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Abstract: This paper introduces a new form for the Recursive Input Estimation problem. The proposed algorithm needs
the inversion at each sample time of oneny×ny and onenu×nu matrices, whereas the classical formulation
requires the inversion of twony×ny matrices. Consequently, a reduction of computation time occurs in the
case whereny > nu, ny being the number of measurements andnu the number of inputs of the system under
consideration. The new formulation obtained is tested on a tracking application, and its results compared with
those issued from the classical formulation.

1 INTRODUCTION

The problem of both estimating the state and input
of a dynamical system from noisy measurements
has been leading for a long time to intensive re-
search. The solution to such a problem can help
in applications like fault tolerant control (through
actuator bias detection and estimation) (Hou and
Patton, 1998a), manoeuvering targets tracking (Aley
and Delinger, 1973), evaluation of reaction rates in
chemical reactors (Mhamdi and Marquardt, 1999) or
estimation of accelerometers and gyroscopes errors
in inertial navigation (Grewal et al., 2001).

In order to solve this kind of problem, different
approach can be found, such as model inversion (Sil-
verman, 1969), Unknown Input Observers (Darouach
et al., 1994) and Filters (Hou and Patton, 1998b), In-
teracting Multiple Model (IMM) (Mazor et al., 1998)
or inclusion of the unknown inputs into the state vec-
tor (Bar-Shalom and Birmiwal, 1982) (leading to an
augmented state vector). Another approach, calledIn-
put Estimation, has been proposed by (Chan et al.,
1979), recursively developed in (Wang and Varshney,
1993) and adapted to a class of time-varying inputs
in (Lee and Tark, 1999), (Jilkov and Li, 2002). Its
advantage compared to the others approach is unde-
niable: Indeed, its applicability conditions are far less

restrictive than the model inversion or Unknown In-
put Observers/Filters ones; Its computational burden
is lower than the IMM one (Mazor et al., 1998); its
structure allows decoupling of state and input estima-
tion, contrary to the augmented state vector approach.

However, this algorithm presents a drawback : It
needs the inversion of two squares matrices of di-
mensionny×ny, whereny is the number of measure-
ments done on the system under consideration, while
a Kalman filter (Kalman, 1960) using an augmented
state vector needs only one inversion. The purpose
of this article is to propose a new formulation of least
squares estimator, by using the information form (An-
derson and Moore, 1979). The two matrices to inverse
are then of dimensionny×ny andnu×nu, wherenu is
the number of inputs. Such a formulation reduces the
computation time in the case whereny is greater than
nu, and moreover, provides a simpler algorithm.

In this paper, the Recursive Input Estimation
(RIE) is firstly presented. Then, the new formulation
of RIE using information matrices is proposed in sec-
tion 2. Finally, the proposed method is applied on a
tracking application in section 3.



2 THE INPUT ESTIMATION
APPROACH

Consider the following linear discrete time system:
{

xxxk+1 = Akxxxk +Bkuuu+Gkwwwk
yyyk = Ckxxxk +vvvk

(1)

wherexxx ∈ R
nx is the state vector,uuu ∈ R

nu the input
vector,yyy∈ R

ny the measurement vector,www∈ R
nw the

process noise,vvv ∈ R
ny the measurement noise and

k ∈ N the (discrete) time. Theoretically,uuu is a con-
stant vector, but, from a practical point of vue, it can
be slowly time varying.xxx0, wwwk andvvvk are supposed
to be gaussian, with respective covarianceP0, Qk and
Rk. Moreover,wwwk andvvvk are supposed to be mutually
uncorrelated, and uncorrelated withxxx0. Ak, Bk, Ck
andGk are known matrices, potentially time varying.
The system described by (1) is assumed to be observ-
able ifuuu is known.

Subsequently, we will denote bŷxxxk|n andûuuk|n the
estimates at timek of xxxk anduuu using{yyy1, . . . ,yyyn}, and
their respective covariance byPk|n andΓΓΓk|n. We also
adopt the shorthand notationVi = Vi|i for any variable
V.

