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Abstract. Using a two-channel model, we show that the number of closed channel molecules in a two-
component Fermi gas close to a Feshbach resonance is directly related to the derivative of the energy of
the gas with respect to the inverse scattering length. We extract this quantity from the fixed node Monte-
Carlo equation of state and we compare to the number of closed channel molecules measured in the Rice
experiment with lithium [Partridge et al., Phys. Rev. Lett. 95, 020404 (2005)].

PACS. 03.75.Ss Degenerate Fermi gases - 67.90.+z Other topics in quantum fluids and solids

1 Introduction

It is now experimentally possible to prepare two compo-
nent atomic Fermi gases at low temperature with a fully
controlable interaction strength, in a regime where the in-
teraction range is negligible and the atomic interactions
are characterized by a single parameter, the s-wave scat-
tering length a between two opposite “spin” atoms. The
value of a can be adjusted at will thanks to a magneti-
cally induced Feshbach resonance. The weakly interacting
limits kFa → 0+ and kFa → 0−, where kF is the Fermi
wavevector of the gas, correspond respectively to the BEC
limit (a Bose-Einstein condensate of dimers, observed in
[1,2,3,4]) and the BCS limit (a “condensate” of Cooper
pairs approximately described by the BCS theory). Fur-
thermore, the experiments can access the so-called crossover
regime between BEC and BCS, where the gas is strongly
interacting (kF |a| & 1), which includes the celebrated uni-
tary limit kF |a| = ∞, where the gas acquires fully univer-
sal properties [5,6,7,8,9,10,11,12,13,14].

In this context, early theoretical studies [15,16] put
forward a many-body Hamiltonian which accurately mod-
els the microscopic two-body physics of the Feshbach reso-
nance. The interaction potential is described by two chan-
nels, an open channel and a closed channel. The atoms ex-
ist in the form of fermionic particles in the open channel
and in the form of bosonic short range molecules in the
closed channel. Two atoms may be converted into a short
range closed-channel molecule and vice versa due to the
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interchannel coupling. The corresponding Hamiltonian is

H2 =

∫
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where the atomic fields ψσ(r) obey the usual fermionic
anticommutation relations and the field ψb(r) describing
the closed channel molecules obeys the usual bosonic com-
mutation relations. U(r) and Ub(r) are the trapping po-
tentials experienced by the atoms and the closed chan-
nel molecules respectively. Λ gives the coupling between
the closed and open channels, with a short range cut-off
function χ(r), of range b. A typical value for b is in the

nanometer range 1. The coupling constant g
(bg)
0 represents

the background atomic interaction in the open channel,
which is conveniently modeled by a separable potential
with the same cut-off function χ. The energy Eb is the
energy of a closed channel molecule, in the absence of the
coupling Λ, counted with respect to the dissociation limit
of the open channel. This energy is adjusted with a mag-
netic field B, using the fact that the different magnetic
moments in the open and closed channels lead to a dif-
ferential Zeeman shift. The resulting effective magnetic

1 b can be estimated by the van der Waals length, that is the
length that one forms with ~, m and the C6 coefficient of the
van der Waals interaction [17].
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moment is

µb ≡
dEb

dB
. (2)

On the contrary, recent Monte-Carlo simulations of the
many-body problem in the BEC-BCS crossover simply use
single channel model Hamiltonians. In unbiased Quantum
Monte-Carlo simulations a lattice model is used [18,19,20,
21,22]

H1 =
∑

r

b3







∑

σ=↑,↓

ψ†
σ(r)

[

−
~

2

2m
∆+ U(r)

]

ψσ(r)

+g0ψ
†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r)

}

(3)

where ∆ is a discrete representation of the Laplacian, and
g0 is a coupling constant adjusted to have the desired scat-
tering length: As was shown e.g. in [20,21,23,24],
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(2π)3
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where g = 4π~
2a/m is the effective coupling constant and

ǫk the energy of a single particle with wavevector k. In
fixed node Monte-Carlo calculations, one rather uses an
interaction potential in continuous real space, e.g. a square
well potential [25,26,27,28,29,30].

