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A family of generalized gamma convoluted variables

This paper consists of three parts : in the first part, we describe a family of generalized gamma convoluted (abbreviated as GGC) variables. In the second part, we use this description to prove that several r.v.'s, related to the length of excursions away from 0 for a recurrent linear diffusion on R + , are GGC. Finally, in the third part, we apply our results to the case of Bessel processes with dimension d = 2(1α) (0 < d < 2, or 0 < α < 1).

Without loss of generality, we assume that :

∞ 0 l(z) z dz = 1 (0.2)
With l, we associate a r.v. Y on R + whose probability density f Y is given by :

f Y (u) = ∞ 0 e -uz l(z)dz (u ≥ 0) (0.3)
Indeed, due to (0.2), we get :

∞ 0 f Y (u)du = ∞ 0 du ∞ 0 e -uz l(z)dz = ∞ 0 l(z) z dz = 1 (0.4)
To emphasize the relation between Y and l, we shall (sometimes) write Y l .

We denote by ϕ l ≡ ϕ Y l the Laplace transform of Y l :

ϕ l (λ) = ϕ Y l (λ) = E(e -λY l ) = ∞ 0 e -λu f Y l (u)du = ∞ 0 l(z) λ + z dz (0.5)
Thus, since f Y l is the Laplace transform of l, ϕ l is the Stieltjes transform of l.

A reminder about GGC variables

Let µ denote a positive, σ-finite measure on R + . We recall see [Bon] that a positive r.v. Y is a GGC variable with Thorin measure µ if :

E(e -λY ) = exp -∞ 0

(1e -λx ) dx x

∞ 0 e -xz µ(dz) (λ ≥ 0) (0.6) Such a r.v. is self-decomposable, hence infinitely divisible.

The GGC r.v.'s Y whose Thorin measure µ has a finite total mass, equal to m, are characterized by see [JRY] :

E(e -λY ) = exp -m ∞ 0 (1 -e -λx ) dx x E(e -xG ) (0.7)
where G is an R + -valued r.v. such that E log + (1/G) < ∞.

Such a r.v. is a gamma-m mixture, i.e. it satisfies1 :

Y (law) = γ m • Z (0.8)
where γ m is a gamma variable with parameter m, independent from the R + -valued variable Z. We note that any r.v. which is a gamma-m mixture is also a gamma-m ′ mixture, for any m ′ > m, since there is the identity :

γ m (law) = γ m ′ • β m, m ′ -m (0.9)
where γ m ′ is a gamma variable with parameter m ′ and β m, m ′ -m is a beta variable with parameters (m, m ′m) independent from γ m ′ .

We also recall see [Bon], p. 51 that the parameter m of a GGC r.v. Y , with Thorin measure with total mass m, may be obtained from the formula :

m = sup δ ≥ 0 ; lim u↓0 + f Y (u) u δ-1 = 0 (0.10)

A family of GGC variables

The aim of this part is to present a sufficient condition on l which implies that the associated variable Y l is GGC.

Definition 1 A function l which satisfies (0.1) belongs to the class C if there exist a ≥ 0, b > a, σ ≥ 0 and θ : R + → R ∪ (+∞) a Borel, decreasing function, which is identically equal to +∞ on [0, a[, such that :

l(z) = exp σ + z b θ(y) y dy (1.1)
Of course, if (1.1) is satisfied with a > 0, then the function l is identically 0 on [0, a[. On the other hand, if l is identically 0 on [0, a[ and differentiable on ]a, ∞[, then l belongs to the class C if and only if the function :

y → y (log l) ′ (y) := θ(y) (1.2) is decreasing on [a, ∞[.
The following properties are elementary :

• If l ∈ C, then for every u > 0, x → l(ux) ∈ C (1.3) • If l 1 , l 2 ∈ C, then l 1 • l 2 ∈ C (1.4) • For every α real, x → x α ∈ C (1.5) • For every k < 0 and γ ≥ 0, x → (x + γ) k ∈ C (1.6)
Theorem 2 Let l which satisfies (0.2) and belongs to C, and let Y l denote the r.v. associated with l. Then : Y l is a GGC r.v. whose Thorin measure µ has total mass m smaller than or equal to 1. In other terms, there exists a r.v. G taking values in R + , and satisfying

E log + (1/G) < ∞ and m ≤ 1 such that : E(e -λY l ) = exp -m ∞ 0 (1 -e -λx ) dx x E(e -xG ) (λ ≥ 0) (1.7)
Proof of Theorem 2 1. It suffices to show that Y l is GGC since, if so, then the total mass m of its Thorin measure equals, from (0.3) and (0.10) :

m = sup δ ≥ 0 ; lim u↓0 + 1 u δ-1 ∞ 0 e -uz l(z)dz = 0
and, of course, m ≤ 1 since, for δ = 1 :

1 u δ-1 ∞ 0 e -uz l(z)dz = ∞ 0 e -uz l(z)dz -→ u↓0 + ∞ 0 l(z)dz > 0 2.
To show that Y l is GGC, we shall use the following characterization see [Bon], Th. 6.1.1, p. 90 of these r.v.'s : Y is GGC if and only if its Laplace transform ϕ Y is hyperbolically completely monotone, that is it satisfies : for every u > 0, the function H u , defined by :

H u (w) = ϕ Y (uv) • ϕ Y u v , where w = v + 1 v (1.8)
is a completely monotone function, i.e. it is the Laplace transform of a positive measure carried by R + .

