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State Estimation Under Nonlinear State Inequality Constraints.
A Tracking Application

Vincent Sircoulomb, Ghaleb Hoblos, Houcine Chafouk and JoséRagot

Abstract— This paper proposes a general method for dealing
with state estimation under nonlinear state soft inequality
constraints. This method is based on the projection approach,
and then has the advantage to be compatible with any kind of
state estimator. In order to be taken into account, the nonlinear
constraints are linearized about the constrained state using an
iterated approach. The proposed algorithm is tested on a three-
dimension tracking application with nonlinear constraints on
the moving body acceleration. The results are compared with
those of an unconstrained Kalman filter.

I. INTRODUCTION

The Kalman filter is known to be the optimal estimator
for linear systems corrupted by white state and measurement
noises [1]. Its efficiency and ease of implementation have
made this estimator be an essential tool for applications
such as inertial navigation [2], target tracking [3], signal
processing [4], optimal control [5] or fault diagnosis [6].

However, in the implementation of a Kalman filter, there
is often known information about the process that is ignored
because they do not fit easily in the structure of this estimator
[7]. For example, when estimating a plane altitude, we know
that the estimated value must be positive; when estimating a
quaternion, its euclidian norm must be equal to one [8]. This
kind of information can be interpreted as constraints on the
state variables.

When the state variables are subject to linear equality
constraints, different ways of dealing with this problem
can be found. For example, it is possible to reduce the
model parametrization [9], but this approach leads to a
loss physical meaning associated to the state variables [7].
Another approach consists in treating the constraints as
perfect measurements [10]; however, this method has the
effect of leading to a singular measurement noise covariance
matrix, which can cause numerical problems during the
computation of the Kalman gain [7]. A third way of doing
can be to use the Lagrange multiplier in order to take
into account the constraints when deriving the Kalman filter
from the optimality criterion chosen. The results obtained
are different depending on the optimality criterion selected
(least squares or maximum a posteriori [4]); however, this
technique appears to be a particular case of the projec-
tion approach [7], [11]. This last unifying theory presents
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undeniable advantages: It is physically meaningful, it can
be used with any kind of state estimator and it is easily
extendable to linear soft inequality constraints [12] via the
active-set method [13]. Unfortunately, dealing with nonlinear
state inequality constraints remains to be a delicate task.The
purpose of this article is to propose a general method for
dealing with nonlinear state soft inequality constraints.In
this work, two contributions can be distinguished: The use
of an iterated approach in order to deal with nonlinear state
constraints via the projection approach, and the proposition
of three different ways for associating a state estimator with
some state constraints.

In this paper, the projection approach for estimating the
state of a system under linear inequality constraints is re-
minded in section 2. Then, section 3 proposes an iterated
method for extending the projection approach to nonlinear
state soft inequality constraints. The next section presents
three different ways of coupling the projection approach with
its associated state estimator. Finally, the results obtained
by the proposed methods are compared in section 5 with
those of an unconstrained Kalman filter on a 3D tracking
application, with nonlinear constraints on the moving body
acceleration.

II. STATE ESTIMATION UNDER LINEAR STATE

CONSTRAINTS: THE PROJECTION APPROACH

Consider the following linear discrete time system:
{

xk+1 = Akxk + Bkuk + Gkwk

yk = Ckxk + vk
(1)

where xk ∈ R
nx is the state vector,uk ∈ R

nu the input
vector, yk ∈ R

ny the measurement vector,wk ∈ R
nw

the process noise,vk ∈ R
ny the measurement noise and

k ∈ N the (discrete) time.x0, wk and vk are supposed
to be gaussian, with respective covarianceP0, Qk and
Rk. Moreover, wk and vk are supposed to be mutually
uncorrelated, and uncorrelated withx0. Ak, Bk, Ck and
Gk are known matrices, potentially time varying. The system
described by (1) is assumed to be observable.

A. Linear state equality constraints

Now, suppose that at each time stepk, xk is subject to
the following linear equality constraint:

Dkxk = dk (2)

wheredk ∈ R
nd is a known vector andDk a known matrix

of appropriate dimension.dk and Dk are possibly time-
varying quantities. Furthermore,Dk is supposed to be a full



Fig. 1. Principle of the projection approach

rank matrice (if it is not the case, it means that there are
some redundant constraints, which can be eliminated), and
nd < nx.