There is now a consensus about the fact that, in the
zero range limit, there is a convergence of predictions for
the two models H1 and H2, in particular for the equation
of state of the gas. The zero range limit means, for sin-
gle channel models, that kF b ≪ 1 and b ≪ λ, where kF

is the Fermi wavevector and λ is the thermal de Broglie
wavelength; for a > 0 one adds the assumption b ≪ a.
For two channel models, the zero range limit is defined by
the same assumptions, not only for the interaction range b
but also for the effective range re (one indeed has |re| ≫ b
on narrow Feshbach resonances [31,32]).

One can however consider observables which exist in
reality and are included in the two-channel model, but
which are absent in a single channel model. The most nat-
ural example is the number of closed channel molecules,
which was recently measured at Rice using laser molecular
excitation techniques [33].

In this paper, we show that the equilibrium number of
closed channel moleculesNb is directly related to the equa-
tion of state of the gas, more precisely to the derivative of
the gas energy (or free energy at non-zero temperature)
with respect to 1/a. Paradoxically, we can thus use the
equation of state calculated in [26] within a single chan-
nel model, in order to predict Nb in the cross-over and
compare to Rice measurements, see section 2. Since the
derivative of the energy with respect to 1/a is related to
other observables involving atomic properties only [34,35],
it is also possible in principle to accessNb by a pure atomic
measurement, see section 3. We conclude in section 4.

2 Prediction for the number of closed

channel molecules

2.1 General result

We first suppose that the system is in an arbitrary eigen-
state |ψ〉 of the two-channel Hamiltonian H2, with eigen-
ergy E. From Hellmann-Feynman theorem we have

dE

dB
= 〈ψ|

dH2

dB
|ψ〉. (5)

The only magnetic field dependent part of the Hamilto-
nian H2 is the bare closed channel molecule energy Eb(B)
so that

dE

dB
= µbNb (6)

where

Nb =

∫

d3r〈ψ†
b (r)ψb(r)〉 (7)

is the mean number of closed channel molecules. We then
eliminate the magnetic field by using as a parameter the
scattering length a rather than B:

Nb =
dE

d(1/a)

d(1/a)

dB

1

µb
. (8)

The function a(B) can be calculated explicitly for H2,
solving the zero energy two-body scattering problem in
free space, and takes the form

a(B) = abg

(

1 −
∆B

B −B0

)

(9)

with abg the background scattering length,B0 the location
of the Feshbach resonance and ∆B the resonance width.

Equation (8) is directly applicable at zero tempera-
ture. At non-zero temperature, one has to take a thermal
average of (8), keeping in mind that the mean value of a
derivative is not necessarily equal to the derivative of the
mean value. In the canonical ensemble one can check the
exact relation [36]

〈

dE

d(1/a)

〉

=

(

dF

d(1/a)

)

T

=

(

d〈E〉

d(1/a)

)

S

(10)

where 〈. . .〉 is the thermal average, the derivative of the
free energy F is taken for a fixed temperature T , and the
derivative of 〈E〉 is taken for a fixed entropy S. We thus
have in the canonical ensemble

〈Nb〉 =

(

d〈E〉

d(1/a)

)

S

d(1/a)

dB

1

µb
. (11)

Under the assumtions of the zero range limit detailed
in the introduction, the function E(1/a) is universal, i.e.
model independent, and one can use a single channel Hamil-
tonian such as H1 to calculate it and to access the mean
number of closed channel molecules.2

2 In particular, on the BEC side, we shall stay sufficiently
close to the resonance to have a much larger than the van der



F. Werner et al.: Number of closed-channel molecules in the BEC-BCS crossover 3

2.2 Analytical results in a trap in limiting cases

We now restrict to a gas at zero temperature (or at tem-
peratures much smaller than the Fermi temperature TF ),
in a harmonic trap

U(r) =
1

2
m

∑

α=x,y,z

ω2
αr

2
α, (12)

in the macroscopic regime where kBTF is much larger than
the oscillation quanta ~ωα. We thus use the local density
approximation, which is expected to be asymptotically ex-
act in the large N limit. We also restrict to the balanced
case where the number of atoms is equal to N/2 in each
spin component. The Fermi energy is then defined as the
zero temperature chemical potential of the trapped ideal
gas in the large N limit,

kBTF =
~

2k2
F

2m
= (3N)1/6

~ω̄ (13)

where ω̄ is the geometric mean of the three oscillation
frequencies ωα. Within the local density approximation
we have the general form

