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Abstract. Using a two-channel model, we show that the number of closed-channel molecules in a two-
component Fermi gas close to a Feshbach resonance is directly related to the derivative of the energy
of the gas with respect to the inverse scattering length. We extract this quantity from the fixed-node
Monte Carlo equation of state and we compare to the number of closed-channel molecules measured in
the Rice experiment with lithium [Partridge et al., Phys. Rev. Lett. 95, 020404 (2005)]. We also discuss
the effect of a difference between the trapping potentials seen by a closed-channel molecule and by an
open-channel pair of atoms in terms of an effective position-dependent scattering length.

PACS. 03.75.Ss Degenerate Fermi gases - 67.90.+z Other topics in quantum fluids and solids

1 Introduction

It is now experimentally possible to prepare two-component
atomic Fermi gases at low temperature with a fully con-
trolable interaction strength, in a regime where the inter-
action range is negligible and the atomic interactions are
characterized by a single parameter, the s-wave scattering
length a between two opposite “spin” atoms. The value
of a can be adjusted at will thanks to a magnetically in-
duced Feshbach resonance. The weakly interacting limits
kFa→ 0+ and kFa→ 0−, where kF is the Fermi wavevec-
tor of the gas, correspond respectively to the BEC limit (a
Bose-Einstein condensate of dimers, observed in [1,2,3,4,
5]) and the BCS limit (a “condensate” of Cooper pairs ap-
proximately described by the BCS theory). Furthermore,
the experiments can access the so-called crossover regime
between BEC and BCS, where the gas is strongly inter-
acting (kF |a| & 1), which includes the celebrated unitary
limit kF |a| = ∞, where the gas acquires fully universal
properties [6,7,8,9,10,11,12,13,14,15,16,17].

In this context, early theoretical studies [18,19,20] put
forward a many-body Hamiltonian which accurately mod-
els the microscopic two-body physics of the Feshbach reso-
nance. The interaction potential is described by two chan-
nels, an open channel and a closed channel. The atoms ex-
ist in the form of fermionic particles in the open channel
and in the form of bosonic short range molecules in the
closed channel. Two atoms may be converted into a short
range closed-channel molecule and vice versa due to the
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interchannel coupling. The corresponding Hamiltonian is
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where the atomic fields ψσ(r) obey the usual fermionic an-
ticommutation relations and the field ψb(r) describing the
closed-channel molecules obeys the usual bosonic commu-
tation relations. Λ gives the coupling between the closed
and open channels, with a short range cut-off function
χ(r), of range b, and such that

∫

d3r χ(r) = 1. A typi-
cal value for b is in the nanometer range 1. The coupling
constant g0 represents the background atomic interaction
in the open channel, which is conveniently modeled by a
separable potential with the same cut-off function χ. The
energy Eb is the energy of a closed-channel molecule, in
the absence of the coupling Λ, counted with respect to
the dissociation limit of the open channel. This energy
is adjusted with a magnetic field B, using the fact that
the different magnetic moments in the open and closed
channels lead to a differential Zeeman shift. The resulting

1 b can be estimated by the van der Waals length, that is
the length that one forms with ~, m and the C6 coefficient of
the van der Waals interaction [21].
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effective magnetic moment is

µb ≡
dEb

dB
. (2)

U(r) and Ub(r) are the trapping potentials experienced by
the atoms and the closed-channel molecules respectively.

On the contrary, recent Monte Carlo simulations of
the many-body problem in the BEC-BCS crossover sim-
ply use single channel model Hamiltonians [22,23,24,25,
26,27,28]. In most unbiased Quantum Monte Carlo simu-
lations, a lattice model is used:

H1 =
∑

r

b3







∑

σ=↑,↓

ψ†
σ(r)

[
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2m
∆+ U(r)

]

ψσ(r)

+g0ψ
†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r)

}

. (3)

Here b is the lattice spacing (which coincides with the
“range” of the discrete delta interaction potential), ∆ is
a discrete representation of the Laplacian, and g0 is a
coupling constant adjusted to have the desired scattering
length: As was shown e.g. in [24,25,29,30],

1

g
− 1

g0
=

∫

[−π/b,π/b]3

d3k

(2π)3
1

2ǫk
(4)

where g = 4π~
2a/m is the effective coupling constant and

ǫk the energy of a single particle with wavevector k on the
lattice. In fixed-node Monte Carlo calculations, one rather
uses an interaction potential in continuous real space, e.g.
a square well potential [31,32,33,34,35,36].

There is now a consensus about the fact that, in the
zero-range limit, there is a convergence of predictions for
the two models H1 and H2, in particular for the equation
of state of the gas. The zero-range limit means, for single
channel models, that kF b≪ 1, b≪ λ, and b≪ |a|, where
kF is the Fermi wavevector and λ is the thermal de Broglie
wavelength.2 For two-channel models, one has to impose
the same conditions, not only for the interaction range b
but also for the effective range re (one indeed has |re| ≫ b
on narrow Feshbach resonances [37,38]); we shall see in
appendix A that one also needs to impose a condition on
the background scattering length, and that all conditions
are satisfied in the experiment [5].3

One can however consider observables which exist in
reality and are included in the two-channel model, but
which are absent in a single channel model. The most nat-
ural example is the number of closed-channel molecules,

2 The assumption b≪ |a| is not necessary on the BCS side
if one restricts to macroscopic observables such as the total
energy, but it is necessary for microscopic observables such as
the ones considered in section 3.1.

3 A simple formal definition of the zero-range limit for the
homogeneous gas is to take the limit of vanishing density kF →
0 while tuning the magnetic field B in such a way that 1/(kF a)
remains constant, and keeping constant all parameters of the
Hamiltonian other than B ; one then also has to take the limit
T → 0 so that T/TF remains constant.

which was recently measured at Rice using laser molecular
excitation techniques [5].

In this paper, we show that the equilibrium number
of closed-channel molecules Nb is directly related to the
equation of state of the gas, more precisely to the deriva-
tive of the gas energy (or free energy at non-zero tem-
perature) with respect to 1/a. Paradoxically, we can thus
use the equation of state calculated in [32] within a sin-
gle channel model, in order to predict Nb in the crossover
and compare to Rice measurements, see section 2. Since
the derivative of the energy with respect to 1/a is related
to other observables involving atomic properties only [39,
40], it is also possible in principle to access Nb by a pure
atomic measurement, see section 3. We conclude in sec-
tion 4.

2 Prediction for the number of

closed-channel molecules

2.1 General result

We first suppose that the system is in an arbitrary eigen-
state |ψ〉 of the two-channel Hamiltonian H2, with eigen-
ergy E. From Hellmann-Feynman theorem we have

dE

dB
= 〈ψ|dH2

dB
|ψ〉. (5)

The only magnetic field dependent part of the Hamilto-
nian H2 is the bare closed-channel molecule energy Eb(B)
so that

dE

dB
= µbNb (6)

where

Nb =

∫

d3r〈ψ†
b (r)ψb(r)〉 (7)

is the mean number of closed-channel molecules.
We then eliminate the magnetic field by using as a pa-

rameter the scattering length a experienced by the trapped
atoms rather than B. In the general case where the trap-
ping potential Ub(r) for the closed-channel molecule differs
from twice the trapping potential U(r) experienced by an
open-channel atom, the scattering length of two atoms
around point r depends on r, see appendix B. To lift the
ambiguity we thus take for a the scattering length in the
trap center taken as the origin of coordinates, r = 0. We
then rewrite (6) as

Nb =
dE

d(1/a)

d(1/a)

dB

1

µb
. (8)

Assuming that µb is magnetic field independent, a as a
function ofB can be calculated explicitly forH2 by solving
the zero-energy two-body scattering problem in free space
(see appendix A), and by including the energy shifts due
to the trapping potentials Ub(0) and U(0), as explained
in the appendix B. The function takes the form

a = afs(B − δB0) (9)
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where we have introduced the function giving the free
space scattering length as a function of B,

afs(B) = abg

(

1 − ∆B

B −B0

)

. (10)

Here abg is the background scattering length, B0 is the
location of the Feshbach resonance in the absence of trap-
ping potential, δB0 = [2U(0) − Ub(0)]/µb the shift of the
resonance location due to the trapping potential, and ∆B
the resonance width.

