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ACTIVE ROBUST FAULT ESTIMATION ON A COMPOSITE BEAM WITH INTEGRATED

PIEZOCERAMICS. 

N. Mechbal
1 & M. Vergé

Laboratoire de Mécanique des Structures et des Procédés (LMSP – UMR, CNRS) 
École Nationale Supérieure des Arts et Métiers (ENSAM, Paris).  

151, Boulevard de l'Hôpital, Paris, France. 

Abstract: The problem addressed here is the application of model-based fault detection 

algorithm to active control of flexible structures. The modeling of mechanical structures with 

the finite element (FE) method leads to high order models which must be reduced. This step 

introduces important uncertainties which make necessary the use of robust fault detection and 

diagnosis (RFDD) algorithms. Here, we propose to apply a RFDD method using the H2 and

H∞ polynomial estimation to estimate the input fault signal. To illustrate the efficiency of this 
method, it is applied to a composite beam with piezoelectric patches. as sensors and actuators. 

Keywords: Active control, Fault estimation, Robustness, Finite Elements, H2/H∞ polynomial 
estimation, Piezoceramics. 

1. INTRODUCTION

Suppression of vibrations has received a great interest 

in the recent years. In the past decade, active control 

of vibrations has emerged as a viable technology. It 

has shown a great efficiency in comparison with 

passive damping. Its developments have been 

propelled by the rapid technology growth in practical 

digital signal processing and by the use of smart 

materials with adaptable properties such as 

piezoelectric ceramics.  

The smart structure obtained is able to react to 

external perturbations. But it is also more sensitive to 

the failure of any element (e.g. actuators, sensors or 

onboard electronics). In fact, due to wear of 

mechanical and electrical components piezo-ceramics 

might fail in more or less critical way (for example, 

cracks can appear in the ceramics). As a consequence, 

procedure of fault detection and diagnosis (FDD) is 

necessary to ensure reliable and safe operating. 

Fault detection and diagnosis methods have been the 

subject of intensive investigation over the past two 

decades. Most of studies concern analytical 

redundancy management. Several methods have been 

presented using alternative approaches like the parity 

relations, observers and eigenstructure assignment 

approaches. A useful and recent survey is given by 

Iserman (2005). Furthermore, the FDD procedures 

have to be robust to exogenous inputs, noises and 

failure mode modeling errors. Hence, they should be 

able to separate the effect of model uncertainties and 

perturbation from the effect of failures. 

In active control, the goal is to design a feedback 

controller that increases the system damping 

(Gawronski, 1998). Moreover, the necessary step of 

FE model reduction, introduces important 

uncertainties, which added to the fact that stiffness 

and natural frequencies can only be approximated, 

make necessary the use of robust control and also 

fault detection algorithms.  

In this contribution, we propose to apply the original 

method developed by Mechbal and Vergé (2001) to 

active fault detection on a minimum phase plant. The 

method is based on robust H2 and H∞ polynomial

estimators. In this approach, the robust detection 

problem is reformulate in a problem of robust 

estimation, where the unmeasured signal to be 

estimate is the input fault signal. The flexible 

structure under study is a composite beam with 

piezoelectric patches. To perform classical linear 

dynamical analyses we use Nastran software with an 

original approach elaborated by Mechbal (2005). 
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The polynomial approach to H2 and H∞ estimation 

and control problem was first introduced by 

Kwakernaak (1986) and developed in a discrete-time 

context by Grimble (1993). This method, whose 

importance was recognized, for its role in signal 

processing and robust control problems, has been 

used in a fault detection context by Mechbal et al. 
(2000, 2001). 

The paper is organized as follows. Section 2 is 

devoted to a description of the system under 

consideration and the fault model. In Section 3 and 4, 

we review the polynomial estimation problem and the 

H2 and H∞ optimal fault detectors. In Section 5, after 

a description of the active structure, the FE model and 

experimental results are presented. 

2. DESCRIPTION OF THE SYSTEM

In this paper we are concerned with the analysis of 

linear discrete-time, stationary stochastic models in 

the standard transfer function form. To be simple, 

here, we restrict our study to SISO systems.  

Consider now the class of systems described by Fig. 

1. Signal  represents an input perturbation and 

signal  stands for a colored measurement noise. 

The two noises sources 

)(kd

)(kb

)(kζ  and )(kbω  are time-

invariant, mutually independent with zero means, and 

their covariance are defined respectively as 

[ ] kldQlk δζζ =)(),(cov  and [ ] klnbb Qlk δωω =)(),(cov . 

