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Abstract. - We propose a simple model of the dynamics of a contact
line under evaporation and partial wetting conditions, taking into account
the divergent nature of evaporation near the contact line, as evidenced by
Deegan et al. [1]. We show that evaporation can induce a non negligible
change of the contact angle together with modification of the flow near
the contact line. We apply our results to dip-coating of a substrate with
non volatile solutes. We show that at small velocities the coating thickness
increases and scales like the inverse of the square of the velocity which
implies a minimum of the coating thickness at the cross-over with the
more familiar Landau-Levich regime.

The deposition of homogeneous layers of col-
loidal particles behind a receding, evaporating
contact line constitutes a challenge, important
for many applications: control of optical prop-
erties of surfaces, realization of thick photonic
crystals [2], etc. In practice things are very
complicated as the physics at contact line mixes
several effects [1]: complex dewetting hydrody-
namics, non-trivial distribution of liquid evap-
oration very near contact line, particle migra-
tion with possible accumulation that can trap
the contact line, etc. This often leads to a com-
plex dynamics of the contact line, with possi-
ble occurrence of stick-slip effects [3, 4], that

increases the heterogeneity of the deposit. The
complexity of the physics is such that there is
presently no complete theory able to define the
optimal conditions for deposition, conditions
that are also very dependent upon the geom-
etry of the problem. By itself, even the sim-
pler problem of a contact line edging a pure
fluid receding on a flat solid under the effect
of evaporation remains poorly explored. Most
of available works, experimental [5] as well as
theoretical [6], deal with the case of perfect wet-
ting. Also, most of available models neglect a
very important feature, pointed into evidence
by Deegan et al. [1], i.e. the fact that, ac-
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cording to an analogy with electrostatics, the
evaporation flux of liquid towards ambient air
should diverge very near contact line. To our
knowledge, the implications of this statement
on contact line dynamics with evaporation has
poorly been explored.

In the present letter, we propose a simple
model of the flow near a contact line, reced-
ing at constant speed under both the effects
of capillary pressure gradients and evaporation.
We write the lubrication equations governing
the local liquid thickness, and investigate the
effect of the evaporation singularity on the in-
terface shape, focussing our discussion on the
case of partial wetting. The problems of stick-
slip phenomenon encountered in experimental
works under partial wetting conditions or the
consequences of evaporation under total wet-
ting conditions are left for future work. We
also investigate how the well known Tanner-
like mobility law proposed long ago by Cox and
Voinov [7,8] should be modified by the presence
of evaporation. Compared to recent insight on
dynamics of the contact line [9], our goal is not
to refine the description that is still the subject
of many discussions but rather to discuss in a
simple model the effects of evaporation that we
will show to be perturbative. We thus discuss
the implication of the divergence of evaporation
on the Cox and Voinov law in the first part of
the article. In the second part, we focus specif-
ically on dip-coating.

Figure 1: Notations of the problem

The situation under study is suggested in
Fig. 1. A contact line recedes at a constant
velocity V on a solid surface, both under the
effect of a fluid motion linked to capillary pres-
sure gradient U(x, z), and of an evaporation
flux J(x). Standard lubrication theory in the
limit of low Reynolds numbers and small slope
of the interface leads to a mean local velocity

of the liquid given by:

〈U〉 =
1

h

∫ h

0

U(x, z)dz = −h2

3η

∂P

∂x
=

γ

3η
h2hxxx

(1)
where h(x) is the liquid thickness, η the liq-
uid viscosity, and the capillary pressure reads
approximately P = Pa − γhxx , Pa being the
ambient pressure and γ the surface tension.
For a contact line receding at velocity V , mass
conservation imposes that the local thickness
h(x − V t) satisfies ∂th + ∂x(h〈U〉) + J(x) = 0,
which leads to:

∂

∂x
[h (〈U〉 − V )] + J(x) = 0 (2)

to be combined with the relation 〈U〉 =
γ
3η h2hxxx found above. To go further, one now
would need an approximation of the local evap-
oration rate distribution J(x). For a sessile ax-
isymmetric drop, Deegan [1] assumed an anal-
ogy between the vapour diffusion in air and an
electrostatic problem, the vapor concentration
near the liquid surface being supposed to satu-
rate at the value csat

v .
In analogy with this work, we will assume

that very near contact line J(x) diverges as
J(x) = J0x

−(π/2−θ)/(π−θ) which yields for very
small values of angle θ:

J(x) ≈ J0√
x

(3)

in which J0 is given by J0 =
Dg
√

λ

csat

w

ρw

where Dg

is the diffusion constant of evaporated solvant
in air, csat

w its mass concentration in air at sat-
uration, and ρw its mass density. The length
scale λ can be either the thickness of a diffu-
sive boundary layer, or the typical curvature
of the contact line. For instance, for the ses-
sile drops of in-plane radius R with low con-
tact angle considered in Ref. [1] one has ex-
actly λ = 2R. For a water drop of millimetric
size evaporating in ambiant air one has typi-
cally J0 ≈ 10−9 m

3

2 .s−1. After integrating once
Eq. (2) upon x, one gets:

(< U > −V )h = −2J0

√
x (4)

that can be written as:

V =
2J0

h

√
x +

γ

3η
h2hxxx (5)
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The local thickness of liquid h(x), is supposed
to vanish or at least to reach microscopic values
at contact line placed here for simplicity at the
location x = 0. The physical meaning of this
equation is that the recession of contact line
at a given velocity V is in fact due to both
migration of liquid under the capillary pressure
gradient γhxxx and to evaporation itself. This
evaporation term will add a new term to the
ordinary differential equation governing h(x),
considered years ago by Voinov [8], that reads
in this specific case:

hxxx =
3Ca

h2
− 6ηJ0

γ

√
x

h3
(6)

where Ca = ηV /γ designates the capillary
number built upon the receding contact line ve-
locity V . In this article, we will consider water
so that we can neglect the temperature gradi-
ents (which do not change the form of the evap-
oration rate [10]) together with Marangoni ef-
fects [11]. Note that some aspects of the ther-
mal effects on pinned evaporating drops have
been reported [12] but are of no importance in
the absence of Marangoni effect.

Evaporation and contact angle. – As in
the case of the original Voinov limit (J0 = 0),
Eq. (6) must be completed by boundary con-
ditions either at the vicinity of the contact line
or far from it. Physically, at small scales, in
the case of partial wetting, we have to look for
solutions with vanishing height at a cut-off mi-
croscopic distance a. At large distance L, we
will suppose that the interface has zero curva-
ture.

As Eq. (6) cannot be integrated analytically,
we propose here an ansatz of the solution in
the limit of slowly variable interface slope that
we will compare with a direct numerical sim-
ulation of the equation. Setting the follow-
ing nondimensional variables X = x/x0 and
H = h(x)/h0 with

x0 =

(

2J0

V

)2

(3Ca)−
2

3 (7)

h0 =

(

2J0

V

)2

(3Ca)−
1

3 (8)

Eq. (6) reads

HXXX =
1

H2
− X

1

2

H3
. (9)

Considering that the slope of the interface Θ =
HX is slowly variable and writing H(X) ≈
XΘ(X), we can rewrite Eq. (9) as

ΘXX ≈ 1

X2Θ2
− 1

X
5

2 Θ3
(10)

Assuming that Θ is equal to Θe at given small
X = A and does not deviate much from a mean
value, we can get from Eq. (10) the following
expression for Θ(X)

Θ3 = Θ3
e − 3 ln

X

A

+
4

Θe
(

1

A
1

2

− 1

X
1

2

) + α(X − A)
(11)

with constant α ensuring the adequate bound-
ary conditions ΘX(Λ) = 0 (vanishing curvature
of the interface at a given renormalized large
distance Λ). The details of the calculation are
given in appendix together with a calculation
of the errors due to the approximation.

In order to validate this ansatz, we performed
direct numerical simulation of Eq. (9) (see Fig.
2). The agreement between the numerical sim-
ulation and the ansatz is very good. As a com-
parison, we also performed the numerical calcu-
lation of the Voinov case (that is with no evapo-
ration: HXXX = 1/H2) starting with the same
macroscopic angle Θ(Λ) as that found in the
evaporative case and no curvature at X = Λ.
For X > 1, both curves are very similar.

