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Abstract

Compression mouldings of commercial SMC were performed with an instrumented industrial press under various process conditions.
Results underline the influence of process parameters such as the initial SMC temperature, the axial punch velocity and the geometry of
the mould on local normal stress levels. They also show negligible fibre-bundle segregation in the principal plane of the moulded parts.
Thereby, a one-phase plug flow shell model is proposed as a direct extension of the plug flow model proposed by M.R. Barone and D.A.
Caulk [J Appl Mech 53(191):1986;361–70]. In the present approach, the SMC is considered as a power-law viscous medium exhibiting
transverse isotropy. The shell model is implemented into a finite element code especially developed for the simulation of compression
moulding of composite materials. Simulation and experimental results are compared, emphasizing the role of the SMC rheology on
the overall recorded stress levels. Despite the simplicity of the model, rather good comparisons are obtained.

Keywords: A. Polymer-matrix composites (PMCs); E. Compression moulding; C. Analytical modelling; C. Computational modelling

1. Introduction

Compression moulded composites such as sheet mould-
ing compounds (SMC) or alternatively glass mat thermo-
plastics (GMT) are widely and increasingly used in
different industry branches to produce thin semi-structural
parts. SMC are made of continuous sheets (thickness �2–
3 mm) containing �15–35 wt% chopped glass bundle mats
(length �10–50 mm, averaged diameter �0.05–1 mm)
embedded in a pasty matrix essentially made of CaCO3

(�60 wt%) and polyester resin (�20 wt%). A SMC com-
pression moulding process encompasses the different fol-
lowing stages. In a first stage, a charge (�25 �C) of
stacked plies cut from the SMC sheet is placed on the lower
platen of a hot mould (�150 �C) for about 5–20 s before

the mould is closed. Then, in a second stage as short as
around 5 s, the charge is squeezed at a closure velocity of
�0.1–10 mm s�1. This stage involves a considerable defor-
mation of the SMC inside the mould cavity, the usual
height reduction being around 30–70%. Once the mould
is filled, it is maintained closed during a third curing stage
for a period of about 60–120 s. Even if the flow stage is very
short, the different flow-induced phenomena, such as bun-
dles orientation evolution and segregation, knit lines, etc.,
strongly affect the structural and physical properties, the
surface aspect and the geometrical stability of produced
parts. For this reason, there is a great interest of the indus-
trial SMC manufacturers in simulating this flow stage in
order to reduce the long and empirical phases of design
and development of the moulds.

The flow of SMC during compression moulding is
highly complex because it strongly depends on the rheology
of the SMC, its evolving microstructure, the curing of
the polyester resin, thermal and mechanical boundary
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conditions between the SMC and the mould. Building flow
models allowing a complete treatment of the couplings
between all these different phenomena is heavy and is actu-
ally replaced by some simplification assumptions. For
instance, since the flow stage is very short, it is reasonable
to neglect the resin cure during this stage [3]. Likewise,
paste segregation is known to occur in complex parts of
the mould such as ribs [44,11], but is rarely identified in
other zones: as a consequence, most of the flowing models
outside the ribs are one-phase models.

Other approximations of the SMC flow (outside the
ribs) have been stated, taking advantage of the small thick-
ness of the mould cavity with respect to the other in-plane
dimensions. They have given rise to simplified descriptions
of the flow kinematics of compression moulded materials.
Among them, a first group is based on the lubrication
approximation, mainly characterized by (i) the shearing
of the composite through the thickness of the mould cavity
and (ii) the perfect sticking of the composite with the upper
and lower parts of the mould. Such a deformation mecha-
nism has been used to establish one-phase generalized
Hele–Shaw shell models [41,16,25,2]. A second group of
descriptions adopt the ‘‘plug flow’’ approximation, charac-
terized by (i) a uniform in-plane shear and elongational
deformation (ii) the absence of out of plane shear in the
core of the stacked sheets and (iii) possible sheared bound-
ary layers near the surface of the cavity. This second type
of deformation mechanism has given rise to one-phase plug
flow shell models [6,5,34]. Also notice that both approaches
consider the SMC charge as a one-layer sample and does
not account for its stratified structure. This point was stud-
ied for GMT materials by Leterrier and G’Sell [28] who
developed a multilayer plug flow model.