In our framework, this criterion becomes : for every u > 0, H u is completely monotone with, from (0.5) :

H u (w) = ∞ 0 ∞ 0 l(x)l(y) (x + uv)(y + u v ) dx dy w = v + 1 v (1.9) = ∞ 0 ∞ 0 l(ux)l(uy) (x + v)(y + 1 v )
dx dy (1.10) (after the change of variables x = ux ′ , y = uy ′ ).

Our aim being to show that the hypothesis : l ∈ C implies that H u is completely monotone, and since x → l(ux) belongs to C if l ∈ C from (1.3) , it suffices to see that the function H defined by :

H(w) := ∞ 0 ∞ 0 l(x)l(y) (x + v)(y + 1 v ) dx dy w = v + 1 v (1.11)
is completely monotone.

3. We show that H, defined by (1.11), is completely monotone : i) We write :

H(w) = ∞ 0 ∞ 0 l(x)l(y) (x + v)(y + 1 v ) dx dy = 1 2 ∞ 0 ∞ 0 l(x)l(y) 1 (x + v)(y + 1 v ) + 1 (x + 1 v )(y + v)
dx dy

(by symmetry) = 1 2 ∞ 0 ∞ 0 l(x)l(y) x 2 -1 xy -1 • 1 x 2 + xw + 1 + y 2 -1 xy -1 • 1 y 2 + yw + 1
dx dy (1.12) (after reducing both reciprocals to the same denominator and decomposing into simple elements)

= 1 2 ∞ 0 ∞ 0 l(x)l(y)dx dy x 2 -1 xy -1 ∞ 0 e -b(x 2 +xw+1) db + y 2 -1 xy -1 ∞ 0 e -b(y 2 +yw+1) db = 1 2 ∞ 0 ∞ 0 l(x)l(y)dx dy • x 2 -1 xy -1 • 1 x ∞ 0 e -bw-b(x+ 1 x ) db + y 2 -1 xy -1 1 y e -bw-b(y+ 1 y ) db (after making the change of variables bx = b ′ , by = b ′ ) = ∞ 0 e -bw db ∞ 0 ∞ 0 l(x)l(y) x 2 -1 (xy -1)x e -b(x+ 1 x ) dx dy (1.13)
after interverting the orders of integration. We note that the preceding computation is a little formal : we have transformed an absolutely convergent integral in an integral which is no longer absolutely convergent ; however, this does not matter for our purpose, as we shall soon gather the different terms in another way.

ii) Thus, we need to show, from (1.13), that, for every b ≥ 0 :

I b := ∞ 0 ∞ 0 l(x)l(y) x 2 -1 (xy -1)x e -b(x+ 1 x ) dx dy ≥ 0 (1.14)
• Let us show (1.14). For this purpose, we define the 4 domains : (1.15)

N 1 = 0 < x ≤ 1, y > 1 x , N 2 = x ≥ 1, y < 1 x P 1 = x ≥ 1, y > 1 x , P 2 = 0 < x ≤ 1, y < 1 x
It is clear that ψ is negative on N 1 and N 2 and positive on P 1 and P 2 . We note :

N i := N i
|ψ(x, y)|dx dy (i = 1, 2)

P i := P i ψ(x, y) dx dy (i = 1, 2)
• To prove (1.14) it suffices to see that :

N i ≤ P i (i = 1, 2). To compute N 1 and P 2 ⊂ {(x, y) ∈ R 2 + ;
x ≤ 1} , we make the change of variables for x ∈]0, 1], t ≥ 2 : x = t -√ t 2 -4 2 ; so :

1 x = t + √ t 2 -4 2 , x + 1 x = t, x 2 -1
x 2 dx = dt. We obtain :

N 1 = ∞ 2 dt ∞ t+ √ t 2 -4 2 dy l t - √ t 2 -4 2 l(y) e -bt y -t+ √ t 2 -4 2 = ∞ 2 dt ∞ 0 dz l t - √ t 2 -4 2 l t + √ t 2 -4 2 (1 + z) e -bt z (1.16)
after making the change of variable y