The RIE algorithm as described in (Wang and
Varshney, 1993) and (Keche et al., 1997) consists
in a Kalman filter estimating the state of the system
without taking into accountuuu, and a minimum vari-
ance least squares algorithm estimatinguuu by using
the Kalman filter innovation. These two estimates are
then summed in order to give the best estimatex̂xxk of xxxk
possible. The RIE algorithm is described in figure 1,
and synthesized afterwards. The values computed by
the Kalman filter (which do not take into account the
input uuu) are denoted with the superscript 0.T sym-
bolizes the transposition operation, andI×, 0× stand
for the identity and nil matrices of appropriate dimen-
sion.

1. Initialisation with x̂xx0
0 = x̂xx0, P0

0 = P0, ûuu0, ΓΓΓ0
and F0 = 0nx×nu

2. Hk update: Hk = Ak−1Fk−1 +Bk−1

3. State prediction:

o x̂xx0
k|k−1 = Ak−1x̂xx0

k−1

o P0
k|k−1 = Ak−1P0

k−1AT
k−1

+Gk−1Qk−1GT
k−1

4. State update:

o ỹyy0
k|k−1 = yyyk−Ckx̂xx

0
k|k−1

o ΣΣΣ0
k|k−1 = CkP0

k|k−1CT
k +Rk

o K0
k = P0

k|k−1CT
k

(
ΣΣΣ0

k|k−1

)−1

o x̂xx0
k = x̂xx0

k|k−1 +K0
k ỹyy0

k|k−1

o P0
k =

(
Inx −K0

kCk
)

P0
k|k−1

5. Fk update: Fk =
(
Inx −K0

kCk
)

Hk

6. Estimated state and covariance
correction:

o x̂xxk = x̂xx0
k +Fkûuuk−1

o Pk = P0
k +FkΓΓΓk−1FT

k

7. Input estimation:

o Sk = CkHkΓΓΓk−1HT
k CT

k +ΣΣΣ0
k|k−1

o Lk = ΓΓΓk−1HT
k CT

k S−1
k

o ûuuk = ûuuk−1 +Lk

(
ỹyy0

k|k−1−CkHkûuuk−1

)

o ΓΓΓk = ΓΓΓk−1−ΓΓΓk−1HT
k CT

k S−1
k CkHkΓΓΓk−1

= (Inu −LkCkHk)ΓΓΓk−1

Classical RIE algorithm

As one can see, this algorithm needs at each sam-
ple time to compute the inverses ofΣΣΣ0

k|k−1 and Sk.
These two matrices are of dimensionny × ny. The
purpose of the next section is to find an algorithm that
needs to inverseΣΣΣ0

k|k−1 and instead ofSk, a matrix
of lower dimension. Afterwards, in order to simplify
some expressions, we write:

Dk = CkHk (2)

In addition, 7. will stand for the seventh step of
the classical RIE information, given above.

3 THE INPUT ESTIMATION
APPROACH

For the sake of convenience, let us remember the ma-
trix inversion lemma,ααα andγγγ being square and reg-
ular matrices andααα, βββ, γγγ and δδδ having compatible
dimensions:

(ααα +βββγγγδδδ)−1 = ααα−1

−ααα−1βββ
(
γγγ−1 +δδδααα−1βββ

)−1δδδααα−1 (3)



Figure 1: Recursive Input Estimation Principle.

By putting the first equation of 7. into the the
fourth, and using (2), we have:

ΓΓΓk = ΓΓΓk−1

−ΓΓΓk−1DT
k

(
ΣΣΣ0

k|k−1 +DkΓΓΓk−1DT
k

)−1
DkΓΓΓk−1

(4)

One can easily see, by identification between (4)
and the matrix inversion lemma (3), that (4) can be
rewritten as follow:

ΓΓΓk =

(
ΓΓΓ−1

k−1 +DT
k

(
ΣΣΣ0

k|k−1

)−1
+Dk

)−1

(5)

or equivalently:

J k = J k−1 +DT
k

(
ΣΣΣ0

k|k−1

)−1
Dk (6)

whereJ k is the information matrix (i.e. the inverse of
the covariance matrix) of the least squares algorithm:

J k = ΓΓΓ−1
k (7)

Now, let us apply the matrix inversion lemma to
Sk, given in the first equation of 7.. Thanks to defini-
tion (2), we have:

S−1
k =

(
DkΓΓΓk−1DT

k +ΣΣΣ0
k|k−1

)−1

=
(

ΣΣΣ0
k|k−1

)−1
−

(
ΣΣΣ0

k|k−1

)−1
Dk

×
(

ΓΓΓ−1
k−1 +DT

k

(
ΣΣΣ0

k|k−1

)−1
Dk

)−1

×DT
k

(
ΣΣΣ0

k|k−1

)−1

(8)

Or, thanks to (6) and (7), we can see that :
(

ΓΓΓ−1
k−1 +DT

k

(
ΣΣΣ0

k|k−1

)−1
Dk

)−1

= ΓΓΓk (9)

Inserting (9) into (8) gives:

S−1
k =

(
ΣΣΣ0

k|k−1

)−1

−
(

ΣΣΣ0
k|k−1

)−1
DkΓΓΓkDT

k

(
ΣΣΣ0

k|k−1

)−1 (10)

Inserting (10) into the expression ofLk (second
equation of 7.) and using (2) leads to:

Lk = ΓΓΓk−1DT
k

[(
ΣΣΣ0

k|k−1

)−1

−
(

ΣΣΣ0
k|k−1

)−1
DkΓΓΓkDT

k

(
ΣΣΣ0

k|k−1

)−1
]

= ΓΓΓk−1

[
Inu −DT

k

(
ΣΣΣ0

k|k−1

)−1
DkΓΓΓk

]

×DT
k

(
ΣΣΣ0

k|k−1

)−1

(11)

By using (6), we can substituteDT
k

(
ΣΣΣ0

k|k−1

)−1
Dk

in (11) byJ k− J k−1. It leads to:

Lk = ΓΓΓk−1 [Inu − (J k− J k−1)ΓΓΓk]

×DT
k

(
ΣΣΣ0

k|k−1

)−1

= ΓΓΓkDT
k

(
ΣΣΣ0

k|k−1

)−1
(12)

This last result is the adaptation to recursive mini-
mum variance least squares of a well known equation



of Kalman filtering (Anderson and Moore, 1979). Let
us use it into the update equation ofûuuk (third equation
of 7.):

ûuuk =

[
Inu −ΓΓΓkDT

k

(
ΣΣΣ0

k|k−1

)−1
Dk

]
ûuuk−1

+ΓΓΓkDT
k

(
ΣΣΣ0

k|k−1

)−1
ỹyy0

k|k−1

(13)

Now, let us introduce the following variable
change:

ẑzzk = J kûuuk (14)

Consequently, (13) becomes:

ẑzzk = J k

[
Inu −ΓΓΓkDT

k

(
ΣΣΣ0

k|k−1

)−1
Dk

]

×ΓΓΓk−1ẑzzk−1 +DT
k

(
ΣΣΣ0

k|k−1

)−1
ỹyy0

k|k−1

(15)

By using (6), (15) can be rewritten as follow:

ẑzzk = J k [Inu −ΓΓΓk (J k− J k−1)]ΓΓΓk−1ẑzzk−1

+DT
k

(
ΣΣΣ0

k|k−1

)−1
ỹyy0

k|k−1
(16)

Thanks to definition (7), one can easily see that
J k [Inu −ΓΓΓk (J k− J k−1)]ΓΓΓk−1 = Inu. Consequently:

ẑzzk = ẑzzk−1 +DT
k

(
ΣΣΣ0

k|k−1

)−1
ỹyy0

k|k−1 (17)

Equations (2), (6), (7), (14), and (17) describe the
information form of the least squares algorithm. The
information form of the RIE algorithm is described
below, and illustrated in figure 2:

1) to 5) Identical to classical RIE
algorithm.