In practice, the plug flow as well as the through-thick-
ness shear mechanism exist, the predominance of the first
or second mechanism depends on processing conditions,
thickness of the sheets, length of fibres, etc. In the case of
SMC or GMT, which bundles are much longer than the
thickness of the mould cavity, experimental evidences show
that within a wide range of processing conditions, the plug
flow regime leads to an acceptable approximation of the
real flow patterns. Indeed, the experiments performed by
Barone and Caulk [4] have revealed that ‘‘plug flow’’ is
the dominating flow pattern of SMC materials moulded
in industrial conditions (mould temperature at 150 �C, thin
charges of thickness h 6 15 mm, high compression veloci-
ties �1.75–10 mm s�1). Performing isothermal squeeze flow
experiments on SMC at compression velocities ranging
from 0.1 to 3 mm s�1, Kotsikos and Gibson [21] have
established the same conclusions by analyzing the evolu-
tion of the measured normal stress along the radius of sam-
ples. Similar trends have been obtained by Servais et al. [39]
for the compression moulding of GMT. More recently,
Odenberger et al. [33] have analysed more closely the flow
of SMC during compression using a camera. The authors
have identified three deformation mechanisms. A first
and rapid ‘‘squish’’ phase is observed, during which the

flow is very complex, especially at the flow front where
the upper and lower plies are often ejected from the stack.
This short phase is followed by a steady ‘‘plug flow’’. At
the last step of compression, a ‘‘boiling’’ phase was
observed, ascribed to the boiling of styrene. Finally, it is
worth noting the plug flow assumption is also supported
by the theoretical and numerical work of Lee and Tucker
[26]. These authors have shown that the plug flow is a con-
sequence of the interaction of heat transfers localised near
the contact with the mould cavity, flow and temperature-
dependent viscosity and that it is likely to happen for
SMC in realistic processing conditions.

The equations governing the momentum balance in the
plug flow model involve a pressure term, related to the
incompressibility of the SMC, a term related to the bulk
rheology of the SMC and a friction term, introduced to
model the interaction between the SMC and the mould
cavity:

� Three types of friction terms have been tested by Barone
and Caulk [6]: pure and Coulombic dry frictions, and
linear hydrodynamic frictions. A better agreement with
their experiments was found with the last solution,
which physical motivation is the existence of a thin
lubricating paste-rich boundary layer adjacent to the
upper and lower parts of the mould. More recently,
accounting for the non-Newtonian rheology of the
paste, the hydrodynamic friction term was modified
using a power-law approximation [1].
� The term that accounts for the bulk rheology of the
SMC was initially proposed to be transversely isotropic,
purely viscous and linear [6]. It requires one additional
constitutive parameter, i.e. a constant in-plane exten-
sional viscosity. Different authors have tried to deter-
mine this parameter [9,10,1] and showed that such a
contribution was not always negligible with respect to
the friction term.

The last point calls up the two following comments.
Firstly, the rheological model proposed by Barone and
Caulk [6] is a first attempt to model the very complex rhe-
ology of SMC, strongly affected by the bundles content,
bundles orientation, imposed temperatures and strain rates
[40,27,32,18,19,29,30,24,13]. It could be interesting to
introduce in the plug flow model rheological models more
adapted to the rheology of the SMC. Secondly, the rheo-
logical term, even in its linear form, is rarely taken into
account in commercial simulation softwares, to the best
of our knowledge. Instead, a simplified form of the plug
flow equations is used, i.e. the very thin charges approxi-
mation model, in which only the pressure and friction
terms are modelled. The resulting momentum balance
equations are formally identical to those developed follow-
ing lubrication approximations [6]. If this very strong
assumption permits to describe very quickly the filling of
the mould with a minimum of unknown field (i.e. the pres-
sure only), it may not give correct mould closure force [35].
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Hence, the main objectives of the present contribution
are (i) to propose a plug flow model following the pioneer-
ing work of Barone and Caulk [6] and using a rheological
model able to capture the effect of strain rate, temperature,
bundle content and orientation on the mechanical response
of the SMC, (ii) to test its capability to reproduce compres-
sion experiments performed in industrial conditions, and
(iii) to implement it in a specially designed simulation code.
For that purpose, compressions in a rectangular channel
were performed using an instrumented industrial press
and with a commercial SMC formulation (Section 2).
Results first exhibit little segregation phenomena in the
plane of the compressed part and underline the roles of
the initial temperature of the SMC, the initial position of
the plies in the mould, the mould geometry and the axial
punch velocity (Section 3). The plug flow shell model is then
formulated: the rheological model used to describe the bulk
behavior of SMC materials is a nonlinear and anisotropic
viscous model developed in a previous study [13] and the
friction model is the power-law friction law proposed by
Abrams and Castro [1]. Analytical expressions for compres-
sions in a channel are established and compared with the
experiments (Section 4). At last, a finite element (FE) for-
mulation of the developed shell model is proposed and
implemented in a FE application, allowing a comparison
between experimental and numerical results (Section 5).

2. Experimental procedure

2.1. Material and equipments

The tested material is a standard Low Profile SMC (LP
606) supplied by Mecelec Composite and Recyclage (Tour-
non, France). Produced sheets are made of a polyester-
based paste matrix (see Table 1 for the composition) and
25 wt% of glass fibre bundles (length l = 25 mm, composed
of �200 fibres with a diameter d = 15 lm). Note that the
formulation characterized in previous works [24,13] was
identical to the present one, except it contained an inhibitor
to prevent curing during rheological tests.

