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State Estimation Under Nonlinear State Inequality Constrains.
A Tracking Application

Vincent Sircoulomb, Ghaleb Hoblos, Houcine Chafouk and Reagot

Abstract— This paper proposes a general method for dealing undeniable advantages: It is physically meaningful, it can
with state estimation under nonlinear state soft inequality be used with any kind of state estimator and it is easily
constraints. This method is based on the projection approach, extendable to linear soft inequality constraints [12] \lie t
and then has the advantage to be compatible with any kind of . : . .
state estimator. In order to be taken into account, the nonlinear actlve_-set me_thod [13]. _Unfortunz_itely, dealing V‘_”th naBRr
constraints are linearized about the constrained state using an State inequality constraints remains to be a delicate Hs&.
iterated approach. The proposed algorithm is tested on a three- purpose of this article is to propose a general method for
dimension tracking application with nonlinear constraints on  dealing with nonlinear state soft inequality constrairits.
the moving body acceleration. The results are compared with this work, two contributions can be distinguished: The use
those of an unconstrained Kalman filter. o . > N

of an iterated approach in order to deal with nonlinear state

I. INTRODUCTION constraints via the projection approach, and the propwsiti

The Kalman filter is known to be the optimal estimatorof three different ways for associating a state estimatdin wi
for linear systems corrupted by white state and measurem&@me state constraints.
noises [1]. Its efficiency and ease of implementation have N this paper, the projection approach for estimating the
made this estimator be an essential tool for applicatioriate of a system under linear inequality constraints is re-
such as inertial navigation [2], target tracking [3], Signaminded in section 2. Then, section 3 proposes an iterated
processing [4], optimal control [5] or fault diagnosis [6]. method for extending the projection approach to nonlinear

However, in the implementation of a Kalman filter, thereState soft inequality constraints. The next section pitssen
is often known information about the process that is ignorefiree different ways of coupling the projection approacthwi
because they do not fit easily in the structure of this estmatits associated state estimator. Finally, the results néthi
[7]. For example, when estimating a plane altitude, we knoRY the proposed methods are compared in section 5 with
that the estimated value must be positive; when estimatingt@0se of an unconstrained Kalman filter on a 3D tracking
quaternion, its euclidian norm must be equal to one [8]. ThigPplication, with nonlinear constraints on the moving body
kind of information can be interpreted as constraints on thacceleration.
state variables.

When the state variables are subject to linear equality
constraints, different ways of dealing with this problem i S ) _
can be found. For example, it is possible to reduce the Consider the following linear discrete time system:
model parametrization [9], but this approach leads to a Tpp1 = Apzi + Bruy, + Grwy,
loss physical meaning associated to the state variables [7] { yr = Cpp + vk 1)
Another approach consists in treating the constraints as , , .
perfect measurements [10]; however, this method has tHd1€réx € R"« is the state vectony;, € R™ the input
effect of leading to a singular measurement noise covagian¥eCtor, ¥r € R™ the measurement vector, < R™
matrix, which can cause numerical problems during thi'€ Process noisey, € R"v the measurement noise and
computation of the Kalman gain [7]. A third way of doing® € N the (discrete) timexo, wj, and v, are supposed
can be to use the Lagrange multiplier in order to tak&® D€ gaussian, with respective covariang, Q) and
into account the constraints when deriving the Kalman filteR+- Moreover, w;, and v, are supposed to be mutually
from the optimality criterion chosen. The results obtaine§ncorrelated, and uncorrelated wity. Ay, By, C,. and
are different depending on the optimality criterion sedect G+ @reé known matrices, potentially time varying. The system
(least squares or maximum a posteriori [4]); however, thidescribed by (1) is assumed to be observable.
tgchnique appears to be a particul_ar_ case of the projeg- |inear state equality constraints
tion approach [7], [11]. This last unifying theory presents

Il. STATE ESTIMATION UNDER LINEAR STATE
CONSTRAINTS THE PROJECTION APPROACH

Now, suppose that at each time stepx;, is subject to
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—— Hyperplane of equation Dyay, = dy, B. Linear state soft inequality constraints

Now, suppose that at each time stepx; is subject to
1 & the following linear soft inequality constraint:

Constrained state ~ Unconstrained state

Dz, < dy %)

whered;, € R™ (ng < n;) is a known time-varying vector
andD;, a known full-rank time varying matrix of appropriate
dimension. We want to estimate the statg described by

rank matrice (if it is not the case, it means that there ar(al) and that this estimate satisfies (5). A way of dealing with

some redundant constraints, which can be eliminated), an ch a problem is using the active set method [13]. It camsist

g < n In testing at egch time step the ny scalar inequalit_i_es of

o ) ) (5). For thei™ inequality ( < i < ng), two scenarii can

We want to estimate the state, described by (1) and occur:

that this estimate satisfies (2). Let us denote &y the he i lity i isfied q d h b
state estimated at timie by an unconstrained estimator (i.e. ° The inequa Ity Is satisfied, and so do not have to be
an estimator which does not take into account the relation takeq Into agcoynt. - .
(2). This estimator can be for example a Kalman filter) and * The inequality is not satisfied (1.d;xy > di). _
by z¢ the estimate provided by same estimator, but which Then, arlequahty constraint is appll_ed to the_boundaw.
take into account equation (2). The associated covariances Di i = di, V\{mere for any matrbM; at time k,
of estimation error are denotd®l! andP¢. The principle of M . denotes thg ron of Mkj ) )
the projection approach is illustrated in Fig. 1. It corsist Consequently, dealing with soft inequality constraints re

solving the following constrained optimization probleni,[7 duces to the application at each time stem.of n, equality
[11]: constraints. Such a problem has been treated in the first

paragraph of this section.

Fig. 1. Principle of the projection approach

. ~, ~u\T' — ~, ~
min ((mz —zy) W (=5 — :c};)) I1l. STATE ESTIMATION UNDER NONLINEAR STATE

@j e ®) CONSTRAINTS
such that D, z§ = d;

Now, suppose that at each time stepx;, is subject to

where T' denotes he transposition operation awd, is a the following nonlinear equality constraint:
symmetric positive definite weighting matrix. The solution gi(zr) = d (6)
is obtained through the use of the Lagrange multiplier, and
summarized by the following set of equations [7], [11]: whered, € R™ (ngy < n,) is a known time-varying
vector andg; a known nonlinear function. We want to

¢ = Y+ Ly (d — DY) estimate the state; described by (1) and that this estimate
P¢ = (I,, — LyDy)P¥(1,, — LyD;)T (4) satisfies (6). In this section, we only consider state etyuali
L, — W;lD{ (DkW,ZleT,)fl constraints because we have seen in the previous section how

to transform inequality constraints in equality consti®in

The constrained estimated state has the following prope’?‘-S gi is a nonlinear function, we cannot directly apply the

ties [7], [11]: prc_Jjection methc_)d, becaus_e the Lagrange muItipIier rgquir

' a linear constraint. A solution would be then to linearige

o itis unbiasedvk € N: E (z — f) = 0, x1 about the current constrained state estimigge through a

o if Wi, = P}, then it results in the mini- first order Taylor development [7]. LdD, be the following
mum variance filter:E ((wk. — %) (g — EE)T) < Jacobian: 99
k

E ((a:k —2) (zp — z)T) Vz € R"= Dy, = X, . )

Xk=ay,

o if Wi, =1, , then it results in a constrained estimate ) o
that is closer to the true state than the unconstrained !t the second and higher order terms are negligible, (6)
estimate||zy, — Z¢|| < ||lzx — TV becomes:

g1 () + Dy (), — ) = di,

wherel, and0, are identity and zero matrices of appropriate ~ -
y pprop < Dixp =di — gk(ilfz) + Dsz

(8)
dimension, andE is the mathematical expectation. It can
also be seen thanks to (4) that W, = I,_, then the which is indeed a linear constraint. Unfortunately, for-lin
the unconstrained state is orthogonally projected onto theamrizing (6) abouft$, we need to know this state, and it can
constraint hyperplan, which is generally not the case witbnly be known by applying (4). We get here in a sticky
W, = P}{.. Moreover, a parallel can be established betweeproblem, and we propose to use an iterated approach in
(4) and the equations for updating a Kalman filter. Thi®order to solve it. The idea is the same than in the iterated
can be explained by the fact that the constraint (2) can extended Kalman filter [11], where the expansion of the
interpreted as a fictive perfect measurement. nonlinear measurement equation is done several timest abou



a state that each time is theoretically closer to the a poster Recursive state ;Z | Constraining %’%'
estimated state. This procedure is motivated by the paralle estimator operator ’

that can be established between the equations for applying
a constraint (4) and those for updating the estimates of a
Kalman filter [1]. The resulting algorithm is as follow:
1) Initialize with %,(CO) = T}, P,(CO) = P}, wherez} and
P} are computed by the unconstrained state estimator.

