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Robust observer design for uncertain Takagi-Sugeno model with

unmeasurable decision variables: an L2 approach

Dalil Ichalal, Benoı̂t Marx, José Ragot and Didier Maquin

Abstract— This paper deals with the problem of state esti-
mation of nonlinear uncertain systems described by uncertain
multiple model form with unmeasurable decision variables.
We propose two methods to attenuate the effect of modeling
uncertainties and measurement noise on the state estimation.
The first method is based, under some assumptions, on the
second method of Lyapunov and L2 approach. The second
method allows to reduce the conservatism of the convergence
conditions issued from the assumptions of first method. The
convergence conditions of the observer are presented in terms
of linear matrix inequality (LMI) formulation. The validity and
applicability of the proposed methods are illustrated by an
academic example.

I. INTRODUCTION

The design of observers for the state estimation is an

important problem in the automatic control domain with

diverse areas of application. Indeed, several issues require

system’s state reconstruction, such as designing a state

feedback control law or constructing a diagnosis system in

order to monitor and reconfigure the system in the case of

occurrence of failures. Observers are also used to estimate

the states which are not accessible, or to replace sensors that

are bulky, expensive and difficult to maintain.

Among the solutions to the problem of the state estimation

is the famous observer proposed by Luenberger in 1971

[1], for time-invariant linear systems. This observer is based

on the synthesis of a static gain in order to stabilize the

state estimation error and ensure its asymptotic convergence.

However, the presence of disturbances or noise causes a bad

reconstruction of the system’s state. Another method, for

linear systems, which takes into account the measurement

noise affecting output and the state of the system, was

proposed by Kalman in 1960 [2]. Based on the statistical

knowledge of noises, this method allows to reconstruct the

state of the system in the presence of measurement noise,

and it calculates at each time, the gain of the filter. In order

to improve the performance of observers, a lot of works

have been carried out to develop observers which are robust

against uncertainties of modeling and external disturbances

such as noises or faults.

One of the best methods used successfully in practice is

the unknown input observer (UIO), based on decoupling the

unknown input and the state estimation error, which allows to
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eliminate the effect of this disturbance on the reconstruction

error. Among this kind of methods, the important work

published in [3] in 1975, where the authors propose a

minimal order UIO for a linear system in the presence of

known and unknown inputs can be mentioned. This work

was followed by several works on the problems of the

state estimation with unknown input. When the conditions

of application of the previously mentioned methods are not

satisfied, alternative methods can be used [4], [5]. They are

based on the use of H∞ techniques to attenuate the effect of

measurement noise and disturbances on the state estimation.

In the context of diagnosis of linear systems, the observers

are used as residual generators. In [6] [7], the authors

investigate this problem by using robust state estimation

methods to generate residual signals which are sensitive

to faults and insensitive to disturbances and noises. The

detection and isolation of sensor and actuator faults are often

carried out by the construction of banks of observers.

Unfortunately, all of the works cited above relate to the

class of linear systems only. However, this assumption of

linearity limits the domain of application of these methods

and reduces their performances. So, in recent years, several

studies have been conducted on specific classes of nonlinear

systems. However, the study of nonlinear systems described

by the general form ẋ = f (x,u, t) is often difficult because of

the complexity of the function f . The most studied class in

the literature is the class of Lipschitz systems, represented by

a linear part and a nonlinear part which satisfies the Lipschitz

property [8] [9] [10].

The works carried out on fuzzy systems in [11] allow to

get a more interesting representation of nonlinear dynamical

systems. This representation is based on the interpolation

of linear local models, representing the local behaviors of

the nonlinear system, by nonlinear weighting functions. The

modeling ability of the Takagi-Sugeno model (also called

multiple model) lies in its property of universal approximator.

Its simple representation inspired with linear systems allows

to generalize synthesis and analysis tools developed for linear

systems to the case of nonlinear systems. For example, [12]

proposed a study of stability and stabilization by multiple

controllers. One can also find in [13], tools directly inspired

by the study of linear systems in order to study the stability

and stabilization of nonlinear systems described by multiple

model form. In [14], Patton proposed an observer based on

the Luenberger observer structure, and applied for diagnosis.