= (1 + z) t+ √ t 2 -4 2 P 2 = ∞ 2 dt 1 0 dz l t - √ t 2 -4 2 l t + √ t 2 -4 2 (1 -z) e -bt z (1.17)
To compute N 2 and P 1 ⊂ {(x, y) ∈ R 2 + ; x ≥ 1} for x ≥ 1, t ≥ 2 we make the change of variable :

x = t + √ t 2 -4 2 . So 1 x = t - √ t 2 -4 2 , x + 1 x = t and x 2 -1 x 2 dx = dt.
We obtain :

N 2 = ∞ 2 dt 1 0 dz l t + √ t 2 -4 2 l t - √ t 2 -4 2 (1 -z) e -bt z (1.18) P 1 = ∞ 2 dt ∞ 0 dz l t + √ t 2 -4 2 l t - √ t 2 -4 2 (1 + z) e -bt z (1.19)
We shall now use the hypothesis : l belongs to C to show that :

P 1 ≥ N 1 and P 2 ≥ N 2
which will end the proof of our Theorem.

• Comparing (1.19) and (1.16), it suffices, to prove that P 1 ≥ N 1 to show that :

l t + √ t 2 -4 2 l t - √ t 2 -4 2 (1 + z) ≥ l t - √ t 2 -4 2 l t + √ t 2 -4 2 (1 + z) i.e. : l 1 x l(c x) ≥ l(x) • l c x (1.20)
with x ≤ 1 and c ≥ 1. If a ≥ 1 (a being featured in the definition of C), the relation (1.20) is trivially satisfied since l(x) = 0 for x ≤ a (and x ≤ 1). We now examine the case 0 ≤ a < 1.

If x ≤ a, the relation (1.20) is again trivially satisfied. Thus, let us assume that 1 ≥ x ≥ a.

Relation (1.20) is equivalent to log l 1 x -log l(x) ≥ log l c x -log (c x)
or also to :

1/x x θ(y) y dy - c/x cx θ(y) y dy ≥ 0 (1.21) since log l(x) = σ + x b θ(y) y dy, from (1.1) .
Thus, (1.21) is equivalent to :

1/x x θ(y) y dy -c 1/x x θ(cy) cy dy = 1/x x θ(y) -θ(cy) y dy ≥ 0 (1.22)
and (1.22) is satisfied since θ is decreasing (and c ≥ 1). We have shown that P 1 ≥ N 1 .

We now show that P 2 ≥ N 2 : This time, using (1.17) and (1.18) it suffices to show that :

l t - √ t 2 -4 2 l t + √ t 2 -4 2 (1 -z) ≥ l t + √ t 2 -4 2 l t - √ t 2 -4 2 (1 -z)
or, equivalently :

l(x) l c x ≥ l 1 x l(cx) with x ≤ 1 and c ≤ 1 (1.23) Relation (1.23) is trivial for x ≤ a since cx ≤ a and l(cx) = 0 . It remains to examine the case x ≥ a, a ≤ 1. Relation (1.23) is then equivalent to : c x cx θ(y) y dy - 1 x x θ(y) y dy ≥ 0, i.e. 1 x x θ(cy) -θ(y) y dy ≥ 0.
The latter relation is obvious since θ is decreasing (and c < 1). This ends the proof of Theorem 2.

Remark 3 Recall (see (1.8) above) that a function ϕ : R + → R + is said to be hyperbolically completely monotone (HCM) if, for every u > 0, the function of w :

v + 1 v = w -→ ϕ(uv)ϕ u v (with v ≥ 0)
is completely monotone. Thus, from (0.5), our Theorem 2 may be stated as follows : if l belongs to C then its Stieltjes transform is HCM.

2 Application to some r.v.'s related to recurrent linear diffusions 2.1 Our notation and hypotheses are now those of Salminen-Vallois-Yor [SVY] to which we refer the reader. (X t , t ≥ 0) denotes a R + -valued diffusion which is recurrent ; we denote its speed measure (assumed to have no atoms) by m and its scale function by S. (L t , t ≥ 0) denotes the (continuous) local time at 0 and (τ u , u ≥ 0) its right-continuous inverse :

τ u := inf{t ≥ 0 ; L t > u} (2.1) (τ u , u ≥ 0
) is a subordinator whose Lévy measure admits a density see [SVY] which we shall denote by ν :

E(exp -λτ u ) = exp -u ∞ 0 (1 -e -λx )ν(x)dx (2.2)
In fact, ν may be expressed in the form :

ν(x) = ∞ 0 e -xz K(dz) (2.3)
where K -the Krein measure -see Kotani-Watanabe [K.W], Knight [K] satisfies :