−
dE

d(1/a)
=

~
2kF

m
N F

(

1

kF a

)

, (14)

where F is a dimensionless function.
In the BEC regime 0 < kFa ≪ 1, a mean field calcu-

lation of E is possible: Apart from the dimer binding en-
ergy ~

2/(ma2), the chemical potential of the homogeneous
gas contains a mean field interaction energy among the
dimers, proportional to the dimer-dimer scattering length
ad [38,39,40,41,42]. The solution of the 4-fermion problem
gives [43,44]

ad ≃ 0.60a. (15)

The local density approximation then leads to

F

(

1

kF a

)

=
1

kF a
+

52/5

212/5 · 7

(ad

a

)2/5

(kFa)
7/5 + . . . (16)

In the BCS limit 0 < −kFa ≪ 1, the chemical poten-
tial of the homogeneous gas contains, in addition to the
ideal gas Fermi energy, the Hartree-Fock mean field term
proportional to a, so that

F

(

1

kFa

)

=
29

33 · 5 · 7 · π2
(kFa)

2 + . . . (17)

In the unitary limit one needs an expansion of the en-
ergy per particle ǫhom of the homogeneous gas in powers
of 1/a. We set

ǫhom = ǫhom
0 f

(

1

khom
F a

)

(18)

Waals length and than the effective range re, so that the bind-
ing energy of the dimer is given by the universal expression
~

2/(ma2). Further away from resonance in the weakly inter-
acting BEC regime, more detailed theories for the dimer wave-
function give good agreement with the Rice measurements [17,
33,37].

where ǫhom
0 and khom

F are the energy per particle and the
Fermi wavevector of the ideal Fermi gas with the same
density n:

khom
F = (3π2n)1/3 (19)

ǫhom
0 =

3

10

~
2
(

khom
F

)2

m
. (20)

Introducing the expansion

f

(

1

khom
F a

)

= ξ −
ζ

khom
F a

+ . . . , (21)

we obtain for the trapped gas:

F(0) =
27

52 · 7 · π

ζ

ξ1/4
≃ 0.27 (22)

where we took the estimates

ξ ≃ 0.43 (23)

ζ ≃ 0.95 . (24)

The estimate for ξ is obtained by averaging the predic-
tions of [26] (ξ = 0.42(1)), of [22] (ξ = 0.449(9)) and of
[27] (ξ = 0.42(1)). The estimate for ζ is obtained from
the calculation of the short range pair correlation of [28],
see subsection 3.1, and is close to the value ζ ≃ 1.0 that
may be extracted directly from the values of f in [26] by
approximating the derivative by a two-point formula.

2.3 Comparison to Rice experiment

At Rice [33] the quantity Z = Nb/(N/2) was measured
for a lithium gas, by resonantly exciting the closed chan-
nel molecules with a laser that transfers them to another,
short-lived molecular state; the molecule depletion reflects
into a reduction of the atom number that can be measured.

We now compare the Rice results to our prediction (8).
We first insert (9) into (8) which gives

Nb = NkFR∗F

(

1

kF a

)

(

1 −
abg

a

)2

(25)

where the function F is defined in (14). The length R∗

depends on the interchannel coupling and is related to
the width of the Feshbach resonance as:

R∗ =
~

2

mabgµb∆B
. (26)

For the B0 ≃ 83.4mT Feshbach resonance in 6Li, we have
µb ≃ 2µB where µB is the Bohr magneton [17], ∆B =
−30mT, abg = −1405 Bohr radii [45]. From the Rice
data for Nb/N , using (25), we thus get values of F , i.e. of
dE/d(1/a), that we compare in Fig.1 to theoretical predic-
tions, given in the local density approximation either by
the expansions (16,17) in the weakly interacting regime,
or by (22) at the unitary limit, or by an interpolation of
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Fig. 1. Derivative −dE/d(1/a) of the energy E of a trapped
two-component Fermi gas, where a is the s-wave scattering
length. Solid line: Theoretical prediction combining the Galit-
skii and Lee-Huang-Yang [38,39,40,41] formulas in the weakly
interacting regimes with a spline interpolation of the fixed node
Monte-Carlo results of [26] in the strongly interacting regime.
Dashed lines: Analytical predictions in the weakly interacting
regimes, on the BEC side (16) and on the BCS side (17). Cross:
Result (22) at unitarity. Circles (with error bars): Experimen-
tal measurement of the number Nb of closed channel molecules
in a lithium gas at Rice [33], combined with the present theory
linking dE/d(1/a) to Nb, see (25). (a): Linear scale on the ver-
tical axis. (b): Logarithmic scale. −dE/d(1/a) is expressed in
units of N~