In [15], the sliding mode observer developed for linear

systems has been extended for nonlinear systems described

by a multiple model in the presence of unknown input and
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modeling uncertainties.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Multiple model approach

Consider the following general form of continuous-time

nonlinear systems:
{

ẋ(t) = f (x(t),u(t))
y(t) = h(x(t),u(t))

(1)

where x ∈ R
n, u ∈ R

m, y ∈ R
q and f and h are nonlinear

functions. The representation (1) is very difficult to study,

elsewhere in literature, all of the works developed on the

nonlinear systems concern specific classes for example Lip-

schitz systems which are represented by a linear part and a

nonlinear one. The nonlinear part is assumed to be Lipschitz

with respect to x.

As mentioned in section 1, the multiple model approach

is a very interesting method to represent nonlinear systems.

The general form of a multiple model structure is given by:










ẋ(t) =
r

∑
i=1

µi(ξ (t))(Aix(t)+Biu(t))

y(t) =
r

∑
i=1

µi(ξ (t))(Cix(t)+Diu(t))
(2)

where Ai ∈ R
n×n, Bi ∈ R

n×m, Ci ∈ R
q×n and Di ∈ R

q×m.

The weighing functions µi are nonlinear and depend on

the decision variable ξ (t) which can be measurable like

{u(t),y(t)} or unmeasurable like the state x(t) of the system.

The weighting functions satisfy the following properties:






0 ≤ µi(ξ (t)) ≤ 1
r

∑
i=1

µi(ξ (t)) = 1
(3)

This structure is simple and represents a universal approx-

imator since it can represent any nonlinear behavior. The

multiple model structure provides a mean to generalize the

tools developed for linear systems to nonlinear systems.

B. Problem statement

In almost all of the works cited in the introduction, the

authors assume that the weighting functions depend on mea-

surable decision variables i.e ξ (t) = u(t) or ξ (t) = y(t). In

the context of diagnosis of nonlinear systems, this hypothesis

requires designing observers with weighting functions which

depend on the input u(t), for the detection of sensor faults, or

which depend on the output y(t) in order to detect actuator

faults. Indeed, if one uses ξ (t) = u(t) for example, in the

observer banks, the ith observer does not use the ui input.

However, the knowledge of ui is required in the evaluation

of the weighting functions. Consequently the state or output

estimation is not possible and it becomes impossible to locate

a fault. For this reason, it is interesting to consider the

case where the weighting functions depend on unmeasurable

variables such as the state of the system, and thus, the

weighting functions in the observer will depend on the

estimated state. In this context, there are few works, nev-

ertheless, we can cite [16], [17] and [18], where the authors

proposed an observer, using the assumption of Lipschitz

property of the considered perturbed term. The conditions of

convergence of the observer are expressed in terms of Linear

Matrix Inequalities (LMI) [19]. Unfortunately, the Lipschitz

constants of the weighting functions appear in the LMI and

reduce the domain of applicability of the method. Indeed, if

these constants get large values, it is possible that the LMIs

cannot have solutions.

In this paper, we propose two methods to design observers

for nonlinear systems described by an uncertain multiple

model form (Takagi-Sugeno) with unmeasurable decision

variables (ξ (t) = x(t)).

III. MAIN RESULTS

Let us consider the following uncertain multiple model

with unmeasurable decision variables:






ẋ =
r

∑
i=1

µi(x)((Ai +∆Ai)x+(Bi +∆Bi)u)

y = Cx+Dω
(4)

where:
∆Ai(t) = MA

i ΣA(t)NA
i

∆Bi(t) = MB
i ΣB(t)NB

i

(5)

with:
ΣT

A(t)ΣA(t) ≤ I, ∀t

ΣT
B(t)ΣB(t) ≤ I, ∀t

(6)

where I is the identity matrix and ω(t) is a bounded

measurement noise.

A. First approach

By introducing the matrix A0 defined as follows:

A0 =
1

r

r

∑
i=1

Ai (7)

and:
Ai = Ai +A0 (8)

we obtain another formulation of the system (4):






ẋ = A0x+
r

∑
i=1

µi(x)
(

(Ai +∆Ai)x+(Bi +∆Bi)u
)

y = Cx+Dω
(9)

We are interested in designing an observer in order to esti-

mate the state of the system presented above. The observer

is described by the following form:






˙̂x = A0x̂+
r

∑
i=1

µi(x̂)
(

Aix̂+Biu+Gi(y− ŷ)
)

ŷ = Cx̂
(10)

The state estimation error is given by:

e = x− x̂ (11)