∞ 0 K(dz) z(1 + z) < ∞ and ∞ 0 K(dz) z = ∞ (2.4)
2.2 Let, for every t ≥ 0 :

g t := sup{s ≤ t ; X s = 0}, d t := inf{s ≥ t ; X s = 0} (2.5)
and denote by e p (p > 0) an exponentially distributed variable with parameter p, i.e. with density f ep (u) = p e -pu 1 u≥0 ; e p is assumed to be independent from (X t , t ≥ 0). We define :

Y (1) p := e p -g ep , Y (2) p := d ep -e p Y (3) p := d ep -g ep (2.6)
It is shown in [SVY], Theorem 16, that for i = 1, 2, 3,

Y (i) p is infinitely divisible. More precisely, concerning Y (3) p , it is shown that Y (3) p
is a gamma-2 mixture, which implies from Kristiansen see [Kr] that Y

(3) p is infinitely divisible. The aim of the following Theorem 4 is to improve, if possible, the results we just recalled. More precisely, we shall prove that, under certain hypotheses the r.v.'s Y (2) p (i = 1, 2, 3) are GGC r.v.'s whose Thorin measures have total masses m ≤ 1. Thus, these variables : -are GGC, hence are self-decomposable, and a fortiori are infinitely divisible, -are gamma-m mixtures, with m ≤ 1, and not only gamma-2 mixtures see (0.9) .

Theorem 4 We assume that Krein's measure K defined by (2.3) admits a differentiable density k. 1. Assume that :

k ′ k (x) = 1 x + θ(p + x) p + x , with θ decreasing, (2.7) 
then Y

(1) p is a GGC r.v. whose Thorin measure is a subprobability.

2. Assume that :

k ′ k (x) = 1 x + p + θ(x) x , with θ decreasing (2.8)
then Y

(2) p is a GGC r.v. whose Thorin measure is a subprobability.

3. Assume that :

           k ′ k (z) = θ(z) z for z < p k ′ (z) -k ′ (z -p) k(z) -k(z -p) = θ(z) z for z ≥ p (2.9)
with θ decreasing Then Y

(3) p is a GGC r.v. whose Thorin measure is a subprobability.

Proof of Theorem 4

We denote by f

Y (i) p the density of Y (i)
p . From [SVY], p. 115, we have :

f Y (1) p (u) = C 1 (p) ∞ p e -uz • k(z -p) z -p dz (2.10) f Y (2) p (u) = C 2 (p) ∞ 0 e -uz k(z) z + p dz (2.11) f Y (3) p (u) = C 3 (p) ∞ 0 e -uz k(z) -1 {z≥p} k(z -p) dz (2.12)
where C i (p), i = 1, 2, 3 are three normalising constants. We shall now use Theorem 2 with, successively :

l (1) (x) = C 1 (p) k(x -p) x -p 1 x≥p (2.13) l (2) (x) = C 2 (p) k(x) x + p (2.14) l (3) (x) = C 3 (p) k(x) -1 x≥p k(x -p) (2.15)
We already note that, for i = 1, 2, 3,

∞ 0 l (i) (x) x dx < ∞. Indeed : ∞ 0 l (1) (x) x dx = C 1 (p) ∞ p k(x -p) x(x -p) dx = C 1 (p) ∞ 0 k(x) x(x + p) dx < ∞ from (2.4) ∞ 0 l (2) (x) x dx = C 2 (p) ∞ 0 k(x) x(x + p) dx < ∞ from (2.4) ∞ 0 l (3) (x) x dx = C 3 (p) ∞ 0 k(x) 1 x - 1 x + p dx = p C 3 (p) ∞ 0 k(x) x(x + p) dx < ∞ from 2.4)
Finally, it remains to observe that hypothesis (2.7) resp. (2.8), resp. (2.9) implies that

l (1) ∈ C (resp. l (2) ∈ C, resp. l (3) ∈ C).
3 Application to recurrent Bessel processes

3.1

The notation is the same as in the preceding part, but, now (X t , t ≥ 0) is a Bessel process with dimension d = 2(1α) with 0 < d < 2, or equivalently 0 < α < 1. 

Proof of Theorem 5

We already note that, since :

ν(a) = ∞ 0 e -az K(dz) from (2.3) and ν(a) = 1 2 α Γ(α) 1 a α+1
from [D-M, RVY], p. 5 then the density k of Krein's measure equals here :

k(a) = 1 2 α Γ(α)Γ(α + 1) a α (a > 0) (3.1)
1. We begin by proving Theorem 5 for the r.v. Y (2) .