2) For:=1,...,N, compute the following equations: & a5
Recursive state " Constraining —’—'C
D (4) — 89 k estimator Pi operator | Pi,
k an Xk:fc\(i,—l)
(i) ~(i-1) (1) ~(i—1) i
d,’ = dip—gx (:ck ) +D, 'z, ©)
. . ’ . 1 Delay
L](;) _ WIZIDE;)T (Déz)wllel(;)T> T:%
f}(j) — :’iz 4 LI(;) (d](;) _ D](;):/iz) Semi-closed loop constrained state estimator
3) Evaluate the constrained state estimate and associated zj; z

Recursive state P! Constraining W

covariance: estimator operator
z o= & -0
P = (Inm*Lng)foNv Py (10) Delay o
< (1. -1D) -

Closed loop constrained state estimator
IV. OPEN AND CLOSED LOOP CONSTRAINED FILTERS
In this section, three ways of coupling an operator corfFig. 2. Open loop, semi-closed loop and closed loop congtastate
straining some estimateshrough the projection approach &ima"
with a stochastic state estimator (i.e. an estimator aatogi

a covariance to its estimates) are presented. These thre: Hypervolume of equation gy (zy) < dj
schemes, illustrated in Flg- 2, are: t Constrained state w.r.t. the active set method,

o Open loop scheme,

« semi-closed loop scheme, Tk

« closed loop scheme. [ \Unconslrained state

Originally, the state estimator and constraining operator - \
are Coupled in an open |00p scheme [7] But, at first Sight, Possible values for &7  Projection direction, determinated by W,
this scheme appears to be_ perfect_lble. Indeed, |ntu_|t|\rely Fig. 3. The projection approach in the case of state inefyuadinstraints
would seem to be a good idea to inform the recursive state
estimator of the improvement achieved by the constraining
operator ; this can be done by using the constrained state
and covariance as entries of the recursive state estinasor,

illustrated by the closed-loop scheme. _ In this section, we apply a constrained Kalman filter on a
_ However, an advanced analysis shows that this procedugee.dimension tracking application, with nonlineargnal-

is extremely dangerous in the case of inequality consBainy, constraints on the acceleration of the studied moving
Indeed, when an unconstrained state does not satisfy SORlsdy. The results obtained are compared with those of an
inequality constraints, it is projected onto the surface ofinconstrained Kalman filter. In such an application, the
the constraint hypervolume, with respect to (3). Such Raiman filter is one of the most powerful tools existing [14].
constrained state is then equivalent to an update issut frQyoever, others approach exists, such as the Input Estima-
a fictive perfect measurement, as explamed in sectiaR I1. ion (IE) in its original [15], recursive [16] and generadit

But the true state is into the constraint hypervolume, anﬁn forms, the inclusion of the IE into a multiple hypothesi

not n_egessarily onto its surface, as illustrates Fig. 3-”Thesetting [18], or the Interacting Multiple Model [19] [20]. A
the fictive measuremengy (xx) = dj. could no more be c,mpjete state of the art can be found in [3].
considered as a perfect one. Consequently, correcting the

covariance with such a projected state is an illicit opergti i
leading to a decrease of the covariance. This can damage fieModel Considered
filter robustness. This consideration leads us to the idea pft = — O/ be the position vector of a moving body (a

semi-closed loop scheme. vehicle for example) in a three-dimension spaCeis fixed

LSubsequently, such an operator will be callsite constraineror ~ With regard to the earth, andi/ is the body gravity centre.
constraining operatar If we consider the earth as inertial (neither entrainmemnt no

«— issued from the "perfect measurement" g (Z};) = dy.
S

V. APPLICATION



Coriolis acceleration), then we have: ) ‘ ‘ Acceleration (m/s"