Equation (8) is directly applicable at zero tempera-
ture. At non-zero temperature, one has to take a thermal
average of (8), keeping in mind that the mean value of a
derivative is not necessarily equal to the derivative of the
mean value. In the canonical ensemble one can check the
exact relation [41]

〈

dE

d(1/a)

〉

=

(

dF

d(1/a)

)

T

=

(

d〈E〉
d(1/a)

)

S

(11)

where 〈. . .〉 is the thermal average, the derivative of the
free energy F is taken for a fixed temperature T , and the
derivative of 〈E〉 is taken for a fixed entropy S. We thus
have in the canonical ensemble

〈Nb〉 =

(

d〈E〉
d(1/a)

)

S

d(1/a)

dB

1

µb
. (12)

2.2 Analytical results in a trap in limiting cases

We now restrict to a spin balanced gas where the number
of particles is equal to N/2 in each spin component. We
also assume that the gas is at zero temperature (or at
temperatures much smaller than the Fermi temperature
TF ), in a harmonic trap

U(r) = U(0) +
1

2
m

∑

α=x,y,z

ω2
αr

2
α, (13)

in the macroscopic regime where kBTF is much larger than
the oscillation quanta ~ωα. The usual definition of the
Fermi temperature TF and of the Fermi wavevector kF is
then

kBTF =
~

2k2
F

2m
= (3N)1/3

~ω̄ (14)

where ω̄ is the geometric mean of the three oscillation
frequencies ωα. In this macroscopic regime, we rely on the
local density approximation to calculate dE/d(1/a) for the
trapped gas: This is expected to be exact in the large N
limit, and to already hold for the Rice experiment [5] since
kBTF /(~ωα) & 9.

The key ingredient of the local density approximation
is the equation of state of the interacting homogeneous
gas. At zero temperature, and in the zero-range limit de-
tailed in the introduction, the equation of state is expected
to be a universal function of the gas density and of the
scattering length, independent of the microscopic details
of the interaction. Furthermore, the spatial dependence of

the scattering length in presence of the trapping poten-
tial, due to Ub(r) 6= 2U(r), is expected to be negligible in
the zero-range limit, as argued in the appendix B. Under
these assumptions, the local-density approximation for the
trapped gas leads to the universal form

− dE

d(1/a)
=

~
2kF

m
N F

(

1

kF a

)

, (15)

where F is a dimensionless function, expressed in the ap-
pendix C in terms of the dimensionless universal function
f giving the energy per particle ǫhom of the homogeneous
interacting gas:

ǫhom = ǫhom
0 f

(

1

khom
F a

)

. (16)

Here ǫhom
0 and khom

F are the energy per particle and the
Fermi wavevector of the ideal Fermi gas with the same
total density n as the interacting gas:

khom
F = (3π2n)1/3 (17)

ǫhom
0 =

3

10

~
2
(

khom
F

)2

m
. (18)

In the BEC regime 0 < kFa≪ 1 we have [42,43,44]

f

(

1

khom
F a

)

= − 5

3(khom
F a)2

(19)

+
5

18π
khom

F ad

[

1 +
128

15
√

6π3
(khom

F ad)
3/2

]

+ . . .

where the first term comes from the dimer binding energy
~

2/(ma2), the second term is the mean field interaction
energy among the dimers, proportional to the dimer-dimer
scattering length ad, and the last term is the (bosonic)
Lee-Huang-Yang correction. The solution of the 4-fermion
problem gives [45,46]

ad ≃ 0.60a. (20)

The local-density approximation then leads to

F
(

1

kFa

)

=
1

kFa
+

52/5

212/5 · 7
(ad

a

)2/5

(kF a)
7/5 + . . . (21)

where we have omitted the Lee-Huang-Yang correction.
In the BCS limit 0 < −kFa ≪ 1, we have [43,44,47,

48]

f

(

1

khom
F a

)

= 1 +
10

9π
khom

F a

+
4(11 − 2 ln 2)

21π2
(khom

F a)2 + . . . (22)

where the first term is the ideal gas result, the second
term is the Hartree-Fock mean field term, and the last
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term is the (fermionic) Lee-Huang-Yang correction. This
leads to 4

F
(

1

kFa

)

=
512

945π2
(kF a)

2
[

1+

(

256

35π2
− 63 + 189 ln2

1024

)

kFa+ . . .
]

. (23)

Around the unitary limit 1/(kFa) → 0 we use the ex-
pansion

f

(

1

khom
F a

)

= ξ − ζ

khom
F a

+ . . . , (24)

which gives for the trapped gas:

F(0) =
27

52 · 7 · π
ζ

ξ1/4
≃ 0.28 (25)

where we took the estimates

ξ ≃ 0.41 (26)

ζ ≃ 0.95 . (27)

The estimate for ξ is obtained by averaging the predic-
tions of [32] (ξ = 0.42(1)), of [26] (ξ = 0.449(9)), of [33]
(ξ = 0.42(1)) and of [27] (ξ = 0.37(5)). The estimate for
ζ is obtained from the calculation of the short range pair
correlation of [34], see subsection 3.1, and is close to the
value ζ ≃ 1.0 that may be extracted directly from the
values of f in [32] by approximating the derivative by a
two-point formula. 5

2.3 Comparison to Rice experiment

At Rice [5] the quantity Z = Nb/(N/2) was measured for
a lithium gas, by resonantly exciting the closed-channel
molecules with a laser that transfers them to another,
short-lived molecular state; the molecule depletion reflects
into a reduction of the atom number that can be measured.

We now compare the Rice results to our prediction (8).
We first insert (9,10) into (8) which gives

Nb = NkFR∗F
(

1

kFa

)

(

1 − abg

a

)2

(28)

4 For a small positive scattering length 0 < kF a ≪ 1,
Eqs.(22,23) also apply to the atomic gas state; since the in-
teraction potentials considered here have a two-body bound
state for a > 0, this atomic gas state is only metastable [49],
the ground state being the BEC of dimers considered previ-
ously [cf. Eq.(21)].

5 The values (26,27) of ξ and ζ can be inserted into the ex-
pressions [50,51] for the derivatives of the frequencies of the
hydrodynamic collective modes with respect to 1/(kF a) taken
at unitarity. The resulting slope is compatible with the exper-
imental data for the radial mode [12,52], while the agreement
with the data for the axial mode [53] is only marginal. The
data from [12] agree very well for all positive values of a with
the theoretical result [54] obtained from the fixed-node Monte
Carlo equation of state [32], while in [52,53] finite-temperature
effects may play a role [12,54,55].

-1 0 1
1/(k

F
 a)

0

0.5

1

1.5

-d
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/a
) 
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F 
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]

(a)

-3 -2 -1 0 1 2
1/(k

F
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10
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1

-d
E
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(1

/a
) 
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 h

2  k
F 

/m
] (b)

Fig. 1. Derivative −dE/d(1/a) of the energy E of a trapped
two-component Fermi gas, where a is the s-wave scattering
length. Solid line: Theoretical prediction combining the Lee-
Huang-Yang formulas (19,22) in the weakly interacting regimes
with an interpolation of the fixed-node Monte Carlo results of
[32,34] in the strongly interacting regime (see appendix D).
Dashed lines: Analytical predictions in the weakly interacting
regimes, on the BEC side (21) and on the BCS side (23). Cross:
Result (25) at unitarity. Circles (with error bars): Experimen-
tal measurement of the number Nb of closed-channel molecules
in a lithium gas at Rice [5], combined with the present theory
linking dE/d(1/a) to Nb, see (28). (a): Linear scale on the ver-
tical axis. (b): Logarithmic scale. −dE/d(1/a) is expressed in
units of N~

2kF /m. All the theoretical predictions are obtained
in the local-density approximation.

where the function F is defined in (15). The length R∗

depends on the interchannel coupling and is related to
the width of the Feshbach resonance as:

R∗ =
~

2

mabgµb∆B
. (29)

For the B0 ≃ 834G Feshbach resonance in 6Li, we have
µb ≃ 2µB where µB is the Bohr magneton [21], ∆B =
−300G, abg = −1405a0 where a0 = 0.0529177 nm is the
Bohr radius [56]; this gives R∗ = 0.0269 nm. From the
Rice data for Nb/N , using (28), we thus get values of F ,
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i.e. of dE/d(1/a), that we compare in Fig.1 to theoreti-
cal predictions, given in the local-density approximation
either by the expansions (21,23) in the weakly interacting
regime, or by (25) at the unitary limit, or by an interpola-
tion of the Monte Carlo results of [32,34] in the strongly
interacting regime (see appendix D for details) 6 . The
agreement is satisfactory, the experimental points being
scattered around the theoretical prediction. In particular,
a possible shift δB0 of the resonance location due to the
fact that Ub(r) 6= 2U(r), see (9), an effect not explicitly
included in [5] for the calculation of 1/(kFa) as a function
of B, and which would manifest itself in horizontal shifts
of the experimental data with respect to theory, does not
show up in Fig.1. For the considered broad resonance of
lithium, this is not surprising, see appendix B.