Note that in the limit Λ → ∞, the constant
α vanishes and we can rewrite our ansatz, in
dimensional quantities,

θ3(x) = θ3
e − 9Ca ln(

x

a
)

+
24ηJ0

γθe
(

1

a
1

2

− 1

x
1

2

)
(12)

In practical situations, let us first remark
that for water, using J0 = 10−9 m

3

2 · s−1, η =
10−3 Pa · s, γ = 7 × 10−2 N · m−1, for a veloc-
ity V equal to 1 µm.s−1, x0 is of the order of
3 × 10−1 m, and h0 of the order of 1 × 10−3 m.
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Figure 2: Plot of Θ3(X). Comparison between the
analytical ansatz (bold solid line) given by Eq. (11)
and the numerical integration of Eq. (9) (normal
line). The nondimensional microscopic length was
chosen as A = 10−7. As a comparison, we show the
results of the numerical simulation of the Voinov
case for the same macroscopic apparent angle (dot-
ted line, see text). The agreement between the
ansatz and the numerical simulation is very good.
The effect of evaporation are significant for values
of X lower than 10−3.

This means that in Fig. 2, the effects of evapo-
ration are significant at distances from the con-
tact line X < 10−3 that is actual values lower
than 10−4 m, for a velocity of 1 µm.s−1. We
can see that the modification of the shape of
the interface is small provided that one defines
properly the macroscopic apparent angle.

To be more specific, at large scale L, one can
deduce the macroscopic angle θM from the mi-
croscopic angle θe using Eq. (12)

θ3
M = θ3

e − 9Ca ln(
L

a
) +

24ηJ0

γθea
1

2

(13)

The evaporation term appears to increase the
macroscopic angle θM compared to the Voinov
situation (J0 = 0) in a proportion of ∆θ/θ ≃
8ηJ0/(γa

1

2 θ4
e). For a cut-off length a = 1 nm,

we have ∆θ/θ ≃ 3×10+3J0/θ4
e . For angle θe =

10−1 rad and J0 = 5 ·10−9 m
3

2 · s−1 one obtains
an increase in the macroscopic angle of 15%
which is small but non negligible. In contrast,
for high value angle, the evaporative effects are
negligible and one can expect dramatic effects
in the case of total wetting which will be the
object of a further article.

Although the evaporative effects on the con-
tact line are small but non negligible, they will
have strong consequences on the deposit of col-
loidal particles as we will show in the following
part of this article.

Evaporation and Coating. – Let us fo-
cus now on the effect of evaporation on the
coating with a solute. Let us consider a droplet
of a solution with a solute that is not volatile
(a colloid or a polymer for instance). If the
droplet is receding, because of evaporation, a
solute can be deposited on the surface. Let us
assume that the contact angle, while receding
in the presence of evaporation, is not vanishing.
In that case one can consider the respective ef-
fect of evaporation and motion of the droplet
on the water flow. Eq. (4) shows that in the

framework of the substrate, when V.h = J0.x
1

2 ,
the flux due to evaporation is exactly opposite
to the flux due to the motion of the contact line.
In this condition the flux of solution is vanish-
ing. This occurs at a distance ℓd (see Fig. 3)
from the contact line given by:

ℓd =

(

J0

V θ

)2

(14)

A similar statement about the existence of
a stagnation point near the tip of a pinned
droplet under evaporation has evidenced by
Deegan et al. [13] while measuring transport
of solute.

Figure 3: Influence of evaporation on the solute
deposit

This distance is of the order of 100 µm for a
velocity of recession of the order of 10 µm.s−1.
Using this drying length ℓd, it is straightfor-
ward to deduce the coating thickness. The so-
lution trapped between the contact line and ℓd
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will dry, and thus all the solute trapped in this
domain will deposit on the substrate. Let Φ be
the volume fraction of non-volatile solute. The
flux of solution in the frame of the contact line
at ℓd is V.Φ.θ.ℓd. The flux of solute in this frame
after evaporation (or once the contact line has
receeded) is e.V where e is the thickness of the
coating supposed to be at a volume fraction of
1. These two fluxes are equal, leading to the re-
lation between the thickness of the coating and
the concentration of the solute:

e = Φ.θ.ℓd =
Φ

θ

(

J0

V

)2

(15)