6) Estimated state and covariance
correction:

o x̂xxk = x̂xx0
k +Fk(J k−1)

−1ẑzzk−1

o Pk = P0
k +Fk(J k−1)

−1FT
k

7) Input estimation through information
least squares algorithm:

o ẑzzk = ẑzzk−1 +HT
k CT

k

(
ΣΣΣ0

k|k−1

)−1
ỹyy0

k|k−1

o J k = J k−1 +HT
k CT

k

(
ΣΣΣ0

k|k−1

)−1
CkHk

Information form RIE algorithm

As one can see, the matrices to be inverted in this
algorithm areΣΣΣ0

k|k−1 (which is used in the Kalman fil-
ter and least squares algorithm) andJ k−1, with re-
spective dimensionny × ny and nu × nu. It leads to

computation time saving and a simpler algorithm in
the case wherenu < ny.

We also could have develop an information form
for the classical Kalman filter (see (Anderson and
Moore, 1979), p.139 for the equations), but that
would lead to several difficulties and drawbacks:
Firstly, it needs the inversion ofAk, which is not al-
ways regular (for example, in some models of inertial
navigation errors). Secondly, an information form for
a Kalman filter needs to inverse another matrix, which
is notΣΣΣ0

k|k−1; As this inverse is required for the least
square algorithm, that would be one more matrix to
inverse.

Finally, it should be noted that the conditionny >

nu does not necessarily cause a controllability prob-
lem. Indeed,yyy represents some measurements, which
area priori different from the output to control. As
example, we can mention the problem of tracking a
moving vehicle: The driver adjusts the acceleration
(the input of the system) in order to control the posi-
tion (the output to control). But an external observer
uses measurements which are the position and/or ve-
locity of the vehicle in order to estimate its state (po-
sition, velocity) and its unknown input (acceleration).

4 APPLICATION

In this section, we apply the information form of RIE
on a two-dimension tracking application, and com-
pare with the results obtained by the classical RIE. In
such an application, the RIE is one of the most widely
used tools (Wang and Varshney, 1993), (Lee and Tark,
1999). However, others approach can be found, such
as the inclusion of the RIE into a multiple hypothesis
setting (Bogler, 1987), the variable dimension filter
(Bar-Shalom and Birmiwal, 1982) or the IMM (Blom
and Bar-Shalom, 1988). A complete state of the art
can be found in (Bar-Shalom, 2001).

4.1 Model Considered

Let−→r =
−−→
OM be the position vector of a vehicle mov-

ing on the earth surface, considered as a plane.O is
fixed with regard to the earth, and taken for the sake
of convenience into the studied plane.M is the vehi-
cle gravity centre. If we consider the earth as inertial
(neither entrainment nor Coriolis acceleration), then
we have:

−→
V =

d−→r
dt

∣∣∣∣
[T ]

−→γ =
d
−→
V

dt

∣∣∣∣∣
[T ]

(18)

where[T ] is an earth-fixed frame,
−→
V the vehicle ve-

locity (relatively to the earth), and−→γ the vehicle ac-



Figure 2: Information form for recursive input estimation.

celeration (relatively to the earth). In order to sim-
plify, the two axes of[T ] (we do not need three axis
as the vehicle motion take place in a plane) are chosen
included in the plane. In addition, we consider that:

−→γ = −→a +
−→η (19)

where−→a is fixed with regard to the earth, and−→η a
white noise. Projecting these equations into[T ] leads
to the following model:

[
ṙrr
V̇VV

]
=

[
02×2 I2
02×2 02×2

][
rrr
VVV

]

+

[
02×2

I2

]
(aaa+ηηη)

(20)

where, for any vector
−→
λ , λλλ is the projection of

−→
λ onto

the axis of[T ]. −→a being fixed with regard to[T ], then
ȧaa= 02×1. This model is discretized thanks to an Euler
scheme, with a sample timeT:
[

rrrk+1
VVVk+1

]
=

[
I2 TI2

02×2 I2

][
rrrk
VVVk

]