Our approach even allows to predict the time evolu-
tion of the particle number, in presence of the depleting
laser, under the assumption that the molecular depletion
rate is so weak that the equilibrium relation (28) holds
at all times. Neglecting the slow off-resonant free-bound
photoassociation process [5], we have

dN

dt
= −2Nb(t)

Ω2

γ
(30)

whereΩ2/γ is the effective decay rate of the closed-channel
molecule, the Rabi frequencyΩ and the spontaneous emis-
sion rate γ being defined in [5].7

Simple expressions can be obtained in limiting cases:
In the BEC limit, the dominant term of the expansion
(21) gives

N(t) = N(0) e−Γ0t; (31)

in the unitary limit, (25) gives

N(t) =
N(0)

(1 + Γ0t/6)6
; (32)

and in the BCS limit the dominant term of (23) gives

N(t) =
N(0)

(1 + Γ0t/2)
2 . (33)

Here, Γ0 = −[dN(0)/dt]/N(0) is the inital atom loss rate,
which can be expressed in terms of the initial atom number
N(0) using Eqs. (28,30). We see that in general N(t) is

6 The error bars in Fig. 1 include the systematic theoretical
uncertainty resulting from the leading order correction to (10)
given in [56], but are largely dominated by the experimental
error bars from [5] because we did not include the three ex-
perimental points from [5] which are deep in the BEC regime
[1/(kF a) > 5]; in this regime, two-body theories which go be-
yond our two-channel model give good agreement with the Rice
measurements [5,21,57].

7 Eq. (30) can be obtained from the following master
equation for the density matrix ρ̂ of the gas: dρ̂/dt =

(Ω2/γ)
R

d3r
h

ψb(r)ρ̂ψ
†
b(r) −

1
2
{ψ†

b(r)ψb(r), ρ̂}
i

+ [H2, ρ̂]/(i~).

N in (30) stands for Nf + 2Nb, where Nf is the number of
fermions; thus N ≃ Nf in the regime considered in this paper.

not an exponential function of time. For the last point on
the BCS side in [5], the (unpublished) data for N(t) are
better fitted by Eq.(33) than by an exponential; however
the value of Γ0 resulting from this new fitting procedure
does not differ significantly from the published value [58].

3 Related observables

In this section, contrarily to subsections 2.2 and 2.3, we
return to the general case and we do not assume that
the temperature is ≪ TF and that the numbers of atoms
in each spin component are equal. For concreteness we
take the lattice model (3), even if the reasonings may be
generalized to a continuous space model and to a two-
channel model.

3.1 Short range pair correlations

As was shown in [39,40] and recently rederived in [59], in
the zero interaction range limit, the derivative of the gas
energy with respect to the inverse scattering length can
be expressed in terms of the short range behavior of the
pair distribution function of opposite spin particles:

−
(

d〈E〉
d(1/a)

)

S

=
4π~

2

m

∫

d3R ˜lim
r→0

r2g↑↓(R+r/2,R−r/2)

(34)
where the pair distribution function is given by

g↑↓(r1, r2) = 〈ψ†
↑(r1)ψ

†
↓(r2)ψ↓(r2)ψ↑(r1)〉. (35)

Since we are dealing here with a finite range interaction
model, we have taken a zero-range limit in (34), introduc-
ing the notation

˜lim
r→0

= lim
r→0

lim
b→0

. (36)

Note that the order of the limits is important. The limit
in (34) is reached for a distance r much smaller than
|a|, the mean distance between particles, and the ther-
mal de Broglie wavelength λ, but still much larger than
the interaction range b.

We thus see that a measurement of the pair distri-
bution function of the atoms gives access, using (8), to
the number of closed-channel molecules. Experimentally,
the pair distribution function was measured via the pho-
toassociation rate in a 1D Bose gas [60,61], or simply by
dropping the gas on a detector with high enough spatio-
temporal resolution [62,63,64]. The possibility of measur-
ing the pair distribution function in the BEC-BCS crossover
was studied in [34,65]. In the unitary limit, by inserting

into Eq.(34) the value of ˜lim r2g↑↓ calculated in [34] with
the fixed-node Monte Carlo technique, we get the value
(27) for the parameter ζ defined in (24).

The relation (34) is the three-dimensional version of
the relation obtained in [66] for a one-dimensional Bose
gas with contact interaction, using the Hellmann-Feynman
theorem. We now show that the Hellmann-Feynman tech-
nique also provides a simple derivation of (34). Taking the
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derivative of the gas eigenergy E with respect to the ef-
fective coupling constant g = 4π~

2a/m, for a fixed lattice
spacing b, the Hellmann-Feynman theorem gives

(

d〈E〉
dg

)

S

=
dg0
dg

〈

∑

r

b3ψ†
↑ψ

†
↓ψ↓ψ↑

〉

(37)

=
dg0
dg

∑

r

b3g↑↓(r, r), (38)

where g0 is a function of g as given in (4), and where we
used the relation 〈dE/dg〉 = (d〈E〉/dg)S [cp. (11)]. In a
gas, with an interaction range much smaller than the mean
distance ∼ 1/kF between particles and than the thermal
de Broglie wavelength λ, the pair distribution function is
dominated by two-body physics if |r1−r2| is much smaller
than 1/kF and λ (and also much smaller than a in the
BEC regime), a property contained in the Yvon [67] and
Waldmann-Snider [68] ansatz of kinetic theory, which also
appeared in the context of quantum gases [34,69,70,71]:

g↑↓(r1, r2) ≃ C

(

r1 + r2

2

)

|φ(r1 − r2)|2 (39)

where φ is the two-body zero-energy free space scattering
state for two atoms, here in the spin singlet state. With
the lattice model we find 8

|φ(0)|2 =
dg

dg0
, (40)

so that Eq.(38) simplifies to

(

d〈E〉
dg

)

S

≃
∑

r

b3C(r). (41)

On the other hand, at interparticle distances much larger
than b, the zero-energy scattering wavefunction φ behaves
as 1 − a/|r1 − r2| so that

˜lim
r→0

r2g↑↓(R + r/2,R − r/2) = a2C(R). (42)

Eq.(41) thus leads to (34).

3.2 Tail of the momentum distribution

As was shown in [40] and recently rederived in [59], in
the zero-range limit, the momentum distribution of the
gas has a large momentum tail scaling as 1/k4, with a

8 An elegant derivation is to enclose two atoms in a ficti-
tious cubic box with periodic boundary conditions of volume
L3, with L≫ |a|, b. To leading order in a/L, the wavefunction
is φbox(r1 − r2) = φ(r1 − r2)/L

3/2 with an energy given by the
“mean-field” shift Ebox = g/L3. The Hellmann-Feynman the-
orem (37) then gives the result (40). An alternative derivation
is to directly calculate φ in Fourier space [see (47)] which gives
φ(r) = 1−g0φ(0)

R

[−π/b,π/b]3
[d3k/(2π)3] exp(ik ·r)/(2ǫk); this,

combined with (4), gives (40).

coefficient common to the two spin states and proportional
to −dE/d(1/a):

˜lim
k→+∞

k4nσ(k) = −4πm

~2

(

d〈E〉
d(1/a)

)

S

(43)

where
˜lim

k→+∞
= lim

k→+∞
lim
b→0

, (44)

σ =↑ or ↓ and the momentum distribution is normalized
as

∫

d3k

(2π)3
nσ(k) = 〈Nσ〉, (45)

where 〈Nσ〉 is the mean number of particle in the spin
state σ. When combined with (8), this relation reveals that
the number of closed-channel molecules may be deduced
from a measurement of the momentum distribution of the
atoms.