2kF /m. All the theoretical predictions are obtained
in the local density approximation.

the Monte-Carlo results of [26] in the strongly interacting
regime 3. The agreement is satisfactory, the experimental
points being scattered around the theoretical prediction.

3 We applied a cubic spline interpolation to the points of
[26] with integer values of x = 1/khom

F a in between −2 and
6, adding home made points of abscissa −4 and 8 where the
values of the function f and its first order derivatives are ob-
tained from the weakly interacting Galitskii and Lee-Huang-
Yang expansions. These expansions are also used for x < −4
and x > 8. The values of f in x = −1 and x = 0 were shifted

Our approach even allows to predict the time evolution
of the atom number, in presence of the depleting laser, un-
der the assumption that the molecular depletion rate is so
weak that the equilibrium relation (25) holds at all times.
Neglecting the slow off-resonant free-bound photoassocia-
tion process [33], we have

dN

dt
= −2Nb(t)

Ω2

γ
(27)

whereΩ2/γ is the effective decay rate of the closed-channel
molecule, the Rabi frequencyΩ and the spontaneous emis-
sion rate γ being defined in [33]. Simple expressions can be
obtained in limiting cases: In the BEC limit, the dominant
term of the expansion (16) gives

N(t) = N(0) e−Γ0t; (28)

in the unitary limit, (22) gives

N(t) =
N(0)

(1 + Γ0t/6)
6 ; (29)

and in the BCS limit (17) gives

N(t) =
N(0)

(1 + Γ0t/2)
2 . (30)

Here, Γ0 = −[dN(0)/dt]/N(0) is the inital atom loss rate,
which can be expressed in terms of the initial atom num-
ber N(0) using Eqs. (25,27). We see that in general N(t)
is not an exponential function of time. We thus propose
to reanalyze the data for N(t) obtained at Rice: E.g. at
unitarity, the data should be fitted by (29), rather than
by an exponential as was done in [33].

3 Related observables

3.1 Short range pair correlations

As was shown in [34] and recently rederived in [46], in
the zero interaction range limit, the derivative of the gas
energy with respect to the inverse scattering length can
be expressed in terms of the short range behavior of the
pair distribution function of opposite spin particles:

−
dE

d(1/a)
=

4π~
2

m

∫

d3R ˜lim
r→0

r2g↑↓(R+r/2,R−r/2) (31)

where the pair distribution function is given by

g↑↓(r1, r2) = 〈ψ†
↑(r1)ψ

†
↓(r2)ψ↓(r2)ψ↑(r1)〉. (32)

upwards by 0.01 (within the error bars given in [26]) to improve
the agreement between the spline and the values of f in the
non-integer x values of [26]. The resulting spline is then almost
within all error bars of [26]. To eliminate a spurious cusp in
f ′(x) in x = −4, we shift f(−2) by −0.005, which is within
the error bars of [26]. The rapid variation of the slope of our
result on Fig. 1(b) near 1/(kF a) = −1 may be due to residual
imperfections of our interpolation.
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Since we are dealing here with finite range interaction
models, we have taken a zero range limit in (31), intro-
ducing the notation

˜lim
r→0

= lim
r→0

lim
b→0

. (33)

Note that the order of the limits is important. In a real
gas, in a degenerate regime, the limit in (31) is reached for
a distance r much smaller than |a| and the mean distance
between particles, but still much larger than the interac-
tion range b.