(To simplify the notation, we write Y (2) instead Y

(2) p ). To see that Y (2) is GGC, it suffices, from Theorem 2, to show that l (2) ∈ C where here :

l (2) (x) = C x α x + p from (3.1) and (2.14) (3.2)
Thus :

x log l (2) ′ (x) = α - x x + p = α -1 + p x + p is a decreasing function of x, hence l (2) ∈ C from (1.
2). It remains to see that the total mass of the Thorin measure of Y (2) equals 1α. Now, from (0.10), this total mass m equals :

m := sup δ ≥ 0 ; lim u↓0 + 1 u δ-1 f Y (2) (u) = 0 = sup δ ≥ 0 ; lim u↓0 + C u δ-1 ∞ 0 e -ux x α x + p dx = 0 (3.3)
However, since the function x → x α x + p decreases for x large enough and is equivalent to x α-1 when x → ∞, the Tauberian Theorem implies :

f Y (2) (u) ∼ u→0 C ′ u α (3.4)
It is then clear that (3.3) and (3.4) imply m = 1α.

2. We now prove Theorem 5 for the r.v. Y (1) . For this purpose, we shall use a more direct method than relying on Theorem 2. Indeed, we have, from (0.5), (2.13) and (3.1) :

E(e -λY (1) ) = ∞ 0 l (1) (z) λ + z dz = C ∞ p 1 λ + z (z -p) α-1 dz = C ∞ 0 1 λ + p + z z α-1 dz = C ∞ 0 z α-1 dz ∞ 0 e -(λ+p+z)u du = C ∞ 0 e -(λ+p)u du ∞ 0 e -zu z α-1 dz = CΓ(α) ∞ 0 e -(λ+p)u du u α = (λ + p) α-1 CΓ(α)Γ(1 -α) = 1 + λ p α-1 (3.5)
since the Laplace transform E(e -λY (1) ) equals 1 for λ = 0. Thus :

Y (1) (law) = 1 p γ 1-α
where γ 1-α is a gamma r.v. with parameter 1α, i.e.

(3.6) with density :

f γ 1-α (u) := e -u Γ(1 -α) u -α 1 u≥0
It follows clearly from (3.5) that :

E(e -λY (1) ) = exp -(1 -α) log 1 + λ p = exp -(1 -α) ∞ 0 (1 -e -λx ) dx x e -xp (3.7)
Thus, from (0.7), formula (3.7) shows that Y (1) is a GGC variable with Thorin measure (1α)δ p .

3. We now prove Theorem 5 for the r.v. Y

p . In fact, this result -Y (3) is a GGC variable whose Thorin measure has total mass equal to 1-α -has already been proven in [BFRY] (with p = 1, but this involves no loss of generality). The proof we shall give now is a totally different one from that of [BFRY]. We also assume here, for simplicity, that p = 1 and we denote Y (3) instead of Y

(3) 1 . Following the arguments of the proof of Theorem 2, we need to show, from (1.16), (1.17), (1.18) and (1.19) that, for every x ∈ [0, 1] :

∆(x) = ∞ 0 l 1 x l x(1 + z) -l(x)l 1 x (1 + z) dz z + 1 0 l(x)l 1 x (1 -z) -l 1 x l x(1 -z) dz z ≥ 0 (3.8)
where the function l(= l (3) ) equals here, from (3.1) and (2.15) :

l(y) = y α -1 y≥1 (y -1) α (y ≥ 0) (3.9)
Thus, we need to show (3.8). For this purpose, we need to compute the integrals featured in (3.8) hence, given (3.9) to discuss, owing to the positions of x(1 + z),

1 x (1 + z), 1 x (1 -z) and
x(1z) with respect to 1. We consider the first integral in (3.8) for x(1 + z) ≥ 1 hence, a fortiori 1

x (1 + z) ≥ 1 since x ≤ 1 . This first term equals :

∆ 1 (x) = ∞ 1 x -1 1 x α - 1 x -1 α x α (1 + z) α -x(1 + z) -1 α -x α 1 x α (1 + z) α - 1 x (1 + z) -1 α dz z = ∞ 1 x -1 1 -(1 -x) α (1 + z) α -1 + z - 1 x α -(1 + z) α -(1 + z -x) α dz z = ∞ 1 x -1 (1 + z -x) α -1 + z - 1 x α -(1 -x) α (1 + z) α -(1 -x)(1 + z) - 1 -x x α dz z := ∆ (1) 1 (x) -∆ (2) 1 (x).
Let us examine ∆

(1) 1 (x) :

∆ (1) 1 (x) = ∞ 1 x -1 (1 + z -x) α -1 + z - 1 x α dz z = ∞ 1 x -1 dz z 1+z-x 1+z-1 x α u α-1 du Figure 2
Now, we apply Fubini's Theorem :

∆ (1) 1 (x) = 1 x -1 0 α u α-1 du u+ 1 x -1 1 x -1 dz z + ∞ 1 x -1 α u α-1 du u+ 1 x -1 u+x-1 dz z = 1 x -1 0 α u α-1 log ux + 1 -x 1 -x du + ∞ 1 x -1 α u α-1 log u + 1 x -1 u + x -1 du.
We compute thus each term of ∆(x) and we obtain, after some simple, although tedious, computations :