N 4V
V= R (11)
7] (7] X ‘

where[T] is an earth-fixed frame with origi@, V the body
velocity (relatively to the earth), ang the body acceleration
(relatively to the earth). For the sake of convenience, the % 50 100 150 200 250 300
third axis of [7] is taken normal to the earth tangential ‘ ‘ ‘ ‘ ‘ ‘
plane atO. In this application, the body is supposed to
have a hostile behaviour, i.e an unmeasured, varying an
unpredictable acceleration. Then, we decide to model it as
follow:

A 5.l |
Wy @ N
[ ] 00 50 100 150 200 250 300
. . . . . . Time (s)
where 7 is a white noise. Projecting the equations (11) and
(12) into [7] leads to the following model: Fig. 4. Body true acceleration and state estimator bourslarie
T O3x3 Iz Osxs T consideration leads to the following inequality constisiin
14 = O3x3 O3x3 I3 14 9 9
. + 22, < B?
0 0 0 I7,k 8,k — “~h 16
¥ 383 3x3  0O3x3 Y (13) By <19, < B, (16)
3x1 :
+| O3x1 | M B. Experiments
I;

Equations (14) and (15) allow the use of a Kalman filter,
- . — — while (16) requires the iterated method for taking itsetbin
where, for any vector, A is the projection ofA onto the account. We decide to make the proposed Kalman filter

axis of [T]._ This model is dllscrenzed thanks to an EuIerWorks in SI units, and with sample timE — 1s.
scheme, with a sample tinig:

The body initial condition iszy = [15 20 0 |...

Tht1 I3 TIs O3x3 L ...000]1.7 0.9 0957, and the GPS standard-deviation
Vit1 = O35+«3 I3 TI3 Vi is supposed to be 10m. The body acceleration is available
Yh+1 033 0343 I3 Vi (14) in Fig. 4, where the horizontal acceleration is the eudfidia
0343 norm of the X and Y axis acceleration.
+ | 0343 | wy The Kalman filter is tuned as followty, = 09y, Po =
I3 diag(302, 302, 302, 302,302,302, 22,22,22), Qx = 0.2°I3

and Ry = 10%I3, where M = diag(...)" is a shorthand
notation indicating thaiM is a diagonal matrix fulfilled in
LT order. The acceleration boundaries are set to the following

covariancev'TE (nn). From (14), one can easily identify values:B;, = 2m/s?, B, = 1m/s?, B; = —5m/<2. By seeing
xi, A, and G. The measurementg, are done at each Fig. 4, we can remark that the simulated acceleration is
sample time thanks to a GPS which measure the bodpmetimes close to its boundaries, especially during tke fir
position. Through an appropriate coordinate change, weaundred seconds. Then, we can expect that an unconstrained
have: Kalman filter does violate (16).

Four kinds of Kalman filters are under consideration: One
(15) unconstrained and three constrained: One in open loop, one
= Cy in semi-closed loop and one in closed loop. The number
of iterations for applying the nonlinear state constrasee

\r’]\/:iz;ev’“ is the GPS measurement error, modelled by aWhItseection ll.) is taken equal t& = 1. The results obtained are

Moreover, from physical considerations, we have add#_)resented in Fig. 5 to 8. For the sake of clarity, the estithate

tional information about the body acceleration: accelerations are separated in two figures (Fig. 5 and Fig.
y ' 6). We can clearly see that during the first hundred seconds

 The norm of the horizontal acceleration is below &ng |ast sixty seconds, the unconstrained Kalman filter

(k+1)T
where w;, = n(t)dt is a random walk [2], with

Yo =7e+vp = Is Osx3 Osxz | @k + vy

boundB,}, o ) ) estimate goes over the limits determined by (16), whereas
[Ba; Bu]- not. The closed loop constrained filter gives poor results