We thus see that a measurement of the pair distri-
bution function of the atoms gives access, using (8), to
the number of closed channel molecules. Experimentally,
the pair distribution function was measured via the pho-
toassociation rate in a 1D Bose gas [47,48], or simply by
dropping the gas on a detector with high enough spatio-
temporal resolution [49,50,51]. The possibility of measur-
ing the pair distribution function in the BEC-BCS crossover
was studied in [28,52]. In the unitary limit, by inserting

into Eq.(31) the value of ˜lim r2g↑↓ calculated in [28] with
the fixed node Monte-Carlo technique, we get the value
(24) for the parameter ζ defined in (21).

The relation (31) is the three-dimensional version of
the relation obtained in [53] for a one-dimensional Bose
gas with contact interaction, using the Hellmann-Feynman
theorem. We now show that the Hellmann-Feynman tech-
nique also provides a simple derivation of (31). For con-
creteness we take the lattice model (3), even if the reason-
ing also applies for a continuous space model. Taking the
derivative of the gas eigenergy E with respect to the ef-
fective coupling constant g = 4π~

2a/m, for a fixed lattice
spacing b, the Hellmann-Feynman theorem gives

dE

dg
=
dg0
dg

〈

∑

r

b3ψ†
↑ψ

†
↓ψ↓ψ↑

〉

(34)

=
dg0
dg

∑

r

b3g↑↓(r, r), (35)

where g0 is a function of g as given in (4). In a gas, with
an interaction range much smaller than the mean distance
∼ 1/kF between particles, the pair distribution function
is dominated by two-body physics if |r1 − r2| is much
smaller than 1/kF (and also much smaller than a in the
BEC regime), a property contained in the Yvon [54] and
Waldmann-Snider [55] ansatz of kinetic theory, and also
apparent in the context of quantum gases [28,56,57,58]:

g↑↓(r1, r2) ≃ C

(

r1 + r2

2

)

|φ(r1 − r2)|
2 (36)

where φ is the two-body zero energy free space scattering
state for two atoms, here in the spin singlet state. With
the lattice model we find 4

|φ(0)|2 =
dg

dg0
, (37)

4 An elegant derivation is to enclose two atoms in a ficti-
tious cubic box with periodic boundary conditions of volume
L3, with L ≫ |a|, b. To leading order in a/L, the wavefunction
is φbox(r1 − r2) = φ(r1 − r2)/L3/2 with an energy given by the

so that Eq.(35) simplifies to

dE

dg
≃

∑

r

b3C(r). (38)

On the other hand, at interparticle distances much larger
than b, the zero energy scattering wavefunction φ behaves
as 1 − a/|r1 − r2| so that

˜lim
r→0

r2g↑↓(R + r/2,R− r/2) = a2C(R). (39)

Eq.(38) thus leads to (31).

3.2 Tail of the momentum distribution

As was shown in [35] and recently rederived in [46], in
the zero-range limit, the momentum distribution of the
gas has a large momentum tail scaling as 1/k4, with a
coefficient common to the two spin states and proportional
to −dE/d(1/a):

˜lim
k→+∞

k4nσ(k) = −
4πm

~2

dE

d(1/a)
(40)

where
˜lim

k→+∞
= lim

k→+∞
lim
b→0

, (41)

σ =↑ or ↓ and the momentum distribution is normalized
as

∫

d3k

(2π)3
nσ(k) = Nσ, (42)

where Nσ is the mean number of particles in the spin state
σ. In practice, the limit in (40) is reached in a degener-
ate gas for k ≫ kF (and also k ≫ a on the BEC side)
while keeping k ≪ 1/b. When combined with (8), this re-
lation reveals that the number of closed channel molecules
may be deduced from a measurement of the momentum
distribution of the atoms.

The momentum distribution in a two-component Fermi
gas was actually already measured [59,60,61], simply by
switching off the interaction and measuring the cloud den-
sity after a ballistic expansion. Two practical problems
however arise, the effect of the non-zero switch-off time of
the interaction [59,62] and the signal to noise ratio in the
far tails of the distribution; we have therefore not been
able to extract the value of dE/d(1/a) from the published
data for nσ(k).

The relation (40) is a three-dimensional version of the
relation derived for a one-dimensional Bose gas in [63]. We
now present a very simple rederivation of (40).