∆(x) = 1 x -1 0 log 1 1 -x • α u α-1 du + 1 x -x 0 log ux + 1 -x 1 -x α u α-1 du + ∞ 1 x -x log u + 1 x -1 u + x -1 α u α-1 du + x(1-x) 0 log 1 -x -u (1 -x) 2 α u α-1 du - 1 x -1 0 log u 1-x + 1 x -1 1 x -1 α u α-1 du - ∞ 1 x -1 log u 1-x + 1 x -1 u 1-x -1 α u α-1 du (3.10)
We note that, since x ∈ [0, 1], we have :

x(1 -x) ≤ 1 -x ≤ 1 x -1 ≤ 1 x -x
and that all the integrals found in (3.10) are positive. In (3.10) we shall gather the terms with opposite signs. For example, we have :

∞ 1 x -x log u + 1 x -1 u + x -1 α u α-1 du - ∞ 1 x -x log u 1-x + 1 x -1 u 1-x -1 α u α-1 du = ∞ 1 x -x log ux + (1 -x) ux + (1 -x) 2 α u α-1 du and this last integral is positive since (1 -x) 2 ≤ 1 -x.
Gathering thus all the terms in ∆(x), we obtain :

∆(x) = ∞ 0 log ux + 1 -x ux + (1 -x) 2 α u α-1 du - 1 x -x 1 x -1 log 1 -x x(u + x -1) α u α-1 du x(1-x) 0 log 1 -x -u (1 -x) 2 α u α-1 du (3.11) = α(1 -x) α 1 x +1 1 x v α-1 log 1 x(v -1) xv -1 1 + v -xv α-1 x 2-α (1 + x -xv) 2 + xv -1 x(v -1) α-1 1 -x x(v -1) 2 -v α-1 dv
after making the changes of variables :

ux + 1 -x ux + (1 -x) 2 = 1 x(v -1)
in the first integral of (3.11)

u = (1 -x)v in the second integral of (3.11) 1 -x -u (1 -x) 2 = 1 x(v -1)
in the third integral of (3.11) Thus, to conclude, it remains to show that, for every v ∈ 1

x , 1 x + 1 : v α-1 ≤ xv -1 1 + x -xv α-1 1 x α-1 x (1 + x -xv) 2 + xv -1 x(v -1) α-1 1 -x x(v -1) 2 (3.12)
or, equivalently that :

xv -1 xv 1-α ≤ x (1 + x -xv) α+1 + 1 -x x 1 (v -1) α+1 (3.13) Now, this last inequality is obvious ; indeed, since f 1 (v) := xv -1 xv 1-α is increasing as well as f 2 (v) := x (1 + x -xv) α+1 it suffices to verify that f 1 1 x + 1 ≤ f 2 1 x
• We have :

f 1 1 x + 1 = x 1 + x 1-α ≤ 1 ≤ f 2 1 x = 1 x α since x ∈ [0, 1]
. This shows that Y (3) is GGC. Finally, it is not difficult to prove that the total mass of the Thorin measure equals 1α : this follows from the fact that since

l (3) (x) = C x α -1 x≥1 (x -1) α then l (3) (x) ∼ x→∞ C x α-1 , hence, from the Tauberian Theorem, f Y (3) (u) ∼ u→0 C
u α , and we finally use (0.10).

3.2 Description of the r.v.'s G (i) α (i = 1, 2, 3 ; 0 < α < 1) In the sequel, it will convenient to assume that p = 1 and we write simply Y (i) for the r.v.'s Y

(1) 1 (i = 1, 2, 3). Theorem 5 implies, from (0.7), the existence of r.v.'s

G (i) α i = 1, 2, 3 ; α ∈]0, 1[ such that E log + (1/G (i)
α ) < ∞ and :

E(e -λY (i) ) = exp -(1 -α) ∞ 0 (1 -e -λx ) dx x E(e -xG (i) α ) (3.14)
The aim of this section is to identify the (laws of the) r.v.'s

G (i)
α and to describe some of their properties.

i) The case i = 1 Formula (3.6) implies that the r.v. G

(1) α is a.s. equal to 1, i.e. its distribution is δ 1 , the Dirac measure at 1. In particular, this distribution does not depend on α.

ii) The case i = 3 In [BFRY] a complete study of the r.v.'s G

(3) α -denoted as G α in [BFRY] -has been undertaken. We refer the reader to [BFRY]. In particular, it is shown there that the density

f G (3) α of G (3) α equals : f G (3) α (u) = α sin πα (1 -α)π u α-1 (1 -u) α-1 (1 -u) 2α -2(1 -u) α u α cos(πα) + 1 1 [0,1] (u) (3.15) Thus, G (3) 
1/2 is arc-sine distributed :

f G (3) 1/2 (u) = 1 π 1 u(1 -u) 1 [0,1] (u) (3.16)
and the r.v.'s G

(3) α converge in law, as α → 0 and α → 1 respectively towards G

(3) 0 and G

(3) 1 , where :

G (3) 0 (law) = 1 1 + exp πC
, with C a standard Cauchy r.v.