Its dynamic is:

ė =
r

∑
i=1

µi(x̂)((A0 −GiC)e−GiDω)

+
r

∑
i=1

µi(x)(∆Aix+∆Biu)

+
r

∑
i=1

(Aiδi +Bi∆i) (12)
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where:

δi = µi(x)x−µi(x̂)x̂ (13)

∆i = (µi(x)−µi(x̂))u (14)

The dynamic of the state estimation error describes the

behavior of a perturbed system, and can be written as

follows:

ė =
r

∑
i=1

(µi(x̂)(A0 −GiC)e+Hiω̃ +Aiδi +Bi∆i) (15)

where:

Hi =
[

−µi(x̂)GiD µi(x)∆Ai µi(x)∆Bi

]

(16)

ω̃(t)T = [ω(t)T
x(t)T

u(t)T ] (17)

Assumption 1: In this subsection, we suppose that the

following hypotheses hold:

• A1. The system (2) is assumed to be stable.

• A2. The weighting functions µi(x) are Lipschitz:

|µi(x)−µi(x̂)| < γ1 |x− x̂|

• A3. The functions µi(x)x are Lipschitz:

|µi(x)x−µi(x̂)x̂| < γ2 |x− x̂|

• A4. The input u(t) of the system is bounded:

|u(t)|≤ β

From the assumptions (A1) and (A4), the state x(t) of the

system is bounded and the term ω̃(t) is bounded. Note that,

in this work, observers are designed for the diagnosis of non-

linear systems, then the assumption (A1) is not restrictive.

Theorem 1. The state estimation error converges asymp-

totically to zero, and the L2 gain of the transfer from ω̃ to

e is minimal if there exists positive and symmetric matrices

P and Q, gains Ki, positive scalars µ̄ , λ1, λ2, ε2, ε3, ε4 and

σ solution of the following problem:

min
P,Q,Ki,λ1,λ2,ε2,ε3,σ ,µ̄

µ̄

s.t. the following conditions for all i ∈ {1, ...,r}:

AT
0 P+PA0 −KiC−CT KT

i < −Q (18)






















M 0 0 0 PAi PBi PMA
i PMB

i KiD γ1σ I
∗ M1i 0 0 0 0 0 0 0 0
∗ ∗ M2i 0 0 0 0 0 0 0
∗ ∗ ∗ M3i 0 0 0 0 0 0
∗ ∗ ∗ ∗ −λ1I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −λ2I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε3I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε4I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ2I























< 0

(19)

σ −λ2β > 0 (20)

where:

M = −Q+(λ1γ2
2 +1)I (21)

M1i = (−µ̄ + ε2)I (22)

M2i = −µ̄I + ε3(N
A
i )T NA

i (23)

M3i = −µ̄I + ε4(N
B
i )T NB

i (24)

A star (*) in a matrix indicates a transpose quantity. For

example:
[

A B

∗ C

]

stands for

[

A B

BT C

]

The gains of the observer are derived from:

Gi = P−1Ki (25)

and the attenuation level is derived from:

µ =
√

µ̄ (26)

Proof. To prove the convergence of the state estimation error

to zero, we consider the quadratic Lyapunov function:

V (e) = eT Pe, P = PT
> 0 (27)

Its derivative with regard to time is:

V̇ (e) = ėT Pe+ eT Pė (28)

by using (15) we obtain:

V̇ (e) =
r

∑
i=1

(µi(x̂)e
T (ΦT

i P+PΦi)e+ eT PAiδi + eT PBi∆i

+ δ T
i A

T

i Pe+∆T
i BT

i Pe+ eT PHiω̃ + ω̃T HT
i Pe) (29)

where Φi = (A0 −GiC).
Lemma 2. For two matrices X and Y with appropriate

dimensions, the following property holds:

XTY +XY T
< XT Ω−1X +Y ΩY T

, Ω > 0

By using lemma 2 with Ω being a scalar, and the assumptions

A1, A2 and A3 we have:

eT PAiδi +δ T
i A

T

i Pe < λ1δ T
i δi +λ−1

1 eT PAiA
T

i Pe

< λ1γ2
2 eT e+λ−1

1 eT PAiA
T

i Pe

(30)

eT PBi∆i +∆T
i BT

i Pe < λ2∆T
i ∆i +λ−1

2 eT PBiB
T
i Pe

< λ2γ2
1 β 2eT e+λ−1

2 eT PBiB
T
i Pe

(31)