It is interesting to remark that the thickness
of the coating increases with the inverse of the
square of the velocity, which is not intuitive.
In fact for faster dip-coating, a different phe-
nomenon occurs. If the solution does not have
the time to dry just after the film formation, the
Landau-Levich-Derjaguin theory has to be used
or slighlty modified when accounting for evap-
oration effects [14]. In that case the thickness

of the film before drying is given by Ca
2

3 .ℓcap

where ℓcap is the capillary length. Thus the
thickness of the film after drying, neglecting
flow in the film due to gravity, is thus given
by :

e = Φ

(

ηV

γ

)
2

3

ℓcap (16)

In this more familiar regime, the coating thick-
ness increases with the velocity. We can thus
estimate the cross-over velocity for these two
regimes, which corresponds to the situation
where the velocity Vc is just small enough for
the film to dry near the meniscus in a situation
of dip coating. Using the two previous equa-
tions, one deduces that :

Vc =

(

γ
2

3

η
2

3 ℓcap

J2
0

θ

)
3

8

=
γ

1

4 J
3

4

0

ℓ
3

8

capη
1

4 θ
3

8

(17)

This velocity corresponds both to the appear-
ance of a receding angle because drying is fast
enough, but also to the minimum of the thick-
ness of the coating that can be estimated as

emin = Φ

(

ηJ0

γ

)
1

2 ℓ
3

4

cap

θ
1

4

(18)

which yields a thickness of about 100.Φ nm, and
a cross-over velocity of about 10 µm.s−1 for wa-
ter solution (see Fig. 4) which corresponds to
a capillary number Ca ≃ 10−6. The existence
of this minimum seems to be supported by pre-
liminary experimental results [15].
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Figure 4: Coating thickness against contact line
velocity for a water solution containing Φ = 5% of
colloids in our evaporative regime and in Landau-
Levich-Derjaguin regime.

Finally we see that the divergence of evapora-
tion, if it does not strongly modify the shape of
the interface in practical situations, is respon-
sible for a minimum for the coating thickness
as a function of velocity. This is probably one
of the reasons why small thickness coating are
never prepared with dip-coating but requires
other techniques like spray or spin coating.

Appendix. – In this appendix, we show
how to obtain the expression of the analytical
ansatz given by Eq. (11). We start from Eq.
(10) and integrate it once, keeping Θ constant
(full numerical simulations show that H(X) ≃
XΘ(X) is an excellent approximation and that
Θ(X) varies slowly), so that we get

Θ2ΘX = − 1

X
− 2

3

1

ΘX
3

2

+ α (19)

with constant β insuring ΘX = 0 at large given
X = L. For boundary condition Θ(A) = Θe,
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one gets after integration of Eq. (19)

1

3
(Θ3 − Θ3

e) = − ln
X

A

− 2

3

∫ X

A

1

Θ(Y )Y
3

2

dY + α(X − A)
(20)

Once more, under the assumption that Θ(Y ) is
slowly variable, we can substitute in the inte-
gral Θ(Y ) with Θe which yields Eq. (11).

In order to obtain our ansatz, we resorted to
the assumption that Θ is a slowly variable. In
the following, we now turn to the calculation of
the main errors made through this approxima-
tion in the limit of infinite domain. The actual
solution θ⋆ of Eq. (10) in the dimensional form
satisfies

(θ⋆)xx =
3Ca

θ2
⋆

1

x2
−6

ηJ0

γ

1

θ3
⋆x

5

2

≡ F (θ⋆, x) (21)

From Eq. (12), we can write θ−1
ansatz = θ−1

e g(x)

with g(x) ≃ 1 + 3Ca
θ3
e

ln x
a + 8 ηJ0

γθ4
e

(x−
1

2 − a−
1

2 )

yielding at first order of the different contribu-
tions

F (θansatz, x) ≃ 3Ca

θ2
e

1

x2
g2 − 6

ηJ0

γθ3
e

1

x
5

2

g3

≃ (θansatz)xx

+
3Ca

θ2
e

1

x2

[

6Ca

θ3
e

ln
x

a
+ 16

ηJ0

γθ4
e

(
1

x
1

2

− 1

a
1

2

)

]

− 6
ηJ0

γθ3
e

1

x
5

2

[

9Ca

θ3
e

ln
x

a
+ 24

ηJ0

γθ4
e

(
1

x
1

2

− 1

a
1

2

)

]

(22)

All the constants present in the right-hand side
of this expression are of order at least lower
than 10−7 which implies that the errors caused
by our approximation are really small, which
was confirmed by our numerical calculations
(see Fig. 2).
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