+

[
02×2
TI2

]
aaa+

[
02×2

I2

]
ρρρk

(21)

whereρρρk =
∫ (k+1)T

kT
η(t)dt is a random walk, with co-

variance
√

TE
(
ηηT

)
, E being de mathematical ex-

pectation (Grewal et al., 2001). From (21), one can

easily see that:

Ak =

[
I2 TI2

02×2 I2

]
xxxk =

[
rrrk
VVVk

]
uuu = aaa

Bk =

[
02×2
TI2

]
Gk =

[
02×2

I2

]
wwwk = ρρρk

(22)

The measurements are done at each sample time
thanks to a GPS which measure the vehicle posi-
tion and velocity. Through an appropriate coordinate
change, we have:

yyyk = xxxk +vvvk (23)

wherevvvk is the GPS measurement error, modelled by
a white noise.

4.2 Experiments

(21) and (23) allow the use of a RIE. We decide to
make our RIE works in SI (International System of
Units), and with sample timeT = 1s. The vehicle
acceleration is assumed to beuuu = [2 3]T , and its
initials conditionsxxx0 = [70 20 0 0]T . The RIE
covariances areQk = I2, Rk = diag(102,102,12,12),
and initials conditionsP0 = diag(502,502,0.12,0.12),
x̂xx0 ∼ N (xxx0,P0), ΓΓΓ0 = diag(102,102), ûuu0 = 02×1.
Here, "M = diag(...)" is a shorthand notation indi-
cating thatM is a diagonal matrix fulfilled in order,
andxxx∼N (mmm,ccc) means thatxxx is normally distributed,
with meanmmmand covarianceccc.
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Figure 3: Real and estimated positions.
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Figure 4: Real and estimated velocities.

The results obtained by the information and clas-
sical RIE, issued from a 100 iterations simulation, are
given in figures 3, 4, 5.

We can clearly see that the performances of classi-
cal and information RIE are exactly the same, which
is not a surprise. Indeed, from a mathematical point
of vue, these algorithms are identical: Only the prac-
tical implementation change. We can also see that the
accelerations are pretty well estimated.

Now, let us compare the computational perfor-
mances of these algorithms. By using the tic-toc
MATLAB’s function, which enables one to measure
the time needed for executing a routine, we can appre-
ciate the computation time of the classical and infor-
mation RIE. The results, obtained for different sim-
ulation lengths, are given in table 1, whereN is the
number of iterations,Tc the classical RIE computa-
tion time in seconds andTi the information RIE com-

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
Acceleration (m/s2)

X
 a

xi
s

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Time (s)

Y
 a

xi
s

true
classical RIE
information RIE

true
classical RIE
information RIE

Figure 5: Real and estimated accelerations.

putation time in seconds. Then, these results are illus-
trated in figure 6.

Table 1: Classical and information RIE computation time.

N 100 1000 5000 10000 20000
Tc 0.063 0.312 1.406 2.703 5.547
Ti 0.047 0.250 1.235 2.438 5.047

0 1 2 3 4 5 6
0

1

2

3

4

5

6

T
i

T
c

Figure 6: Information RIE computation time with respect
to classical RIE computation time.

Figure 6 clearly shows thatTi = aTc, with
a ∈ ]0;1[. By the use of least squares, we find that
a = 0.907. This means that on the considered exam-
ple, the computational gain when using the RIE in-
formation form instead of the classical one is: 1−
0.907= 0.093= 9.3%.



5 CONCLUSION

In this article, an alternative formulation of the Re-
cursive Input Estimation was presented. The obtained
algorithm provides the same results as the baseline
Recursive Input Estimation; Furthermore, it reduces
the computation time in the case where the number
of outputs is greater than the number of inputs. A
tracking application, presenting four measurements
and two constant inputs to estimate, highlighted this
results, with a computation time decrease of 9.3%.
An outlook of this work would be to compare these
results with those obtained by others approches, like
Unknown Input Filters or model inversion.
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