In a gas with short range interactions, i.e. b≪ 1/kF in
the degenerate regime (and b ≪ a on the BEC side), the
tail of the momentum distribution is dominated by binary

“mean-field” shift Ebox = g/L3. The Hellmann-Feynman the-
orem (34) then gives the result (37). An alternative derivation
is to directly calculate φ in Fourier space [see (44)] which gives
φ(r) = 1−g0φ(0)

∫

[−π/b,π/b]3
[d3k/(2π)3] exp(ik ·r)/(2ǫk); this,

combined with (4), gives (37).
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collisions in the spin singlet channel between a particle
with a large momentum k and a particle with a momen-
tum ≃ −k, so that

nσ(k) ≃ B|φ̃(k)|2 (43)

where B is momentum-independent and φ̃(k) is the Fourier
transform

∑

r
b3e−ik·rφ(r) of the zero energy two-body

free space scattering state φ(r). For the contact interac-
tion in the lattice model the two-particle Schrödinger’s
equation takes the form [24]

2ǫkφ̃(k) + g0φ(r = 0) = 0, (44)

where ǫk is the free wave dispersion relation in the lattice
model, so that φ̃(k) drops as 1/ǫk for large k, and the
associated kinetic energy diverges for b → 0. Eq.(43) im-
plies that the kinetic energy of the gas is proportional to
the kinetic energy of the zero energy two-body scattering
state in the zero range limit:

Ekin[gas] ≃ B ·Ekin[φ]. (45)

Since the total energies have a finite limit for b → 0, we
can replace the kinetic energies by the opposite of the
interaction energies in the above formula:

Eint[gas] ≃ B ·Eint[φ]. (46)

The interaction energy of φ is simply g0|φ(0)|2, equal
to g0(dg/dg0) according to (37). The interaction energy
of the gas is equal to the right hand side of (34) times
g0(dg/dg0). The common factor g0(dg/dg0) simplifies and

dE

dg
= B. (47)

It remains to relate the coefficient B to ˜limk→+∞k
4nσ(k),

using (43). In the zero range limit, the scattering state φ(r)

tends to 1−a/r, so that, by Fourier transform, φ̃(k) tends
to (2π)3δ(k) − 4πa/k2. We then get (40).

4 Conclusion

We have calculated the numberNb of closed-channel mole-
cules in the whole BEC-BCS crossover for a two-component
Fermi gas. Our result is in satisfactory agreement with
the experimental results from Rice [33]. The expression
(8) for Nb is proportional to the quantity −dE/d(1/a)
where E is the energy of the gas; this quantity is univer-
sal in the zero interaction range limit. At unitarity we find
Nb/N = kFR∗F(0) where F(0) is a universal constant
given in (22) and the length R∗ is related to the resonance
parameters by (26); since R∗ . |re|/2 where re is the ef-
fective range [31,32] our result confirms that in the zero
effective range limit kF |re| ≪ 1, one has Nb ≪ N i.e. the
gas mainly populates the open channel. In the BCS limit,
−dE/d(1/a) and thus Nb are determined by the Hartree-
Fock mean field energy, and do not tend exponentially to
zero with 1/(kF |a|), contrarily to the prediction of usual

BCS theory [33]. This is also related to the fact that the
BCS theory does not predict the correct short-distance
pair correlations [64].

According to the finite-a virial theorem, in a harmonic
trap, the quantity −dE/d(1/a) is also related to the dif-
ference between the total energy and twice the trapping
potential energy [46,65,66]. The quantity −dE/d(1/a) is
also related to the short-distance behavior of the pair cor-
relation function and to the large-k tail of the momentum
distribution, as discovered by Tan [34,35] and rederived
in [46] and in this paper. The quantity −dE/d(1/a) is
also proportional to the average radiofrequency shift [67,
68]. The general idea that various short-range two-body
quantities such as the number of closed-channel molecules,
the interaction energy of the gas and the average radiofre-
quency shift are the product of the value of the considered
observable in the zero energy two-body scattering state
with a single universal many-body quantity was given by
Leggett [58]. Our work shows that the Rice experiment
[33] is the first direct measurement of this fundamental
quantity.

We thank F. Chevy, M. Colome, F. Laloë, S. Nascimbène and
C. Salomon for useful discussions, and R. Hulet for providing
us with the data of [33] in numerical form.

Note: During completion of this paper, we became aware
of a related work [69].
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