The momentum distribution in a two-component Fermi
gas was actually already measured [72,73,74], simply by
switching off the interaction and measuring the cloud den-
sity after a ballistic expansion. Two practical problems
however arise, the effect of the non-zero switch-off time of
the interaction [72,75] and the signal to noise ratio in the
far tails of the distribution; we have therefore not been
able to extract the value of dE/d(1/a) from the published
data for nσ(k). The value of dE/d(1/a) has not been ex-
tracted either from the fixed-node Monte Carlo calcula-
tions of nσ(k) performed in [76].

The relation (43) is a three-dimensional version of the
relation derived for a one-dimensional Bose gas in [77]. We
now present a very simple rederivation of (43).

In a gas with short range interactions, i.e. b ≪ 1/kF

and b ≪ λ (and b ≪ a on the BEC side), the tail of the
momentum distribution is dominated by binary collisions
in the spin singlet channel between a particle with a large
momentum k and a particle with a momentum ≃ −k, so
that at large k

nσ(k) ≃ B|φ̃(k)|2 (46)

where B is momentum-independent and φ̃(k) is the Fourier
transform

∑

r
b3e−ik·rφ(r) of the zero-energy two-body

free space scattering state φ(r). For the contact interac-
tion in the lattice model the two-particle Schrödinger’s
equation takes the form [30]

2ǫkφ̃(k) + g0φ(r = 0) = 0, (47)

where ǫk is the free wave dispersion relation in the lattice
model, so that φ̃(k) drops as 1/ǫk for large k, and the
associated kinetic energy diverges for b → 0. Eq.(46) im-
plies that the kinetic energy of the gas is proportional to
the kinetic energy of the zero-energy two-body scattering
state in the zero-range limit:

Ekin[gas] ≃ B ·Ekin[φ]. (48)

Since the total energies have a finite limit for b → 0, we
can replace the kinetic energies by the opposite of the
interaction energies in the above formula:

Eint[gas] ≃ B ·Eint[φ]. (49)
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The interaction energy of the gas is g0

〈

∑

r
b3ψ†

↑ψ
†
↓ψ↓ψ↑

〉

,

equal to (d〈E〉/dg)S g0(dg/dg0) according to (37). The in-
teraction energy of φ is simply g0|φ(0)|2, equal to g0(dg/dg0)
according to (40). The common factor g0(dg/dg0) simpli-
fies and

(

d〈E〉
dg

)

S

= B. (50)

It remains to relate the coefficient B to ˜limk→+∞k
4nσ(k),

using (46). In the zero-range limit, the scattering state

φ(r) tends to 1− a/r, so that, by Fourier transform, φ̃(k)
tends to (2π)3δ(k) − 4πa/k2. We then get (43).

4 Conclusion

We have calculated the numberNb of closed-channel mole-
cules in the whole BEC-BCS crossover for a two-component
Fermi gas. Our result is in satisfactory agreement with
the experimental results from Rice [5]. The expression
(8) for Nb is proportional to the quantity −dE/d(1/a)
where E is the energy of the gas; this quantity is univer-
sal in the zero interaction range limit. At unitarity we find
Nb/N = kFR∗F(0) where F(0) is a universal constant
given in (25) and the length R∗ is related to the reso-
nance parameters by (29); in the zero range and zero ef-
fective range limit where kF b≪ 1 and kF |re| ≪ 1 we have
kFR∗ ≪ 1 [see Eq.(65)], we thus confirm that Nb ≪ N
i.e. the gas mainly populates the open channel. In the
BCS limit, −dE/d(1/a) and thus Nb are determined by
the Hartree-Fock mean field energy, and do not tend ex-
ponentially to zero with 1/(kF |a|), contrarily to the pre-
diction of usual BCS theory [5]. This is also related to
the fact that the BCS theory does not predict the correct
short-distance pair correlations [78].

The quantity −dE/d(1/a) is related to the short-distance
behavior of the pair correlation function and to the large-k
tail of the momentum distribution, as discovered by Tan
[39,40] and rederived in [59] and in this paper. The quan-
tity −dE/d(1/a) is also proportional to the average ra-
diofrequency shift [79,80]. The general idea that various
short-range two-body quantities such as the number of
closed-channel molecules, the interaction energy of the gas
and the average radiofrequency shift are the product of the
value of the considered observable in the zero-energy two-
body scattering state and a single universal many-body
quantity was given by Leggett [71]. Our work shows that
the Rice experiment [5] is the first direct measurement of
this fundamental quantity in the BEC-BCS crossover.

It would be interesting to study the effect of a fi-
nite temperature. Experimentally, this could be achieved
by measuring the number of closed-channel molecules to-
gether with the density profile of the trapped gas, the
released energy [6,4], or the entropy [14,15]. Theoreti-
cally, Eq.(12) can be used when more Monte Carlo re-
sults at finite temperature will become available. A use-
ful tool in this context is the virial theorem: at unitarity
it directly gives the total energy in terms of the density
profile [11,15,81,82] while for a finite a it also involves
[d〈E〉/d(1/a)]S [83,84].

We thank A. Bulgac, F. Chevy, M. Colomé-Tatché, R. Hulet,
M. Jona-Lasinio, F. Laloë, P. Naidon, S. Nascimbène, G. Par-
tridge, L. Pricoupenko and C. Salomon for very useful discus-
sions and comments, and G. Partridge et al. for providing us
with the data of [5] in numerical form. Our group is a member
of IFRAF.

Note: We became aware of the related work [85] while
completing this paper, and of [86] while revising it.

A Two-body analysis of the two-channel

model in free space

A.1 Scattering amplitude

In this appendix we briefly discuss the two-body scat-
tering properties for our model Hamiltonian H2 in free
space, that is in the absence of trapping potential (Ub(r) ≡
0, U(r) ≡ 0). The scattering problem may be considered
in the center of mass frame so that we take the two-body
scattering state

|ψ〉 = βb†
0
|0〉 +

∫

d3k

(2π)3
A(k)a†

k↑a
†
k↓|0〉, (51)

with the unknown amplitude β in the closed channel and
the unknown momentum dependent amplitude A(k) in
the open channel. The annihilation operators for the bosonic
molecules, bk, and for the fermionic atoms akσ, σ =↑ or ↓,
are the Fourier transforms of the corresponding field op-
erators ψb(r) and ψσ(r), where the Fourier transform of a

function f(r) is f̃(k) =
∫

d3r exp(−ik · r)f(r). Inserting
the state (51) in Schrödinger’s equation (H2 − E)|ψ〉 = 0
and projecting respectively on the molecular subspace and
the atomic subspace leads to

(Eb − E)β + Λγ = 0 (52)
(

~
2k2

m
− E

)

A(k) + χ̃(k)(βΛ + g0γ) = 0 (53)

where we used the fact that the function χ(r) is real and
even, and where we introduced the amplitude

γ =

∫

d3k

(2π)3
χ̃(k)A(k). (54)

We now specialize to a state corresponding to the scatter-
ing of a spin ↑ atom with incoming wavevector k0 onto
a spin ↓ atom with incoming wavevector −k0, so that
E = ~

2k2
0/m is the energy of the incoming state. Elim-

inating β in terms of γ with (52) and using (53) leads
to

A(k) = (2π)3δ(k− k0) +
γχ̃(k)[g0 + Λ2/(E − Eb)]

E + i0+ − ~2k2/m
(55)

where we have singled out the incoming state, and the
scattered component is guaranteed to correspond to a pure
outgoing wave in real space by the introduction of +i0+ in
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the denominator. Injecting (55) in (54) gives a closed lin-
ear equation for γ. From the known large r expression for
the kinetic energy Green’s function we extract the scat-
tering amplitude

fk0
=

−mχ̃(k0)
2/(4π~

2)

[g0 + Λ2

~2k2
0

m
−Eb

]−1 −
∫

d3k
(2π)3

χ̃2(k)
~2k2

0
m

+i0+− ~2k2

m

. (56)

Since we are considering a s-wave Feshbach resonance, the
function χ(r) is rotationally invariant, a property that we
have used in (56).