Here klδ  denotes the Kronecker delta function. All 

subsystems involve only polynomial terms in the 

indeterminate 
1−z  and are represented by the 

following coprime representation:  
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We assume the noise model is stable. The observation 

signal is then given in the no faulty case by 

)()()()()()()( 111 kzWkzWkuzWkz bbd ωζ −−− ++=  (2) 

In our fault detection context, the effect of faults on 

system dynamics is modeled (Fig.1) by one additive 

faulty signal  on the output that comes 

from the contribution of several fault signals as using 

a shaping filter , i.e.  
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Moreover, in order to successfully identify individual 

fault we assume that each faulty signal  is 

described using a shaping filter: 
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where  denotes a stable 

minimal weighting function and  signal that is 

anticipated to have flat power spectrum. 
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Fig. 1: The feedback system and the optimal fault detector. 

It's a fictitious signal with the sole purpose of 

generating the frequency colored signals . In the 

stochastic context, we suppose that each  is a zero 

mean white noise with identity covariance. 

Observation signal is now given in the faulty case by 
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3. OPTIMAL FAULT DETECTOR

The goal here is to show how the H2 and H∞ 
polynomial estimation can be used to generate 

optimal residuals that provided us an estimation of the 

fault.  

Notations: We denote  the estimate of the 

unmeasured signal . We also denote 

the self-adjoint of the polynomial , i.e. 

 To simplify the notation, the 

dependence upon 

)(ˆ kx

)(kx )( 1* −zA

)( 1−zA

).()( 1* zAzA =−

1−z  is omitted from now on. 

3.1. Residual generation 

First, we introduce the following spectral 

factorization:  

***
bbbdddss WQWWQWYY += (5) 

The spectral factor  can be represented in a 

polynomial form as , where 

are Schur polynomials derived from the following 

factorization 
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As mentioned earlier, the useful signals for the 

residual generation are the known input vector and 

the measurable output. Therefore, without loss of 

generality, we define from (2) the stable residual by 

( ) )()()()( 0 krHkWukzHkr ff =−=
(7) 
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Fig. 2: Fault estimation. 

where  is an optimal filter to be determined. In 

the case where the system is unstable a stable residual

generator is always available by using coprime

factorization (Grimble, 1993). We assume now that

all the subsystems in (1) are stable. Hence, using (7),

(2) and in the no faulty case, the measured signal 

can be rewritten in the innovation form as,

fH

0r

)()()()( 1
0 kDAkWkWkr ssbbd ξωζ −=+=  (8)

where )(kξ  denotes white noise of zero mean with 

unity covariance. 

Suppose now that a fault  occurs. This fault will 

alter the behavior of the system and the residual will 

be given by: 
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The filter  is determined in order to make the 

influence of disturbance as small as possible while 

keeping the fault signal as large as possible. To solve 

this problem, Mechbal and Vergé (2001) proposed a 

method that transform the problem of detection to an 

estimation problem where now the unmeasured signal 

to be estimated is the fault (Fig. 2.). Hence, the goal is 

to find the best estimate  of  in the 

presence of the perturbation signal . For, we 

define the following estimation error: 

fH

)(ˆ kf )(kf
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( ))(ˆ)()( kfkfke f −= (10) 

The residual (10) is then nothing else that an optimal 

estimation of the fault, i.e.  
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We also define two Schur polynomials  and 

given from the following spectral factorization: 
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3.2. H2 polynomial detection filter 

The optimal detection filter  is required to 

minimize the following criterion: 
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where  is the power spectral density of the fault 

estimation error signal and  a dynamic 

weighting function, which will improve the 

robustness of the detection.  
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Theorem 1: The optimal H2 detection filter for the 

system defined by Fig. 2, and designed to minimize 

the cost function (13), is given by 
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where 

• ( , , ) denotes the minimal degree
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diophantine equation: 
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Proof: Derived by Mechbal (1999) from the result 

of Grimble (1993)                                     

3.3. H∞ polynomial detection filter 

As mentioned in Section 2, the H∞ detection filter 

will not minimize the variance error but the 

magnitude of the estimation error spectrum. The cost 

function is given by 

)(sup *

1
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z
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=
∞ (14)

The optimal estimator is then obtained using an 

embedding procedure. Indeed, since H∞ is a subspace 

of H2, it is possible to put the H∞ estimation in an H2 

framework (see, Grimble et al., 1989).  

Theorem 2: The optimal H∞ detection filter for the 

system defined by Fig. 2, and designed to minimize 

the cost function (14), is given by: 
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• The polynomials λλ BA and  are given by: 
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  and the Schur polynomial  is defined by: sF0

*
00

*
00 FFFF ss =

• The optimal function is: . Jmin = λ2

Proof: Obtained by Mechbal (1999) from the result 

of Grimble (1993).                              