We want to estimate the statexk described by (1) and
that this estimate satisfies (2). Let us denote byx̂u

k the
state estimated at timek by an unconstrained estimator (i.e.
an estimator which does not take into account the relation
(2). This estimator can be for example a Kalman filter) and
by x̂c

k the estimate provided by same estimator, but which
take into account equation (2). The associated covariances
of estimation error are denotedPu

k andPc
k. The principle of

the projection approach is illustrated in Fig. 1. It consists in
solving the following constrained optimization problem [7],
[11]:

minbxc
k
∈Rnx

(
(x̂c

k − x̂u
k)

T
W−1

k (x̂c
k − x̂u

k)
)

such that :Dkx̂c
k = dk

(3)

where T denotes he transposition operation andWk is a
symmetric positive definite weighting matrix. The solution
is obtained through the use of the Lagrange multiplier, and
summarized by the following set of equations [7], [11]:

x̂c
k = x̂u

k + Lk (dk − Dkx̂u
k)

Pc
k = (Inx

− LkDk)Pu
k(Inx

− LkDk)T

Lk = W−1
k DT

k

(
DkW

−1
k DT

k

)−1
(4)

The constrained estimated state has the following proper-
ties [7], [11]:

• it is unbiased:∀k ∈ N : E (xk − x̂c
k) = 0nx×1

• if Wk = Pu
k , then it results in the mini-

mum variance filter:E
(
(xk − x̂c

k) (xk − x̂c
k)

T
)

≤
E

(
(xk − z) (xk − z)

T
)
∀z ∈ R

nx

• if Wk = Inx
, then it results in a constrained estimate

that is closer to the true state than the unconstrained
estimate:‖xk − x̂c

k‖ ≤ ‖xk − x̂u
k‖.

whereI• and0• are identity and zero matrices of appropriate
dimension, andE is the mathematical expectation. It can
also be seen thanks to (4) that ifWk = Inx

, then the
the unconstrained state is orthogonally projected onto the
constraint hyperplan, which is generally not the case with
Wk = Pu

k . Moreover, a parallel can be established between
(4) and the equations for updating a Kalman filter. This
can be explained by the fact that the constraint (2) can be
interpreted as a fictive perfect measurement.

B. Linear state soft inequality constraints

Now, suppose that at each time stepk, xk is subject to
the following linear soft inequality constraint:

Dkxk ≤ dk (5)

wheredk ∈ R
nd (nd < nx) is a known time-varying vector

andDk a known full-rank time varying matrix of appropriate
dimension. We want to estimate the statexk described by
(1) and that this estimate satisfies (5). A way of dealing with
such a problem is using the active set method [13]. It consists
in testing at each time stepk the nd scalar inequalities of
(5). For theith inequality (1 ≤ i ≤ nd), two scenarii can
occur:

• The inequality is satisfied, and so do not have to be
taken into account.

• The inequality is not satisfied (i.e.Di,kxk > di,k).
Then, an equality constraint is applied to the boundary:
Di,kxk = di,k, where for any matrixMk at time k,
Mi,k denotes theith row of Mk.

Consequently, dealing with soft inequality constraints re-
duces to the application at each time step ofn ≤ nd equality
constraints. Such a problem has been treated in the first
paragraph of this section.

III. STATE ESTIMATION UNDER NONLINEAR STATE

CONSTRAINTS

Now, suppose that at each time stepk, xk is subject to
the following nonlinear equality constraint:

gk(xk) = dk (6)

where dk ∈ R
nd (nd < nx) is a known time-varying

vector andgk a known nonlinear function. We want to
estimate the statexk described by (1) and that this estimate
satisfies (6). In this section, we only consider state equality
constraints because we have seen in the previous section how
to transform inequality constraints in equality constraints.
As gk is a nonlinear function, we cannot directly apply the
projection method, because the Lagrange multiplier requires
a linear constraint. A solution would be then to linearizegk

about the current constrained state estimatex̂c
k, through a

first order Taylor development [7]. LetDk be the following
Jacobian:

Dk =
∂gk

∂Xk

∣∣∣∣
Xk=bxc

k

(7)