By writing down =y, ; the i component ofx;, and by for the horizontal acceleration estimates. The explanato
seeing thanks to (14) thay, = [z7r Zsk l'g’k]T, this  that the closed-loop scheme leads to a low covariance, and
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Fig. 6. True and estimated accelerations

consequently, a low Kalman gain. This is confirmed in Fig.
9, where the acceleration standard deviations (i.e. tharequ
root of the corresponding diagonal terms of the covarignces
of the closed loop constrained filter are clearly lower than
the unconstrained filtérones. Then, as too few importance
is given to observations, the closed loop constrained fiiter
unable to detect that after 100s, the nonlinear inequafity o
(16) is actually widely checked, and so, keep on applying
it, as attests Fig. 6. This result confirms that the closeg loo
scheme is actually dangerous for state inequality comstrai
The performance of the open loop and semi-closed loog
constrained filters are equivalents and very satisfyinge Th
position and velocitie estimation errors are shown in Fig. 7
and 8. '
In this experiment, the constrained filters were tuned with
the valueN = 1 iteration. Now, let us see what happens if

X axis

is

Z axi

2|t should be reminded that, with respect to Fig. 2, the covasa
propagated by the state estimator in the open loop and ses@etlmop
schemes are the same than the unconstrained filter one.

Velocity estimation errors (m/s)

T
— — unconstrained
— - open loop
—— semi-closed loop []
closed loop

I I 1 I
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Fig. 7. \Velocity estimation errors

Position estimation errors (m)
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Fig. 8. Position estimation errors
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TABLE |
ESTIMATION QUALITY IMPROVEMENT WITH RESPECT TO THE NUMBER
OF ITERATIONS N

N 1 2 5 20
Open loop scheme 1.48% | 1.5% 1.5% 1.5%
Semi-closed loop schemg 2.07% | 2.09% | 2.09% | 2.09%

the interest of the proposed approach in any way, because
its general formulation make it is suitable for any kind of
nonlinear constraints. For exemple, as potential apjpdicat

we can mention the accelerometers bias and gyroscopes
drift estimation in inertial navigation. As these variablkere
from far less observable than the body acceleration in the

we change this value. As we could see that the closed loggnsidered exemple, a substantial gain in estimation tyuali
constrained filter gives poor results, we do not consider fian be expected. As outlook of this work, it would be
anymore. In order to evaluate the improvement of estimationteresting to compare this method with others approaches

quality of a constrained filter with a givefv relatively to
an unconstrained filterN = 0), we compute the following
quantity?:

using linear (and so different) inequality constraintsghsu
as the probability density function truncation [11]. It wdu
also be interesting to study the consequence of a first order
linearization of the constraint equations on the proposed

L ~
2k |k — 2|2

L PN
Dkt ek — 212

where L is the simulation lengthgx;, is the true state at
time k£ and z§, the state estimated by the constrained filter
considered, for a givenV. The results, issued from an [@
average of ten simulations, are presented in table I.

By seeing these results, we can conclude tNat= 1
iteration is a very good value for such an application. This n
result concurs with the fact that, for most problem treateo[
with an iterated extended Kalman filter, the majority of thel5]
possible improvement is obtained by only relinearizing oneG]
time [11], p. 410. Moreover, the semi-closed loop schemé
gives slightly better results than the open loop scheme, but
the difference is not very obvious, as attest Fig. 5 and 6l7]
Finally, by seeing table I, the improvement provided by the
constrained filters does not appears to be significant. Fhis i[8]
because the body acceleration can be easily estimatece as t[g]
position is frequently measured: The acceleration eséithat
by an unconstrained Kalman filter does not often go over the
boundaries, which explained the low improvement bringed[.lol

improvement=100 | 1 — a7

(1]

(3]

VI. CONCLUSION [11]

In this paper, a way of dealing with state estimation
under nonlinear soft inequality state constraints has beéli?!
presented. This method is an extension of the projection
approach using an iterated approach. Three ways of coli3]
pling the state constraining operator with the recursiagest [14]
estimator has been exposed: open loop, semi-closed loop
and closed loop. In the case of state inequality constraints
this last scheme is unsatisfactory because it leads to (13!
severe covariance decrease, misleading the state estimato
The open loop and semi-closed loop schemes give equivaléifil
and very satisfactory results. However, the semi-closeg lo
scheme could be preferred because it allows a reductigiy)
of the frequency application of the state constraining op-
erator. A three-dimension tracking application highlight 18]
these results, and allows us to see that one iteration for
applying the state constraints is enough. In this appbcati
the improvement provided by the consideration of constsain!®!
is not significant. However, it does not take away from

3This quantity computes the RMS (Root Mean Square) reduction i[20]

percent of the considered constrained filter estimationr émr@omparison
to the unconstrained filter one.

algorithm.
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