By substituting (30) and (31) in the derivative of the Lya-

punov function (29), we obtain:

V̇ (e) =
r

∑
i=1

(eT (µi(x̂)(Φ
T
i P+PΦi)+(λ1γ2

2 +λ2γ2
1 β 2)I

+ λ−1
1 PAiA

T

i P+λ−1
2 PBiB

T
i P)e

+ eT PHiω̃ + ω̃T HT
i Pe) (32)

In order to attenuate the effect of ω̃(t) on the state estimation

error, we use an L2 approach. The goal is to minimize the

L2 gain from ω̃(t) to the state estimation error e(t) [19]:

‖e‖2

‖ω̃‖2

< µ , µ > 0 (33)
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The state estimation error converges asymptotically to zero,

and the L2 gain from ω̃ to e is bounded by µ if:

V̇ (e)+ eT e−µ
2ω̃T ω̃ < 0 (34)

By substituting V̇ , we obtain:

r

∑
i=1

(eT (µi(x̂)(Φ
T
i P+PΦi)+(λ1γ2

2 +λ2γ2
1 β 2 +1)I

+ λ−1
1 PAiA

T

i P+λ−1
2 PBiB

T
i P)e+ eT PHiω̃

+ ω̃T HT
i Pe−µ

2ω̃T ω̃) < 0 (35)

The negativity of (35) is guaranteed if ∀i ∈ {1, ...,r}:

r

∑
i=1

µi(x̂)(Φ
T
i P+PΦi) < −Q (36)

and:

eT (−Q+(λ1γ2
2 +λ2γ2

1 β 2 +1)I +λ−1
1 PAiA

T

i P

+ λ−1
2 PBiB

T
i P)e+ eT PHiω̃ + ω̃T HT

i Pe−µ
2ω̃T ω̃ < 0

(37)

where Q = QT > 0.

The weighting functions satisfy the convex sum property (3),

thus (36) holds if the following inequalities hold:

(A0 −GiC)T P+P(A0 −GiC) < −Q, ∀i ∈ {1, ...,r} (38)

The negativity of the quadratic form in (eT ω̃T )T in the LHS

of (37) is guaranteed iff the following inequality is satisfied:
[

Ψi PHi

HT
i P −µ2I

]

< 0 (39)

where:

Ψi =−Q+(λ1γ2
2 +λ2γ2

1 β 2 +1)I+λ−1
1 PAiA

T

i P+λ−1
2 PBiB

T
i P

By using the definition of the matrix Hi given in (16), the
inequality (39) can be written as follows:









Ψi 0 0 0

0 −µ2I 0 0

0 0 −µ2I 0

0 0 0 −µ2I









+Wi +W T
i < 0 (40)

where:

Wi =







0 −µi(x̂)PGiD µi(x)P∆Ai µi(x)P∆Bi

0 0 0 0
0 0 0 0
0 0 0 0






(41)

which can be decomposed as follows, taking into account
the definition of ∆Ai and ∆Bi given in (5) :

Wi =





0 PGiD PMA
i PMB

i
0 0 0 0
0 0 0 0
0 0 0 0











0 0 0 0
0 −µi(x)I 0 0

0 0 FA(t)NA
i 0

0 0 0 FB(t)NB
i







(42)

where FA(t) = µi(x)ΣA(t) and FB(t) = µi(x)ΣB(t). The

properties of the weighting functions and the terms ΣA(t)
and ΣB(t) allow to deduce:

µi(x̂)
T µi(x̂) ≤ 1

FA(t)T FA(t) ≤ I

FB(t)T FB(t) ≤ I

Let define Ω as:

Ω = diag(ε1I,ε2I,ε3I,ε4I)

ε1 > 0,ε2 > 0,ε3 > 0,ε4 > 0

By using the lemma 2 and the definitions (5)-(6), we obtain

the following inequality after some calculations:

Wi +W T
i <









Ξi 0 0 0

0 ε1I 0 0

0 0 ε3(N
A
i )T NA

i 0

0 0 0 ε4(N
B
i )T NB

i









(43)

where:

Ξi = ε−1
2 PGiDDT GT

i P+ε−1
3 PMA

i (MA
i )T P+ε−1

4 PMB
i (MB

i )T P

Substituting (43) in (40) we obtain:








Θi 0 0 0

0 M1i 0 0

0 0 M2i 0

0 0 0 M3i









< 0 (44)

Θi = −Q+(λ1γ2
2 +λ2γ2

1 β 2 +1)I +λ−1
1 PAiA

T

i P

+ λ−1
2 PBiB

T
i P+ ε−1

2 PGiDDT GT
i P+ ε−1

3 PMA
i (MA

i )T P

+ ε−1
4 PMB

i (MB
i )T P (45)

where M1i, M2i and M3i are given in (22)-(24).