3.4. Robust evaluation 

In the nominal case, and with a specific evaluation 

function, thresholds are generated. For the uncertain 

system, the problem is solved by using robust fault 

estimator and adaptive thresholds. For more details on 

this approach please refer to Mechbal and Vergé 

(2001). 

4. EXPERIMENTAL SETUP

The mechanical structure is made of a composite 

beam with 3 pairs of piezoelectric ceramics bounded 

symmetrically to the vertical beam and covered by 

very thin electrodes on their top and bottom sides. 

The beam is constituted of two external thin plates 

between which is inserted a composite filling, as 

illustrated in Fig. 3. The actuators and sensors are 

PZ29 piezoelectric ceramics. The composite element 

is realized with pre-impregnated plies of composite 

material of reference 07628 ES15. The setup is 

completed by a control loop: charge and tension 

amplifiers and a specialized Dspace© card 

performing the real-time measurements, FDI and 

control. 

4.1. FE modelling and Nastran simulations 

 Formulation of piezoelectric elements 

In the following model formulation, we assume that 

the piezoelectric patches are perfectly bounded to the 

plate and the elastic electric fields are coupled.  

FE equations for piezoelectric materials have already 

been formulated in many papers (Bruant et al. 1999). 

The linear constitutive relations for the direct and the 

inverse piezoelectric effects can be written as  

EdS TE −= σε     ,     EdD σεσ +=

where the superscript T denotes a matrix transpose, 

ε  is the vector of strain tensor components, σ  is

the vector of stress tensor components, D  is the 

electric displacement vector, E  is the electric field 

vector, 
ES  is the elastic flexibility matrix evaluated at 

constant E , d  is the piezoelectric coupling matrix 

and 
σε  is the dielectric matrix at constant stress. 

These equations can also be written in as, 

EeC TE −= εσ   ,

EeCandEeD TE −=+= εε σε ε

where 
εε  is the dielectric matrix at constant strain 

and 
EC is the elastic stiffness matrix evaluated at 

constant E . 

 State representation and model reduction 

Piezoceramics are discretized by mean of plate 

elements in order to model their mass and rigidity. 

The coupling is then introduced in the FE model that 

leads to the following equation (Bruant et al. 1999): 

)(tuQQQ aext
+=  

where 
ext

Q  represents external mechanical strength 

and uQa .  represents actuator's effects.  is the 

input voltage. By duality, the characterization of the 

piezoelectric direct effect leads to a relation between 

the output voltage  and a function of the vector 

of mechanical nodal displacement: 

)(tu

)(ty

)()( tqQty c=  

Now, using the previous FE model and taking into 

account a disturbance input, with form 

)(tdQQ
dext

=

the equation of the motion of the structure becomes, 

dQuQqKqCqM
da

+=++ &&&

Defining the mode shape iΦ  and the angular 

frequency iω  of the ith mode as the solution of the 

following generalized eigenproblem:  

iii MK Φ=Φ 2ω

there exist then N linearly such iΦ  where N is the 

size of the system. A reduction is done by projection 

of the nodal displacements on a truncated modal 

matrix. Let Φ be this modal matrix and g  the vector 

of the associated generalized displacements defined 

by: 

[ ] gqNnn .;,1 Φ=<<ΦΦ=Φ L

After some substitution and left multiplying by 
TΦ

the equation of the motion can be rewritten as: 

Qgkgcgm TΦ=++ &&&

where m, c and k are diagonal matrices. 
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Fig. 3: The composite active structure. 
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The most important stage in the reduction of order is 

the choice of the eigenmodes kept in the reduced 

modal basis. Given the position of actuators and 

sensors, the modes are sorted regarding to their H∞ 

norms as described in Henriot et al. (2000). By 

choosing now the state vector as: 

( TTT ggx &ω= ) ,         (15) 

we obtain a 2n order model that we turn into state 

space representation as: 
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Then we can obtain the transfer functions of the 

process and the perturbation. It’s a minimum phase 

plant where, for each transfer function, the first 3 

modes were retained. 

Actuator and sensor simulation 

The FE model has been built with Nastran© software. 

However, this software does not contain any specific 

elements dealing with the piezoelectric coupling 

problem. So, we have elaborated an original strategy 

of simulation that consists in exploiting the analogy 

between thermal and piezoelectric equations. Nastran 

then, allows performing classical linear dynamical 

analyze. For details, see Mechbal (2005). 

4.2. Experimental statements and FE updating 

With the available actuators and sensors of the beam, 

we have access to necessary information for its 

identification. We obtain experimental Bode diagrams 

for each transfer between a sensor and an actuator. 