If the second and higher order terms are negligible, (6)
becomes:

gk(x̂c
k) + Dk (xk − x̂c

k) = dk

⇔ Dkxk = dk − gk(x̂c
k) + Dkx̂c

k

(8)

which is indeed a linear constraint. Unfortunately, for lin-
earizing (6) about̂xc

k, we need to know this state, and it can
only be known by applying (4). We get here in a sticky
problem, and we propose to use an iterated approach in
order to solve it. The idea is the same than in the iterated
extended Kalman filter [11], where the expansion of the
nonlinear measurement equation is done several times, about



a state that each time is theoretically closer to the a posteriori
estimated state. This procedure is motivated by the parallel
that can be established between the equations for applying
a constraint (4) and those for updating the estimates of a
Kalman filter [1]. The resulting algorithm is as follow:

1) Initialize with x̂
(0)
k = x̂u

k , P
(0)
k = Pu

k , wherex̂u
k and

Pu
k are computed by the unconstrained state estimator.

2) For i = 1, . . . , N , compute the following equations:

D
(i)
k =

∂gk

∂Xk

∣∣∣∣
Xk=bx(i−1)

k

d
(i)
k = dk − gk

(
x̂

(i−1)
k

)
+ D

(i)
k x̂

(i−1)
k

L
(i)
k = W−1

k D
(i)T
k

(
D

(i)
k W−1

k D
(i)T
k

)−1

x̂
(i)
k = x̂u

k + L
(i)
k

(
d

(i)
k − D

(i)
k x̂u

k

)

(9)

3) Evaluate the constrained state estimate and associated
covariance:

x̂c
k = x̂

(N)
k

Pc
k =

(
Inx

− L
(N)
k D

(N)
k

)
Pu

k

×
(
Inx

− L
(N)
k D

(N)
k

)T

(10)

IV. OPEN AND CLOSED LOOP CONSTRAINED FILTERS

In this section, three ways of coupling an operator con-
straining some estimates1 through the projection approach
with a stochastic state estimator (i.e. an estimator associating
a covariance to its estimates) are presented. These three
schemes, illustrated in Fig. 2, are:

• Open loop scheme,
• semi-closed loop scheme,
• closed loop scheme.
Originally, the state estimator and constraining operator

are coupled in an open loop scheme [7]. But, at first sight,
this scheme appears to be perfectible. Indeed, intuitively, it
would seem to be a good idea to inform the recursive state
estimator of the improvement achieved by the constraining
operator ; this can be done by using the constrained state
and covariance as entries of the recursive state estimator,as
illustrated by the closed-loop scheme.

However, an advanced analysis shows that this procedure
is extremely dangerous in the case of inequality constraints.
Indeed, when an unconstrained state does not satisfy some
inequality constraints, it is projected onto the surface of
the constraint hypervolume, with respect to (3). Such a
constrained state is then equivalent to an update issued from
a fictive perfect measurement, as explained in section II.A.
But the true state is into the constraint hypervolume, and
not necessarily onto its surface, as illustrates Fig. 3. Then,
the fictive measurementgk(xk) = dk could no more be
considered as a perfect one. Consequently, correcting the
covariance with such a projected state is an illicit operation,
leading to a decrease of the covariance. This can damage the
filter robustness. This consideration leads us to the idea of
semi-closed loop scheme.

1Subsequently, such an operator will be calledstate constraineror
constraining operator.

Fig. 2. Open loop, semi-closed loop and closed loop constrained state
estimator

Fig. 3. The projection approach in the case of state inequality constraints

V. A PPLICATION

In this section, we apply a constrained Kalman filter on a
three-dimension tracking application, with nonlinear inequal-
ity constraints on the acceleration of the studied moving
body. The results obtained are compared with those of an
unconstrained Kalman filter. In such an application, the
Kalman filter is one of the most powerful tools existing [14].
However, others approach exists, such as the Input Estima-
tion (IE) in its original [15], recursive [16] and generalized
[17] forms, the inclusion of the IE into a multiple hypothesis
setting [18], or the Interacting Multiple Model [19] [20]. A
complete state of the art can be found in [3].