To eliminate the nonlinearities in (45), we use the Schur

complement and the changes of variables Ki = PGi. In

addition, we consider that the constant µ in (44) is a variable

that can be minimized in order to minimize the transfer from

ω̃ to the state estimation error e, so, we perform the change

of variable µ̄ = µ2 to eliminate the nonlinearity.

Notice that the bound of the input can also be considered

as a variable and can be optimized. Let us denote ρ this

bound. So, we introduce another nonlinearity between λ2

and ρ which is removed by using the Schur complement

and the change of variable σ = λ2ρ .

The bound ρ:

ρ =
σ

λ2
(46)

must be greater or equal to the real bound β , so we introduce

the following constraint on σ :

σ

λ2
> β (47)

Thus we obtain the following linear constraint:

σ −λ2β > 0 (48)

Finally, the convergence of the state estimation error is

guaranteed if the inequalities (38), (44) and (48) hold.

By using the Schur complement in (44), we obtain the

conditions expressed in the theorem 1. !

Numerical example and simulations. Let us consider the
system in (4) defined by:

A1 =

[

−18.5 5 18.5
0 −20.9 15

18.5 15 −33.5

]

,A2 =

[

−22.1 0 22.1
1 −23.3 17.6

17.1 17.6 −39.5

]
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B1 =





1
0.5
0.5



 ,B2 =





0.5
1

0.25



 ,C =

[

1 1 1
1 0 1

]

,D =

[

0.3
0.9

]

MA
i = NA

i =





0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1



 ,MB
i = NB

i =





0.1
0.1
0.1



 , i = 1,2

The weighting functions are defined as follows:
{

µ1(x) = 1−tanh(x1)
2

µ2(x) = 1−µ1(x)

ΣA and ΣB are identical and depicted in the figure 1.

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Σ
A
(t)  and  Σ

B
(t)

Fig. 1. ΣA(t) and ΣB(t)

The LMIs in theorem 1 are satisfied with:

G1 =





60.34 −12.92
59.83 −13.18
59.35 −12.65



 ,G2 =





60.38 −12.97
59.86 −13.23
59.40 −12.71





P =





0.76 −0.26 −0.41
−0.26 0.68 −0.32
−0.41 −0.32 0.83





The resulting attenuation level is µ = 0.0083. The simulation

results are depicted in the figures 2 and 3. We can conclude

that the gains which are obtained by solving the LMIs in the-

orem 1 allow to attenuate the effect of the uncertainties and

the noise measurement. In the figure 3, the state estimation

error obtained by using theorem 1 converges asymptotically

to zero and the effect of the perturbations is attenuated

(uncertainties and noise measurement). Comparing to the

state estimation error obtained by a method without taking

into account the uncertainties (method proposed in [20]), we

can conclude that the proposed method is robust against mod-

eling uncertainties and measurement noise. Unfortunately,

the LMIs expressed in the theorem 1 depend on the Lipschitz

constants of the weighting functions and the upper bound of

the system input.

The problem of theorem 1 may not have a solution for

large values of these constants. So this method can be applied

only with systems that satisfy the assumption 1 where the

Lipschitz constant and the upper bound of the input do not

exceed a given threshold in order to find a solution for the

problem of theorem 1. We therefore propose another method

in the next section, where the Lipschitz property of the

weighting functions and the knowledge of the upper bound

of the input are not necessary.