(3.17)

G (3) 1 (law) = U, with U uniform on [0, 1] (3.18)
iii) The case i = 2 Theorem 6 For every α ∈]0, 1[

1) i) Y (2) (law) = e • γ 1-α γ α (law) = e β 1-α,α 1 -β 1-α,α (3.19) 
where e, γ 1-α , γ α are independent, with respective laws the standard exponential and the gamma distributions with respective parameters (1-α) and α, and where e and β 1-α,α are independent with respective distributions the standard exponential and the beta distribution with parameters (1α, α).

ii

) E(e -λY (2) ) = λ α -1 λ -1 (= α if λ = 1) (λ ≥ 0) (3.20) 2) Y (2) is a gamma-(1 -α) mixture, i.e. : Y (2) = γ 1-α • D (2) 1-α (3.21)
where γ 1-α is a gamma (1α) variable, independent from the positive r.v. D

(2) 1-α . Furthermore :

D (2) 1-α law = e γ α (3.22) E(e -λ D (2) 1-α ) = 1 Γ(α) ∞ 0 e -y y α λ + y dy = α ∞ 0 e -λy (1 + y) α+1 dy (3.23) The density f D (2) 1-α of D (2)
1-α equals :

f D (2) 1-α (u) = α (1 + u) α+1 1 [0,∞[ (u) (3.24) 3) i) The density f G (2) α of G (2)
α equals :

f G (2) α (u) = α sin(πα) (1 -α)π u α-1 u 2α -2u α cos(πα) + 1 1 [0,∞[ (u) (3.25)
ii) The r.v.'s G

(2)

α are related to the r.v.'s G

(3) α via the identity is law :

G (2) α 1 + G (2) α (law) = G (3) α , or, equivalently, G (2) α (law) = G (3) α 1 -G (3) α (3.26) iii) G (2) α (law) = 1 G (2) α (3.27) iv) As α → 0 and α → 1, G (2) 
α converges in law towards, respectively

G

(2) 0

(law)

= exp π C and G

(2) 1

(law) = U 1 -U (3.28)
with C a standard Cauchy r.v. and U uniform on [0, 1]. 4) Let µ ∈]0, 1[ and T µ denote the positive stable r.v. with index µ whose law is characterized by :

E(e -λTµ ) = exp(-λ µ ) (λ > 0)
Then :

G (2) α (law) = T 1-α T ′ 1-α 1-α α (3.29)
where T ′ 1-α is an independent copy of T 1-α .

ii) An equivalent way of writing (3.29) is :

G (2) α (law) = M 1-α M ′ 1-α 1 α (3.30)
where M 1-α and M ′ 1-α are two independent Mittag-Leffler r.v.'s with parameter 1α, whose common law is characterized by :

E(exp λ M 1-α ) = n≥0 λ n Γ 1 + n(1 -α) , E[M n 1-α ] = Γ(n + 1) Γ 1 + n(1 -α) M 1-α (law) = 1 T 1-α 1-α (3.31)
see [CY], p.114, Exercise 4.19 .

Proof of Theorem 6

1) i) We prove (3.19) Denoting by (R t , t ≥ 0) a Bessel process with dimension 2(1α) (0 < α < 1) starting from 0, we have by scaling :

Y (2) = d e -e (law) = e(d 1 -1) (law) = e R 2 1 2γ α
see [BFRY] where R 2 1 is the value of R 2 t for t = 1. Hence :

Y (2) (law) = e γ 1-α γ α = e β 1-α, α 1 -β 1-α, α
(from the classical "beta-gamma algebra").

ii) We prove (3.20) We have, from (3.1) and (3.2) :

l (2) (x) = sin(πα) π x α 1 + x x ≥ 0 we note that ∞ 0 l (2) (x) x dx = sin(πα) π ∞ 0 x α-1 1 + x dx = sin(πα) π B(α, 1 -α) = sin(πα) π Γ(α)
Γ(1α) = 1 see [L], p. 3 and 13 . Hence from (0.3), f Y (2) , the density of Y (2) , equals :

f Y (2) (u) = sin(πα) π ∞ 0 e -ux x α 1 + x dx
we might also have derived this formula from (3.19) .

iii) We now compute the Laplace transform of Y ( 2)