We now perform explicit calculations of various quan-
tities characterizing the low energy scattering, such as the
scattering length and the effective range. To this end, it
is convenient as in [38] to perform the specific choice

χ̃(k) = exp(−k2b2/2) (57)

and to extend (56) to negative energies, setting k0 =
iq, q > 0 and E = −~

2q2/m. One then obtains an explicit
expression

− 1

fiq
= e−q2b2

[

4π~
2/m

g0 − Λ2

Eb+~2q2/m

+
1

b
√
π

]

+ q erf (qb) − q

(58)
where the last term −q is imposed by the optical theorem
and erf is the error function.

The inverse of the scattering length is obtained by tak-
ing q → 0 in (58):

1

a
=

4π~
2/m

g0 − Λ2/Eb
+

1

b
√
π
. (59)

The large Eb limit of this expression is the inverse of the
background scattering length:

1

abg
=

4π~
2/m

g0
+

1

b
√
π
. (60)

The location of the Feshbach resonance corresponds to
an energy E0

b of the closed-channel molecule such that
1/a = 0, so that

E0
b =

Λ2

g0 + 4π3/2~2b/m
. (61)

Supposing that the energyEb of the closed-channel molecule
varies linearly with the magnetic field B,

Eb(B) = E0
b + µb(B −B0), (62)

and introducing the (possibly negative) resonance width
∆B such that

µb∆B =
Λ2

g0
− E0

b , (63)

we get from (59) exactly the B-field dependence (10) for
the scattering length a in free space.

We now consider the effective range re defined by the
low-q expansion −1/fiq = a−1 − q + 1

2q
2re + O(q4). Its

general expression for our model is

re =
−8π~

4Λ2/m2

(g0Eb − Λ2)2
+

4b√
π
− 2b2

a
. (64)

Of particular interest is the value of the effective range
right on resonance,

rrese = −2R∗ +
4b√
π
, (65)

where the length R∗ is always non-negative,

R∗ =

(

Λ

2πbE0
b

)2

. (66)

This definition of R∗ agrees with Eq. (29).
A very convenient rewriting of the scattering ampli-

tude fiq is obtained by taking as independent parame-
ters, in addition to the van der Waals length b, the two
lengths abg, R∗ rather than the bare parameters g0, Λ of
the Hamiltonian. The quantity Eb − Λ2/g0 appearing in
(58) is conveniently rewritten using the quantity

Q2 ≡ m

~2g0

(

g0Eb − Λ2
)

(67)

=
−1

abgR∗

1

1 − abg/a
(68)

which can be positive or negative. The ratio g0/Λ is also
easily eliminated with the identity

g2
0

4πΛ2
= R∗a

2
bg. (69)

Our final expression for the scattering amplitude is thus

− 1

fiq
=
e−q2b2

a

[

1 − (1 − a/abg)
q2

q2 +Q2

]

+ q erf (qb)− q

(70)
i.e.

− 1

fk
=
ek2b2

a

[

1 − (1 − a/abg)
k2

k2 −Q2

]

−ik erf (−ikb)+ik.
(71)

We deduce the effective range in terms of a, abg, R∗ and b:

re = −2R∗(1 − abg/a)
2 +

4b√
π
− 2b2

a
. (72)

A.2 Conditions for reaching the zero-range limit

In a degenerate gas, we expect that the zero-range limit is
reached and the equation of state E(1/a) becomes model
independent provided the conditions

kb ≪ 1 (73)

− 1

fk
≃ 1

a
+ ik (74)
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hold for k ∼ kF and for k ∼ 1/a on the BEC side [38].
We now assume that (73) holds, and we derive validity

conditions for (74) in the case of our two-channel model.
Following the usual procedure, we use the second order
expansion

− 1

fk
=

1

a
+ ik − 1

2
rek

2 + . . . , (75)

which reduces to (74) if the effective range is small enough
to have

1

2
|re|k2 ≪

∣

∣

∣

∣

1

a
+ ik

∣

∣

∣

∣

. (76)

Taking into account the condition (73) as well as the ex-
pression (72) of re for the two-channel model, and using
|i+ 1/(ka)| ≥ 1 and |1 + ika| ≥ 1, we find that the condi-
tion (76) becomes equivalent to

k2R∗

(

1 − abg

a

)2
∣

∣

∣

∣

1

a
+ ik

∣

∣

∣

∣

−1

≪ 1. (77)

A second condition is obtained by imposing that the higher
order terms . . . in (75) are indeed negligible compared to
k2|re|/2. For this to hold we need not only (73), but also
k2 ≪ |Q2| i.e.

k2|abg|R∗

∣

∣

∣
1 − abg

a

∣

∣

∣
≪ 1. (78)

We conclude that to reach the universal zero-range
limit, it is sufficient to fulfill the three conditions (73,77,78).
All three conditions are satisfied for the experimental data
on 6Li from [5] reproduced in Fig.1, where 1/kF > 250 nm
and |a| > 200 nm: using the values |abg| = 74 nm and
R∗ = 0.027 nm (see section 2.3) and taking the estimate
b ≃ 2.1 nm obtained by imposing that the effective range
on resonance (65) should be equal to the value 4.7 nm
obtained in the multi-channel calculation of [87], we find
that the left hand sides of Eqs.(73,77,78) are respectively
smaller than 10−2, 3 · 10−4 and 7 · 10−5.

To be complete, let us point out that the conditions
(77,78) are not stricly necessary since it is possible that
the . . . in (75) are not negligible compared to k2|re|/2
and (74) nevertheless holds. We have chosen these condi-
tions because they simplify the discussion, in particular
they automatically ensure that the analytic continuation
fiq has a pole at q ≃ 1/a so that the dimer energy is
≃ −~

2/(ma2). For this last property, in the regime b≪ a,
one directly gets from (70) the truly necessary condition

∣

∣(1 − a/abg)
−1 + (1 − abg/a)

−2a/R∗

∣

∣ ≫ 1. (79)

Close to the Feshbach resonance, a ≫ |abg|, this reduces
to the simpler condition

a≫ R∗. (80)

B Effect of a difference between the trapping

potentials seen by a closed-channel molecule

and by an open-channel pair of atoms

In this appendix, we consider the physical consequences of
the fact that, in general, the trapping potential Ub(r) seen

by a closed-channel molecule is not simply the trapping
potential 2U(r) seen by two separated atoms in the open
channel:

Ub(r) 6= 2U(r), (81)

and we derive conditions for the gas to behave approxi-
mately as if we had Ub(r) = 2U(r). Note that a signifi-
cant deviation in (81) is not a priori excluded for the laser
traps used e.g. in [5,56] for lithium, with a laser wave-
length λL ≃ 1µm: Contrarily to the atomic lightshift, the
lightshift of the closed-channel molecule may be sensitive
to the laser detuning from transitions to bound states of
the 11Σ+

u (A) Born-Oppenheimer interaction potential be-
tween a ground-state atom and an excited atom, consid-
ering the fact that the minimum of this excited-ground
interaction potential is separated from the dissociation
limit of the ground-ground interaction potential by only
≃ 0.6µm−1 < 1/λL in spectroscopic units [88].

