (aw) e. Jlza (law)
Ve

after observing that, in the latter formula, we may ”simplify by vi_q (see [C.Y] or [JRY],

’YlfaD@)

11—«

point 1.4.6 for a justification of this ”simpliﬁcation”). The value of the density of D@ o, Which
(2) (law)

is given by (3.24) now follows easily from D;~ £ Finally, we have :

(07
ADP L prermy [T [T ey e
E(e 1 04) — E(e ’Ya) = I‘( ) e Yy y dxdy
&) Jo 0

= 1 /OO e Yy*dy /00 e *O ) g, (after making the change of variable r_ z)
I'(a) Jo 0 Y
_ / TV gy (3.36)
(@) Jo (A+y)
The formula :
—AD{ A dy
E(ei-a) = a/o e ym (3.37)

follows immediately from (3.24) and it is easy to verify that :

1 /oo B ya /oo . dy
- oY dy = e Y
['(a) Jo Aty 0 (14y)ott

Indeed :

1 /OO —y Y 1 /OO - <
— e ¥ dy = e yyo‘dy/ e *Ot) g,
I'(a) Jo Aty I'(a) Jo 0

1 * A /OO —y(1 I'la+1) /OO -
= 5 (& ZdZ e y( +z) ad = — e z
I'(a) /0 0 YT, G

+ z)otl

19

dz



This ends the proof of Theorem 6.

Remark 7
1) From the relation Y (2 (tax) 71_aD(2) we deduce :

l—a

Be™®) = B(e oDt = B 1(2) a
(1 +AD”,)

[ ()

A
1+ A
- / Yy ldy after making the change of variable tAT Y
A — 1 1 1 + X
AT -1
a1

This is another way to obtain (3.20).

2) Here is now another way to obtain (3.23). It is clear, from (3.25) that E(|log G(()?)D < 00

aw 1
and, since G?) (lax) oL that E(log Gg)) = 0. Thus, from Theorem 2.1, point ) in [JRY],
Gal
we have :
u= —uD®
fye(u) = Ti—a) E(e™"Piza)

aw 1
(this is formula (2.7) in [JRY], with t = 1 — a, E(log G) = 0 and a2 5) Hence, since :

fye(u) = sin(ra) /OO e_mixa dr = u " sin(ma) /oo eV v dy
T 0 1 +x T 0 u+ y

(after the change of variable uz = y), we obtain :

3 [e.9]
E(e*“Dga) _ sin(re) INE! —a)/ e v Y
T 0 u+y

1 [e.e] o
= / e v Y dy
(@) Jo uty

3) Furthermore, we remark that, from Theorem 2.1 of [JRY] :

1
_ o —a—1 -

—a l—«

(07

dy

This formula follows also from (3.24).

w) 1
4) Finally, we also observe, from Theorem 2.1 in [JRY], as a consequence of Gg) (law) 3
Gq
and E(log G((f)) = 0, that :
y@\?
fyo(u) =E <u> Ja (2Vuy®) (3.38)

where J_,, denotes the Bessel function with index (—a).
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