A. Model Considered

Let −→r =
−−→
OM be the position vector of a moving body (a

vehicle for example) in a three-dimension space.O is fixed
with regard to the earth, andM is the body gravity centre.
If we consider the earth as inertial (neither entrainment nor



Coriolis acceleration), then we have:

−→
V =

d−→r
dt

∣∣∣∣
[T ]

−→γ =
d
−→
V

dt

∣∣∣∣∣
[T ]

(11)

where[T ] is an earth-fixed frame with originO,
−→
V the body

velocity (relatively to the earth), and−→γ the body acceleration
(relatively to the earth). For the sake of convenience, the
third axis of [T ] is taken normal to the earth tangential
plane atO. In this application, the body is supposed to
have a hostile behaviour, i.e an unmeasured, varying and
unpredictable acceleration. Then, we decide to model it as
follow:

d−→γ
dt

∣∣∣∣
[T ]

= −→η (12)

where−→η is a white noise. Projecting the equations (11) and
(12) into [T ] leads to the following model:




ṙ

V̇

γ̇



 =




03×3 I3 03×3

03×3 03×3 I3

03×3 03×3 03×3








r

V

γ





+




03×1

03×1

I3



 η

(13)

where, for any vector
−→
λ , λ is the projection of

−→
λ onto the

axis of [T ]. This model is discretized thanks to an Euler
scheme, with a sample timeT :



rk+1

Vk+1

γk+1



 =




I3 T I3 03×3

03×3 I3 T I3

03×3 03×3 I3








rk

Vk

γk





+




03×3

03×3

I3



wk

(14)

where wk =

∫ (k+1)T

kT

η(t)dt is a random walk [2], with

covariance
√

TE
(
ηηT

)
. From (14), one can easily identify

xk, Ak and Gk. The measurementsyk are done at each
sample time thanks to a GPS which measure the body
position. Through an appropriate coordinate change, we
have:

yk = rk + vk =
[

I3 03×3 03×3

]
︸ ︷︷ ︸

xk + vk

= Ck

(15)

wherevk is the GPS measurement error, modelled by a white
noise.

Moreover, from physical considerations, we have addi-
tional information about the body acceleration:

• The norm of the horizontal acceleration is below a
boundBh,

• the vertical acceleration is included in the interval
[Bd;Bu].

By writing down xk,i the ith component ofxk, and by
seeing thanks to (14) thatγk = [x7,k x8,k x9,k]T , this
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Fig. 4. Body true acceleration and state estimator boundaries

consideration leads to the following inequality constraints:

x2
7,k + x2

8,k ≤ B2
h

Bd ≤ x9,k ≤ Bu
(16)

B. Experiments

Equations (14) and (15) allow the use of a Kalman filter,
while (16) requires the iterated method for taking itself into
account. We decide to make the proposed Kalman filter
works in SI units, and with sample timeT = 1s.

The body initial condition isx0 = [15 20 0 | . . .
. . . 0 0 0 | 1.7 0.9 0.95]T , and the GPS standard-deviation
is supposed to be 10m. The body acceleration is available
in Fig. 4, where the horizontal acceleration is the euclidian
norm of the X and Y axis acceleration.

The Kalman filter is tuned as follow:̂x0 = 09×1, P0 =
diag(302, 302, 302, 302, 302, 302, 22, 22, 22), Qk = 0.22I3

and Rk = 102I3, where "M = diag(...)" is a shorthand
notation indicating thatM is a diagonal matrix fulfilled in
order. The acceleration boundaries are set to the following
values:Bh = 2m/s2, Bu = 1m/s2, Bd = −5m/s2. By seeing
Fig. 4, we can remark that the simulated acceleration is
sometimes close to its boundaries, especially during the first
hundred seconds. Then, we can expect that an unconstrained
Kalman filter does violate (16).

Four kinds of Kalman filters are under consideration: One
unconstrained and three constrained: One in open loop, one
in semi-closed loop and one in closed loop. The number
of iterations for applying the nonlinear state constraint (see
section III.) is taken equal toN = 1. The results obtained are
presented in Fig. 5 to 8. For the sake of clarity, the estimated
accelerations are separated in two figures (Fig. 5 and Fig.
6). We can clearly see that during the first hundred seconds
and last sixty seconds, the unconstrained Kalman filter
estimate goes over the limits determined by (16), whereas
the open loop and semi-closed loop constrained filters do
not. The closed loop constrained filter gives poor results
for the horizontal acceleration estimates. The explanation is
that the closed-loop scheme leads to a low covariance, and
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Fig. 5. True and estimated accelerations
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Fig. 6. True and estimated accelerations