B.1 Position dependent scattering length and effective
magnetic field

At the two-body level, (81) leads to an effective posi-
tion dependent scattering length for two opposite spin
atoms. To define such a local scattering length around
point r0, we consider the “tangential” free space problem
where the trapping potentials are replaced by the con-
stant values Ub(r0) and U(r0) and we call a(r0) the re-
sulting scattering length. We simply have to revisit the
calculations of appendix A: In (52) one has to replace
Eb by Eb + Ub(r0) to include the trapping energy shift
of the closed-channel molecule; similarly in (53) one has

to replace ~
2k2

m by ~
2k2

m + 2U(r0) to include the trapping
energy shift of the two atoms; finally, for atoms with in-
coming wavevectors ±k0, the scattering state eigenenergy

is now E =
~
2k2

0

m +2U(r0). The net effect on the scattering
amplitude fk0

in (56) is to apply the substitution

Eb −→ Eb + Ub(r0) − 2U(r0), (82)

so that a(r0) is simply obtained by applying (82) to (59).
A powerful interpretation of this substitution proce-

dure may be given for a magnetic field independent µb:
We can rewrite the term Eb(B) + Ub(r) appearing in (1)
as Eb[Beff(r)] + 2U(r) provided we set

Beff(r) = B +
Ub(r) − 2U(r)

µb
. (83)

Thus we can replace Ub(r) by 2U(r) in (1) provided we
also replace the homogeneous magnetic field B in (1) by
the inhomogeneous effective magnetic field Beff(r). One
then immediately obtains the position dependence of the
scattering length,

a(r) = afs[Beff(r)], (84)

the function afs(B) being given in (10).
This effective magnetic field picture is also very effi-

cient at the many-body level. In the grand canonical point
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of view, one adds the term −µN̂ to the Hamiltonian H2,
where µ is the chemical potential, and the particle number
operator N̂ is defined as N̂ = N̂f + 2N̂b, N̂f giving the

number of fermions and N̂b the number of bosons, since
this is the quantity which commutes with H2. In the local
density approximation, in the general case Ub 6= 2U , we
thus see that the gas behaves locally like a free space, ho-
mogeneous gas of chemical potential µ−U(r), in presence
of the locally homogeneous magnetic field Beff(r).

B.2 Shift of the resonance location

We now consider the case of an optical trap such as the
one at Rice [5]: U(r) and Ub(r) are the lightshift potentials
experienced by an atom and by a closed-channel molecule.
Being both proportional to the laser intensity, they are
mutually proportional:

Ub(r) = 2(1 + η)U(r) (85)

where the dimensionless parameter η is a convenient mea-
sure of the relative deviation between Ub and 2U . At large
r the laser intensity vanishes, so do Ub and U .

In practice, the gas is trapped around the intensity
maximum of the laser field, located in r = 0, and the ex-
tension of the cloud along the axial (resp. radial) direction
is small compared to the Rayleigh length (resp. the waist)
of the laser beam; thus, to leading order, U(r) ≃ U(0), we
can temporarily forget about the spatial variation of Beff

and take Beff ≃ B − δB0, where

δB0 =
−Ub(0) + 2U(0)

µb
= −2ηU(0)

µb
. (86)

Since the free space scattering length afs(B) only depends
on the difference B − B0, replacing B by Beff is equiva-
lent to shifting the position B0 of the Feshbach resonance
by the quantity δB0. Introducing the length R∗ defined
in (29), the ratio of this shift to the width ∆B of the
Feshbach resonance may be written as

δB0

∆B
= −2mU(0)

~2
abgR∗η. (87)

In the Rice experiment, the trap depth −U(0) is at most
kB × 2.71 µK [89], so that we have

|δB0|
|∆B| <

|η|
7500

(88)

where we have used the values of abg and R∗ given below
(29) and the mass of lithium. Except if η takes truly large
values for the laser wavelength λL = 1064 nm used in [5],
we expect only a small shift of the resonance location due
to the laser trap, relative to the resonance width.

In [5] the value of the scattering length as a function of
B was calculated essentially from the free space formula
afs(B) ignoring the shift δB0 due to the trap, and taking
for the resonance location B0 the value measured in [56] in
a laser trap with different laser wavelength λL = 1030 nm

and intensity. On the contrary, our definition of a as a
function of B includes the shift δB0, a = afs(B− δB0), as
already defined in (9). This may introduce a systematic
discrepancy between our theory curves and the experi-
mental data in Fig.1, in the form of shifts of the abscissas
of the experimental points. We thus define the horizontal
shift

δ

(

1

kF a

)

≡ 1

kFafs(B − δB0)
− 1

kFafs(B)
(89)

=
δB0

∆B

1

kFabg

(1 − abg/a)
2

1 − (1 − abg/a)δB0/∆B
.(90)

To leading order in η (that is for |δB0/∆B| ≪ 1), and
using the fact that the data from [5] reproduced in Fig. 1
is sufficiently close to resonance to have |1− abg/a| < 1.4,
this simplifies to:

δ

(

1

kFa

)

≃ δB0

∆B

1

kFabg
(1 − abg/a)

2. (91)

Using the parameters of the Rice experiment [89] and
Eq.(87) this gives

∣

∣

∣

∣

δ

(

1

kF a

)∣

∣

∣

∣

<
|η|

1000
. (92)

Even without knowing η, we can thus resonably expect
that this shift is negligible on the scale of Fig. 1, i.e. that

∣

∣

∣

∣

δ

(

1

kF a

)
∣

∣

∣

∣

≪ 1. (93)

This is also consistent with the fact that no systematic
horizontal shift is apparent in Fig.1 between the experi-
mental data and the theory curves.

B.3 Effect of the position dependence of Beff(r)

We now discuss the effect on the many-body properties
of the gas of the inhomogeneity of Beff(r), that is of a
spatial dependence of the scattering length a(r), see (84),
now taking into account the r dependence of U(r). We
rewrite (83) as

Beff(r) = B+
2ηU(r)

µb
= B−δB0+

2η[U(r) − U(0)]

µb
. (94)

When inserted in (84) this leads to the following position
dependence for the scattering length:

1

a(r) − abg
=

1

a− abg
− η

2mR∗

~2
[U(r) − U(0)], (95)

where we recall that a is the scattering length in the trap
center. Right on resonance, |a| = +∞, R∗ is one of the
contributions to the interaction effective range, see (65),
so that the zero-range limit implies kF |R∗| ≪ 1. Since the
typical value of U(r) − U(0) over the cloud size is of the
order of ~

2k2
F /2m, we see that the small parameter kFR∗
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appears in (95) so that we may expect that the position
dependence of a(r) is negligible in the zero-range limit (for
a fixed value of η).

Let us investigate this expectation more quantitatively
and beyond the unitary limit, however still in a limiting
case with simplifying assumptions. First, we assume that
we are sufficiently close to resonance to have |a(r)| ≫ |abg|
over the atomic cloud size. This implies that the excur-
sion of Beff(r) over the cloud size is small as compared to
|∆B|; since the excursion of U(r) over the laser trap size
is at most |U(0)|, we note that this condition is automat-
ically satisfied for |δB0| ≪ |∆B|. Second, we shall assume
that the gas may be treated in the zero temperature lo-
cal density approximation. Third, we use the quadratic
approximation (13) for U(r), further supposing for sim-
plicity that the harmonic trap is isotropic, a case to which
one can always reduce within the local density approxi-
mation by a rescaling of the coordinates, see appendix C.
Equation (95) then reduces to

1

a(r)
≃ 1

a
− η

mR∗

~2
mω2r2, (96)

and the gas density profile n(r) is given by

µ− U(0) =
1

2
mω2r2 + µhom[n(r),

1

a(r)
] (97)

where µhom[n, 1/a] is the chemical potential of a free space
homogeneous gas of density n and scattering length a.

Let us derive simple conditions to have a weak effect of
the scattering length inhomogeneity on the density profile.
Some of these conditions will be expressed in terms of kF

defined by (14).
In the BCS regime, a < 0 and kF |a| < 1, we have

µ − U(0) ≃ kBTF = ~
2k2

F /2m. Over the Thomas-Fermi
radius R of the cloud, such that 1

2mω
2R2 ≃ kBTF , we see

that the relative change of 1/a(r) is negligible if

|1 − a/a(R)| ≃ (kF |a|)(|η|kFR∗) ≪ 1. (98)

This is satisfied in the zero-range limit, for fixed η, accord-
ing to the condition (77) written for k = kF .