B. Second approach

The system (4) can be represented as follows:

ẋ =
r

∑
i=1

µi(x̂)((Ai +∆Ai)x+(Bi +∆Bi)u+ν)

y = Cx+Dω
(49)

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

1

x
1
 and its estimate

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

x
2
 and its estimate

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

x
3
 and its estimate

Actual states
Estimated states

Fig. 2. State estimation

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

e
1

0 1 2 3 4 5 6 7 8 9 10

−0.6

−0.4

−0.2

0

e
2
 

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

e
3

Theorem 1
Method without taking into account uncertainties  

Fig. 3. State estimation error

where:

ν =
r

∑
i=1

(µi(x)−µi(x̂))((Ai +∆Ai)x+(Bi +∆Bi)u)

The term ν(t) is considered as a perturbation. The proposed

observer is defined by:

˙̂x =
r

∑
i=1

µi(x̂)(Aix̂+Biu+Gi(y− ŷ))

ŷ = Cx̂
(50)

The state estimation error between (49) and (50) is defined

as:

e = x− x̂ (51)

its dynamic is given by:

ė =
r

∑
i=1

µi(x̂)((Ai −GiC)e+∆Aix+∆Biu−GiDω +ν) (52)

which can be written using the following form:

ė =
r

∑
i=1

µi(x̂)((Ai −GiC)e+Miω̃) (53)

where:

ω̃ = [νT ωT xT uT ]T , Mi = [ I −GiD ∆Ai ∆Bi ]

Assume that assumptions (A1) and (A4) are satisfied, thus

ω̃(t) is bounded.
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Theorem 2. The state estimation error converges asymp-
totically to zero, and the L2 gain of the transfer from ω̃ to
e is minimal if there exists a positive and symmetric matrix
P, gains Ki, positive scalars γ̄ , ε1 and ε2 solution of the
following problem:

min
P,Ki,ε1,ε2,γ̄

γ̄

s.t. to the constraints for all i ∈ {1, ...,r}



















Ψ11i P −KiD 0 0 PMA
i PMB

i
P −γ̄I 0 0 0 0 0

−DT KT
i 0 −γ̄I 0 0 0 0

0 0 0 Ψ33i 0 0 0
0 0 0 0 Ψ44i 0 0

(MA
i )T P 0 0 0 0 −ε1I 0

(MB
i )T P 0 0 0 0 0 −ε2I



















< 0

(54)
where:

Ψ11i = AT
i P+PAi −CT KT

i −KiC + I

Ψ33i = −γ̄I + ε1(N
A
i )T NA

i

Ψ44i = −γ̄I + ε2(N
B
i )T NB

i

The gains of the observer are derived from Gi = P−1Ki, and

the attenuation level is derived from γ =
√

γ .
Element of proof. The goal is to minimize the effect of

ω̃(t) on the state estimation error. So, by using the Bounded
Real Lemma (BRL)[19], we obtain:

r

∑
i=1

µi(x̂(t))

[

(Ai −GiC)T P+P(Ai −GiC)+ I PMi

M T
i P −γ2I

]

< 0 (55)

with the changes of variables Ki = PGi and γ̄ = γ2, we
obtain:
[

AT
i P+PAi −CT KT

i −KiC + I PMi

M T
i P −γ̄I

]

< 0,∀i ∈ {1, ...,r} (56)

According to the definition of Mi, the inequality (56) can
be written in the form:











Ψ11i P −PGiD P∆Ai P∆Bi

P −γ̄I 0 0 0

−DT GT
i P 0 −γ̄I 0 0

∆AT
i P 0 0 −γ̄I 0

∆BT
i P 0 0 0 −γ̄I











< 0 (57)

By using the same approach and calculation like (40)-(43)

in the previous proof, we obtain the LMI conditions (54). !

In theorem 2, the bound of the input β and the Lipschitz

constants γ1 and γ2 defined in assumption 1 do not appear in

LMIs (54). So, we can conclude that the second method is

more general because it can be used even if the informations

in the assumption 1 are not available unlike in the first

method. Applying the observer proposed in the second

method to the previous example lead to similar result, thus

they are omitted.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, two methods are proposed to estimate the

state of nonlinear systems described by multiple models with

unmeasurable decision variables. This structure allows to

have an exact representation of the nonlinear behavior of

the system, and in the context of diagnosis systems, only

one multiple model is sufficient to develop observer banks

to detect and isolate sensor and actuator faults. The two

methods proposed here are developed in order to estimate the

state of the system despite the presence of modeling uncer-

tainties and measurement noise. The convergence conditions

of the observer are established by using the second method

of Lyapunov and an L2 approach. Future works will concern

the application of these methods in order to construct robust

residual generator for diagnosis of nonlinear systems.
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