Indeed, as the beam is endowed with 3 

sensors/actuators, it is therefore possible to define 

several couples (or path) of sensor/actuator (Fig. 3). 

Thus, the path 1-2 is represented by the transfer 

between actuator 1 and the sensor 2 (see, Fig. 4.) 

In our framework, we compare the Bode diagram of 

different paths obtained by the FE model to those 

obtained by the experimental identification. Hence, 

we observe that differences are essentially due to DC 

gain (owing to amplifiers), which shows the validity 

of our FE model (Mechbal, 2005). 

Phase Magnitude 

rad/s

Fig. 4: Actual and simulated Bode diagrams for path 1-2. 

4.3. Necessity of fault detection 

The use of piezoelectric device as sensor or actuator 

can lead to different kind of failure: 

• Cracks can appear in the ceramics,

• Ceramics can be poorly pasted,

• Stressed ceramics due to exposition to a high

magnetic field.

If a ceramics is partially detached, the locally physical 

characteristics of the structure change which implies 

in addition to faulty measures an alteration of the 

global behavior of the structure. In the case of 

occurrence of cracks on ceramics, the global behavior 

of the structure is not modified but the useful surface 

of the ceramic is reduced. This kind of faults presents 

two consequences: a diminution of the gain and a lost 

of the symmetry of the setting. 

4.4. Experiments 

Here, we use as actuator the piezoceramic 1 and as 

sensors piezoceramic 2. The piezoceramic 3 creates 

the permanent disturbance. Noise has been measured 

on the structure. It is a white noise of variance of 

. Hence, 2-6 V2.58.10 1== bb BA . 

Robust H∞ Regulator 

To reject disturbances, we used a robust H∞ 

controller.  

To elaborate it we used the reduced model based on 

the first 3 modes of the identified one (see Fig. 4). We 

have also defined multiplicative uncertainty on the 

output that represent neglected dynamics. The 

controller has been applied to the actual process at 1s. 

For a permanent perturbation of a frequency of 6.3Hz 

(Fig.5.), we can notice that the settling-time is 

strongly decreased.  

Fault estimation 

Several tests have been performed. Faults are 

described as changes in sensor gain and to model 

them, we choose a low pass weight function given by  

1

1

9998.01

00044.0
−

−

−
=

z

z
W f . 

The function  was taken as an integrator to 

emphasize the signal in low frequency. 

pW/1

Output signal 

(s) 

Feedback action 

Fig. 5: Actual output signal with H∞ controller 
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Feedback action 

Fig. 6: Output and fault estimation for f = 6.3 Hz: Sensor 
fault – ramp of slope 0.008. 

We present here results related to different sensor 

faults with the H∞ estimator: 

Small Drift fault: Here the gain of the sensor is 

increased as a ramp function entering from st 10=  to 

 with a slope of . It's a small fault that 

represents a drift of the piezoelectric gain. Fig.6. 

indicates that is not possible to detect the fault using 

only the measure of the output. Of course, performing 

detection by analyzing only the output depends on the 

kind and the magnitude of faults. But, without 

integrating FD procedure, it is hard to make 

distinction between fault and perturbation or noise 

effect. In addition to that, controller could mask the 

fault effect on the output because it interprets the fault 

as a perturbation and would try to reject it. 

st 14= 008.0

Small Step fault: the simulated fault is described as a 

step function of amplitude . Fig.7. shows that 

the estimation is quite fast but not very accurate. This 

is due to the fact that we want to detect small fault in 

the presence of noise measure. 

V02.0

Robustness test: we performed simulations where the 

controller and estimator have been calculated on the 

basis of the identified model but the simulations have 

been performed with a model in which the modal 

frequencies have been modified. Fig.8. shows that the 

controller and the estimator give good results in spite 

of the presence of uncertainties and noise. 

5. CONCLUSION 

This paper described the design of an active robust 

fault estimation scheme. The experimental set up is a 

structure made of a composite beam with 

piezoelectric patches. This work focuses on the 

necessity of including FDD procedure in any active 

control strategy to ensure safe applications. 

The proposed approach, using polynomial H2/H∞ 

estimation, is an original method to solve the robust 

fault detection problem. It gives satisfactory results. 

Further, works are under study and experiments on 

the actual process are in progress. 

Feedback action 

Fig. 7: Output and fault estimation for f = 6.3 Hz: Sensor 
fault – step of 0.02V. 

Feedback action 

f=44Hz+10%  

Fig. 8: Output and fault estimation for f = 44 Hz+10%: 
Sensor fault – step of 0.02V.   
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