In the unitary limit kF |a| ≫ 1, the previous reasoning
fails, because requiring that the relative change of a(r) is
small is too stringent. Taking for simplicity the limiting
case |a| = +∞, it is sufficient to check that the gas remains
locally unitary except in a small region near the edge of
the cloud. First, to zeroth order in η, we calculate the
local Fermi wavevector khom

F (r) using the unitary equation
of state µhom[n, 1/a = 0] = ξ~2(khom

F )2/2m, where khom
F

is defined in (17), and using the value of the chemical
potential µ− U(0) =

√
ξkBTF . We obtain

khom
F (r) =

kF

ξ1/4

(

1 − r2

R2

)1/2

(99)

where R is the unperturbed Thomas-Fermi radius such
that mω2R2/2 =

√
ξkBTF . Then, we include the η posi-

tion dependent term in 1/a(r) to calculate at which dis-
tance l from the edge of the cloud the gas starts leaving

the unitary regime, that is

khom
F (R− l)|a(R− l)| = 1. (100)

Assuming a priori l ≪ R we obtain from (99)

l

R
≃ ξ3/2

2
(ηkFR∗)

2. (101)

We conclude a posteriori that l/R≪ 1 and that the spatial
dependence of a(r) is negligible when

|η|kFR∗ ≪ 1. (102)

As in the BCS case, this is equivalent for a fixed |η| to the
zero range condition (77) written here with k = kF and
|a| = +∞.

Finally we turn to the BEC regime a > 0 and kF |a| <
1. We then use the approximate equation of state

µhom[n(r), 1/a(r)] ≃ − ~
2

2ma2(r)
+
π~

2

2m
αa(r)n(r) (103)

where α ≃ 0.60 is the proportionality factor in (20) be-
tween the dimer-dimer scattering length ad and a. In par-
ticular, this requires a ≫ R∗, see (80). Replacing 1/a(r)
by (96) in the above expression, we find that the leading
term in 1/a2(r) gives rise to an external potential that
sums up with the trapping potential to give

Ueff(r) ≡ U(r) − ~
2

2ma2(r)
(104)

= Ueff(0) +
1

2
ω2

effr
2 − m(ηR∗)

2

2~2
(mω2r2)2.(105)

We see that the atomic oscillation frequency is renormal-
ized into

ωeff =

(

1 +
2ηR∗

a

)1/2

ω. (106)

To have a small effect of the scattering length inhomo-
geneity on the trapped gas, we first require ωeff ≃ ω so
that

|η|R∗/a≪ 1, (107)

a condition with no counterpart in the BCS regime and
more stringent than (102) since kFa < 1 here. Again, we
find that we recover, for a fixed |η|, the zero range condi-
tion (77) written here for k = 1/a. Second we require that
the r4 term in Ueff(r) remains small as compared to the
r2 one over the Thomas-Fermi radius R of the condensate
of dimers, calculated here to zeroth order in η; we reach
the second condition

m(ηR∗)
2

~2
mω2R2 ≃ (ηkFR∗)

2

(

5

64
kFad

)2/5

≪ 1. (108)

Since kF a < 1 here, this second condition is automati-
cally ensured by the first condition (107). Third, we re-
quire that the relative variation of 1/a(r) is small over the
Thomas-Fermi radius R of the condensate, to ensure that
the spatially inhomogeneity of a(r) in the mean field term



12 F. Werner et al.: Number of closed-channel molecules in the BEC-BCS crossover

[π~
2/(2m)]αa(r)n(r) has a small impact on the density

profile:

|1−a/a(R)| ≃ (kF a)(|η|kFR∗)

(

5

64
kF ad

)2/5

≪ 1, (109)

which is also implied by (107).
To summarize, discussing perturbatively the effect of

the position dependence of Beff(r) on the gas density pro-
file in the local density approximation, we find close to
the Feshbach resonance (|a| ≫ |abg|, and also a ≫ R∗ in
the BEC regime) that the effect is small under the con-
dition (98) in the BCS regime, under the condition (102)
in the unitary regime, and under the condition (107) in
the BEC regime: In all three cases, this is the zero range
condition (77), written respectively for k = kF , k = kF

and k = 1/a, and multiplied by the parameter |η|. If |η| is
not too large, neglecting the r dependence of the scatter-
ing length is thus automatically justified in the zero-range
limit.

Interestingly, in the unitary limit, it is possible to re-
late ηkFR∗ to the quantity δ(1/kFa) introduced in the
previous subsection:

|η|kFR∗ξ
1/2 ≃

∣

∣

∣

∣

δ

(

1

kFa

)

µ− U(0)

U(0)

∣

∣

∣

∣

. (110)

Experimentally, the gas is confined at the bottom of the
laser trap so that [µ − U(0)]/|U(0)| ≪ 1 (its value near
unitarity at Rice is 0.15 [89]). Together with the assump-
tion (93) this implies that the right-hand-side of (110) is
≪ 1, and that the position dependence of a(r) has a neg-
ligible effect on the gas density.

A quantitative extension of the present qualitative dis-
cussion is to evaluate the density change δn(r) of the gas
to first order in η. To this end, one simply expands (97)
to first order in η around the solution n0(r) with η = 0,
writing to first order n(r) = n0(r)+δn(r) and µ = µ0+δµ:

δn(r) =
δµ− δ

(

1
a

)

(r)∂1/aµ
hom[n0(r), 1/a]

∂nµhom[n0(r), 1/a]
(111)

where we have introduced the variation of 1/a(r) around
η = 0 to first order in η, not supposing |a(r)| ≫ |abg| in
(95):

δ

(

1

a

)

(r) = −
(

1 − abg

a

)2

η
mR∗

~2
mω2r2. (112)

δµ is then determined by the condition of a fixed number
of particles

∫

r<R0
d3r δn(r) = 0, where R0 is the Thomas-

Fermi radius of the gas for η = 0. In this way, taking
the variation of (130) to first order in η around η = 0,
one can calculate the effect of a non-uniformity of a(r) on
dE/d(1/a) to first order in η. We give here the result for
the unitary gas:

δ [dE/d(1/a)]

dE/d(1/a)|η=0
= ηkFR∗

[(

64

25π
− 63π

256

)

ξ−1/4ζ

+
315π

2048
ξ3/4ζ−1f (2)(0) +

2

3
ξ1/2kF abg

]

, (113)

where we recall that ξ = f(0), ζ = −f ′(0) , see (24), and
f (2)(0) is the second order derivative of f(x) with respect
to x in x = 0. Note that, in this first order variation with
respect to η, the trapping potential U(r) is kept fixed so
that kF is also fixed.

The calculation (113) shows that, at unitarity, a mea-
surement of the variation of the number of closed-channel
molecules Nb as a function of Ub(r)/U(r) may give access
to f (2)(0). It also shows that, in the unitary limit, the con-
dition to neglect abg with respect to a(r) as done in the
qualitative reasoning around (102), is kF |abg| ≪ 1.

B.4 Metastability issues for a position dependent
scattering length

We now discuss whether it is energetically possible for a
pair of atoms to form a dimer which could escape from the
trap by tunneling. The energy variation in such a process
is

∆E = − ~
2

ma2(∞)
− 2µ (114)

where µ is the chemical potential of the trapped gas and
a(∞) is the effective scattering length at infinity, which we
assume to be positive. We discuss under which conditions
this process is energetically forbidden, i.e. ∆E > 0.

We assume that the gas has the usual Thomas-Fermi
density profile and is weakly affected by the position de-
pendence of Beff(r), see subection B.3. We distinguish be-
tween two regimes for the scattering length a in the trap
center: the negative-a regime where 1/a ≤ 0, and the BEC
regime where 0 < kF a < 1. Under the usual assumption
that the gas is confined in a small region around the bot-
tom of the laser trap we have µ ≃ U(0) in the negative-a
regime and µ ≃ U(0) − ~

2/(2ma2) in the BEC regime.
We also make the simplifying assumption a(∞) ≫ |abg|
so that (95) reduces to

1

a(∞)
≃ 1

a
+ 2η

m

~2
R∗U(0). (115)

In the BEC regime one easily deduces

∆E

2|U(0)| ≃ 1 + A− B (116)

where

A ≡ 2η
R∗

a
(117)

B ≡ 2η2mR
2
∗

~2
|U(0)|; (118)

since we already assumed (107) we automatically have
|A| ≪ 1. In the negative-a regime, Eq.(115) immediately
gives an upper bound on 1/a(∞), from which we get

∆E

2|U(0)| & 1 − B. (119)
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In both regimes we conclude that under the condition

|B| ≪ 1 (120)

we have ∆E & 2|U(0)| so that the process is energetically
forbidden.