E(e -λY (2) ) = sin(πα) π ∞ 0 e -λu du ∞ 0 e -ux x α 1 + x dx = sin(πα) π ∞ 0 x α (1 + x)(λ + x) dx = 1 λ -1 sin(πα) π ∞ 0 x α 1 1 + x - 1 λ + x dx = lim A→∞ 1 λ -1 sin(πα) π A 0 x α 1 + x dx -λ α A λ 0 x α 1 + x dx = lim A→∞ 1 λ -1 sin(πα) π A 0 x α-1 - x α-1 1 + x dx -λ α A λ 0 x α-1 - x α-1 1 + x dx = lim A→∞ 1 λ -1 sin(πα) π A α α - ∞ 0 x α-1 1 + x dx - λ α α A λ α + λ α ∞ 0 x α-1 1 + x dx = λ α -1 λ -1 sin(πα) π ∞ 0 x α-1 1 + x dx = λ α -1 λ -1 sin(πα) π B(α, 1 -α) = λ α -1 λ -1 since see [L], p. 3 B(α, 1 -α) = Γ(α)Γ(1 -α) = π sin(πα) . 
2) Let us show (3.25) By taking the logarithmic derivative of (3.20) :

E(e -λY (2) ) = λ α -1 λ -1 = exp -(1 -α) ∞ 0 (1 -e -λx ) dx x E(e -x G (2) α )
we obtain :

E 1 λ + G (2) α = 1 1 -α 1 1 -λ - αλ α-1 λ α -1 (3.32)
Thus, we have just computed the Stieltjes transform of the r.v. G

(2)

α . The inversion formula 6) We prove (3.29) It is shown in [BFRY], p. 320, that :

G (3) α (law) = (T 1-α ) 1-α α (T ′ 1-α ) 1-α α + (T 1-α ) 1-α α and G (3) α (law) = (M 1-α ) 1 α (M 1-α ) 1 α + (M ′ 1-α ) 1 α (3.34)
Thus, from (3.26) and (3.34) :

G (2) α (law) = G (3) α 1 -G (3) α = (T 1-α ) 1-α x (T ′ 1-α ) 1-α α +(T 1-α ) 1-α α (T ′ 1-α ) 1-α α (T ′ 1-α ) 1-α α +(T 1-α ) 1-α α = T 1-α T ′ 1-α 1-α α (3.35)
We note that (3.35) implies (3.27) and that (3.30) may be obtained from (3.35), in the same manner as (3.35).

7)

We now prove point 2 of Theorem 6

The formula (3.21)

D (2) 1-α (law) = e γ α is an immediate consequence of (3.19) : Y (2) (law) = e • γ 1-α γ α (law) = γ 1-α D (2) 1-α
after observing that, in the latter formula, we may "simplify by γ 1-α see [C.Y] or [JRY], point 1.4.6 for a justification of this "simplification" . The value of the density of D

(2)

1-α which is given by (3.24) now follows easily from D This ends the proof of Theorem 6.

Remark 7 1) From the relation Y (2) (law)

= γ 1-α D

(2)

1-α , we deduce :

E(e -λY (2) ) = E(e -λγ 1-α •D , that E(log G

(2) α ) = 0. Thus, from Theorem 2.1, point ii) in [JRY],

we have :

f Y (2) (u) = u -α Γ(1 -α) E(e -u D (2) 1-α )
this is formula (2.7) in [JRY], with t = 1α, E(log G) = 0 and G 3) Furthermore, we remark that, from Theorem 2.1 of [JRY] :

f D (2) 1-α (u) = u -α-1 f D (2) 1-α 1 u
This formula follows also from (3.24).

4) Finally, we also observe, from Theorem 2.1 in [JRY], as a consequence of G

(2) α

(law)
= 1

G

(2) α and E(log G

(2) α ) = 0, that :

f Y (2) (u) = E   Y (2) u α 2 J -α 2 u Y (2)   (3.38)
where J -α denotes the Bessel function with index (-α).

  Let l : R + → R + denote a Borel function such that :

  Figure 1

Theorem 5

 5 For any α ∈]0, 1[, for any p > 0, the r.v.'s Y (1) p = e pg e p , Y (2) p = d e pe p , Y (3) p = d e pg e p are GGC r.v.'s whose Thorin measures have the same total mass : 1α = d 2 (< 1).

  dz (1 + z) α+1

  way to obtain (3.20).2)Here is now another way to obtain (3.23). It is clear, from (3.25) that E | log G

  change of variable ux = y), we obtain :

  

It would be more correct to say that : the law of such a r.v. is a gamma-m mixture ; however, such abuse is usual, and should not lead to confusion.

for the Stieltjes transform see [W], p. 345 leads us to :

(We note that, in the preceding limit, the contribution of the term

3) We now show (3.26) For every h Borel and positive, we have :

Thus, making the change of variable

4) We now prove (3.27) It is shown in [BFRY], p. 319, (1.27) that :

which is, indeed, obvious ! Thus, from (3.26) :

5) The relation (3.28) follows immediately from (3.26) and from (3.17) and (3.18).