consequently, a low Kalman gain. This is confirmed in Fig.
9, where the acceleration standard deviations (i.e. the square
root of the corresponding diagonal terms of the covariances)
of the closed loop constrained filter are clearly lower than
the unconstrained filter2 ones. Then, as too few importance
is given to observations, the closed loop constrained filteris
unable to detect that after 100s, the nonlinear inequality of
(16) is actually widely checked, and so, keep on applying
it, as attests Fig. 6. This result confirms that the closed loop
scheme is actually dangerous for state inequality constraints.
The performance of the open loop and semi-closed loop
constrained filters are equivalents and very satisfying. The
position and velocitie estimation errors are shown in Fig. 7
and 8.

In this experiment, the constrained filters were tuned with
the valueN = 1 iteration. Now, let us see what happens if

2It should be reminded that, with respect to Fig. 2, the covariance
propagated by the state estimator in the open loop and semi-closed loop
schemes are the same than the unconstrained filter one.
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TABLE I

ESTIMATION QUALITY IMPROVEMENT WITH RESPECT TO THE NUMBER

OF ITERATIONSN

N 1 2 5 20
Open loop scheme 1.48% 1.5% 1.5% 1.5%

Semi-closed loop scheme 2.07% 2.09% 2.09% 2.09%

we change this value. As we could see that the closed loop
constrained filter gives poor results, we do not consider it
anymore. In order to evaluate the improvement of estimation
quality of a constrained filter with a givenN relatively to
an unconstrained filter (N = 0), we compute the following
quantity3:

improvement= 100



1 −

√√√√
∑L

k=1 ‖xk − x̂c
k‖2

∑L

k=1 ‖xk − x̂u
k‖2



 (17)

where L is the simulation length,xk is the true state at
time k and x̂c

k the state estimated by the constrained filter
considered, for a givenN . The results, issued from an
average of ten simulations, are presented in table I.

By seeing these results, we can conclude thatN = 1
iteration is a very good value for such an application. This
result concurs with the fact that, for most problem treated
with an iterated extended Kalman filter, the majority of the
possible improvement is obtained by only relinearizing one
time [11], p. 410. Moreover, the semi-closed loop scheme
gives slightly better results than the open loop scheme, but
the difference is not very obvious, as attest Fig. 5 and 6.
Finally, by seeing table I, the improvement provided by the
constrained filters does not appears to be significant. This is
because the body acceleration can be easily estimated, as the
position is frequently measured: The acceleration estimated
by an unconstrained Kalman filter does not often go over the
boundaries, which explained the low improvement bringed.

VI. CONCLUSION

In this paper, a way of dealing with state estimation
under nonlinear soft inequality state constraints has been
presented. This method is an extension of the projection
approach using an iterated approach. Three ways of cou-
pling the state constraining operator with the recursive state
estimator has been exposed: open loop, semi-closed loop
and closed loop. In the case of state inequality constraints,
this last scheme is unsatisfactory because it leads to a
severe covariance decrease, misleading the state estimator.
The open loop and semi-closed loop schemes give equivalent
and very satisfactory results. However, the semi-closed loop
scheme could be preferred because it allows a reduction
of the frequency application of the state constraining op-
erator. A three-dimension tracking application highlighted
these results, and allows us to see that one iteration for
applying the state constraints is enough. In this application,
the improvement provided by the consideration of constraints
is not significant. However, it does not take away from

3This quantity computes the RMS (Root Mean Square) reduction in
percent of the considered constrained filter estimation error in comparison
to the unconstrained filter one.

the interest of the proposed approach in any way, because
its general formulation make it is suitable for any kind of
nonlinear constraints. For exemple, as potential application,
we can mention the accelerometers bias and gyroscopes
drift estimation in inertial navigation. As these variables are
from far less observable than the body acceleration in the
considered exemple, a substantial gain in estimation quality
can be expected. As outlook of this work, it would be
interesting to compare this method with others approaches
using linear (and so different) inequality constraints, such
as the probability density function truncation [11]. It would
also be interesting to study the consequence of a first order
linearization of the constraint equations on the proposed
algorithm.
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