Finally we note that under the assumption |a| ≫ |abg|
we have from (90,87)

δ

(

1

kF a

)

≃ ηkFR∗

|U(0)|
kBTF

(121)

so that

B ≃
∣

∣

∣

∣

δ

(

1

kFa

)
∣

∣

∣

∣

2
kBTF

|U(0)| . (122)

In a typical experiment such as the one at Rice we have
kBTF < |U(0)|; thus the condition |B| ≪ 1 is satisfied as
soon as |δ(1/kFa)| ≪ 1, which is likely to hold at Rice,
see (92).

C Calculation of dE/d(1/a) in the local

density approximation

Restricting to a spin balanced gas, we first consider the
general case of the two-channel model (1), in which Ub(r) 6=
2U(r). As explained in the appendix B, where an effective
position dependent magnetic field Beff(r) is introduced,
this leads to a position dependent scattering length a(r).
As a consequence, in the local density approximation, here
at zero temperature, the gas density n(r) is given by

µ = U(r) + µhom[n(r), 1/a(r)] (123)

where µhom[n, 1/a] is the chemical potential of the free
space homogeneous gas of density n and scattering length
a. The mean energy and particle numbers in the gas are
given in the same approximation by

E =

∫

d3r {U(r) + ǫhom[n(r), 1/a(r)]}n(r) (124)

N =

∫

d3r n(r) (125)

where ǫhom[n, 1/a] is the mean energy per particle of the
free space gas. We wish to calculate the derivative of E
with respect to 1/a, where a is the scattering length in
the trap center r = 0, with the constraint that N should
be fixed.

Let us perform an infinitesimal variation δ
(

1
a

)

of 1/a.
This leads to a variation δµ of the chemical potential and
δn(r) of the density, that may be calculated from (123) but
this is not required here. This also leads to a variation of
1/a(r), according to (95):

δ

(

1

a(r)

)

=

(

1 − abg/a(r)

1 − abg/a

)2

δ

(

1

a

)

. (126)

The variation of the gas energy is then

δE =

∫

d3r δn(r)

[

U(r) + ǫhom[n(r), 1/a(r)]

+n(r)
∂ǫhom

∂n
[n(r), 1/a(r)]

]

+ δ

(

1

a(r)

)

n(r)
∂ǫhom

∂(1/a)
[n(r), 1/a(r)]. (127)

Writing ǫhom[n, 1/a] = Ehom[N,V, 1/a]/N , where V is the
volume and N the particle number of the homogeneous
gas, we find the relation

n
∂ǫhom

∂n
[n, 1/a] = µhom[n, 1/a]− ǫhom[n, 1/a]. (128)

Using this expression and (123) one finds that a simpli-
fication occurs in (127). Furthermore, the fact that the
particle number is fixed imposes

∫

d3r δn(r) = 0 (129)

so that (127) leads to

(

dE

d(1/a)

)

N

=

∫

d3r n(r)

(

1 − abg/a(r)

1 − abg/a

)2

× ∂ǫhom

∂(1/a)
[n(r), 1/a(r)]. (130)

We note that an alternative derivation of this result is
possible: One can introduce the density of closed-channel
molecules nhom

b [n, 1/a] for a free space gas of density n
and scattering length a, a quantity that can be related to
the derivative of ǫhom[n, 1/a] with respect to 1/a simply
by applying the general formula (8) to a free space system.
Then setting for the trapped system in the local density
approximation Nb =

∫

d3r nhom
b [n(r), 1/a(r)] and using

(8) for the trapped system leads to (130).
In practice, in the present paper, we perform explicit

calculations in the limiting cases presented in §2.2: One
takes the zero-range limit, which also allows to neglect
the spatial variation of a(r) under conditions discussed
in the appendix B. Then ǫhom is given by the relation
(16) involving some universal function f(x). For the free
space chemical potential we then introduce the convenient
parametrization

µhom[n, 1/a] =
~

2

2ma2
u

(

1

khom
F a

)

(131)

where khom
F = (3π2n)1/3 is the ideal gas Fermi wavector,

and the function u is

u(x) =
f(x) − 1

5xf
′(x)

x2
. (132)

One also restricts to a harmonic trap for U(r), see (13).
The surface n(r) = 0 is then an ellipsoid with Thomas-
Fermi radii Rα along the directions α.
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For a < 0 we set

µ =
~

2q2

2m
(133)

with q > 0. Then ωαRα = ~q/m, and the density depends
only onX ≥ 0 such that X2 =

∑

α r
2
α/R

2
α. Equation (123)

then reduces to the implicit equation

q2a2(1 −X2) = u

[

1

khom
F (X)a

]

(134)

that one can solve numerically, using the interpolation for
f(x) given in appendix D.

For a > 0, µhom[n, 1/a] tends to −~
2/(2ma2) for n→ 0

so that we set

µ =
~

2q2

2m
− ~

2

2ma2
(135)

with q > 0. Then again ωαRα = ~q/m, and (123) reduces
to

q2a2(1 −X2) = 1 + u

[

1

khom
F (X)a

]

(136)

to be solved numerically in general.
One can then calculate dE/d(1/a) and kF defined in

(14) from the expressions valid on both sides of the reso-
nance:

dE

d(1/a)
=

3N~
2

10m

∫ 1

0 dX X2khom
F (X)4f ′

[

1
khom

F
(X)a

]

∫ 1

0 dX X2khom
F (X)3

(137)

kF =

√
2q

π1/3

[

4π

∫ 1

0

dX X2khom
F (X)3

]1/6

(138)

The analytical calculations performed in the weakly inter-
acting regimes are also obtained from the above formulas.

D Interpolation formula for the homogeneous

gas energy

We explain how an interpolation formula was constructed
for the function f defined in (16), which was then used to
produce the solid line in Fig.1a and Fig.1b.

On the BEC side of the resonance, we applied a cu-
bic spline interpolation to the points in Table I of [32]
with values of x = 1/(khom

F a) equal to 0, 1, 2, 4 and 6,
using the last column of Table I (the one said to give
E/N − ǫb/2) and adding to the corresponding data the
quantity −~

2/(2ma2). We added a home made point at
x = 8 where the value of f(x) and its first order deriva-
tive f ′(x) are obtained from the bosonic Lee-Huang-Yang
expansion (19).

On the BCS side of the resonance we used the empirical
interpolation formula of [90],

fS(x) = α1 − α2 arctan[α3x(β1 − x)/(β2 − x)]. (139)

Constraints on α1, α2, α3 and β1, β2 are obtained from
the values f(0), f ′(0) and from the large |x| expansion

f(x) = 1 + c1/x+ c2/x
2 +O(1/x3), where the coefficients

c1 and c2 are given in (22). This differs from [90] where the
coefficient c2 was not used and β2 was deduced from a fit to
the Monte Carlo data of [32] on the BCS side. Another dif-
ference with [90] is that we took the value f ′(0) = −0.95,
that we extracted from [34] using the relation (34). Also,
we set the value of f(0) to 0.41, which is within the error
bars of [32], in order to reduce the spurious discontinuity
of the second order derivative of f(x) in x = 0 between the
interpolation formula for x < 0 and the spline for x > 0.
All this leads to α1 ≃ 0.41, α2 ≃ 0.3756, α3 ≃ 1.062, β1 ≃
0.9043, β2 ≃ 0.3797.

A test of this interpolation formulation is to compare
its prediction for f ′(−1) with the value ≃ −0.13 that one
can extract from [34] using (34); one gets the satisfactory
result f ′

S(−1) ≃ −0.14.
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