Compression moulding experiments were performed
with an industrial hydraulic press (maximum axial force
of 4000 kN or a maximum axial displacement velocity of
40 mm s�1, Compositec, Chambéry, France). The press
was equipped with a standard rectangular mould that could
be used to produce thin (�1 mm) or thick (�15 mm) plates
with a in-plane (e1,e2) surface of 500 · 500 mm2. Two pres-

sure sensors were located in the upper part of the mould
(punch). Their locations are given in Fig. 1: the first one
(I) lies at the center of the mould whereas the second one
(II) is near the lower left corner of the punch.

2.2. Compression experiments

All the tests were carried out using a constant mould
temperature of 150 �C and two axial constant punch veloc-
ities _h of 1 mm s�1 and 10 mm s�1. The compression began
as soon as (�10 s) the sample was put into the mould. The
initial in-plane (e1,e2) surface of the sample was
S0 = l0L0 = 170 · 500 mm2. Incomplete compressions
showed that the flow front was fairly rectilinear, so that
the flow could be considered as parallel to e1 and indepen-
dent of x2. At last, different initial temperatures of the
SMC samples were used, respectively, 30, 40 and 60 �C.
For the last two cases, a pre-heating time over approxima-
tively a 10 min period was needed to bring the samples to
the prescribed temperature.

A first set of experiments was carried out with the stan-
dard mould using samples made of three stacked layers
(average initial thickness h0 of 8.15 mm). Two initial sam-
ple positions were adopted to investigate more precisely
the SMC flow. In the first case (SL, sample-left), the sam-
ples were initially located at left side of the mould, as
depicted in Fig. 1(a), whereas in the second case (SC, sam-
ple-center) samples were placed at the center of the mould
(see Fig. 1(b)). Note that when _h ¼ 10 mm s�1, it was not
possible to achieve the compression mouldings with a good
control of _h, so that no reliable results were obtained for
this velocity and this initial sample placement.

Table 1

Composition of the paste (wt%)

Polyester resin 19.60%

Styrene 1.56%

Catalyor + inhibitor 0.56%

ZnSt 1.31%

M additive 0.76%

Low profile additive 13.29%

MgO 0.85%

CaCO3 62.07%

Location of the pressure sensors

e1

II

33

e2

Initial position of SMC samples

(a) (b)

Aluminium part

Lower part of the mouldConvergents
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e3

(c)
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Fig. 1. Top views of the lower part of the mould with the initial

placements of SMC charges for the (SL, specimen-left) (a) and the (SC,

specimen-center) (b) mouldings, side view of the modified mould (c).

Notice that the projections of the pressure sensors located in the upper

part of the mould have been added in the views (a) and (b).
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A second set of compression tests was achieved in order
to study the flow of the SMC in a more complex situation.
For that purpose, the lower part of the standard mould was
modified by adding an intermediate polished aluminum
part that contained two successive smooth convergents
(height = 2 mm, length = 80 mm), as depicted in
Fig. 1(c). For these experiments, only one punch velocity
was investigated ( _h ¼ 1 mm s�1), and the samples were ini-
tially located at the left side of the mould (Fig. 1(b)) and
formed of six layers (average initial thickness of 16 mm).

During the experiments the axial punch displacement h
as well as the signals of the two pressure sensors were sys-
tematically recorded. The last two signals directly give the
values of local axial stresses rI

33 and rII
33.

2.3. Fibre-bundle segregation measurements

A burning and weighting technique was used to deter-
mine the fibre content after the compression moulding. It
is very similar to that proposed by Christensen et al. [11]
and consists of (i) burning the organic constituents of the
matrix and (ii) degrading some of the mineral ones.

In order to detect the calcination and the degradation
temperatures of the organic and mineral constituents, a
TGA experiment was first performed on a small amount
of matrix (volume � 1 mm3). The resulting evolutions of
the mass m of the sample and its first derivative dm/dT with
respect to the temperature T are plotted in Fig. 2. The dm/
dT curve clearly exhibits three peaks. Two of them occur
below 500 �C and are attributed to the calcination of the
organic constituents (polyester resin + other organic addi-
tives). The last one, located between 500 and 800 �C, is
mainly induced by the partial degradation of the CaCO3

fillers (CaCO3! CaO + CO2).
It was then possible to determine the local volume frac-

tion of fibres fi adopting the following procedure:

(1) determine the initial mass of the sample minitial
i ,

(2) heat the sample at 500 �C to burn the organic constit-
uents of mass m

organic
i and measure the mass m500

i of
the sample to obtain:

m
organic
i ¼ minitial

i � m500
i ; ð1Þ

(3) heat again the sample at 800 �C to degrade a part of
the mineral constituents of initial mass mmineral

i and
measure its new mass m800

i . Introducing kd, the degra-
dation coefficient of mineral fillers (0 6 kd 6 1), one
can write:

mmineral
i ¼

m500
i � m800

i

kd
; ð2Þ

so that the mass fraction of fibre-bundles si reads

si ¼
mfibre

i

minitial
i

¼
m800

i � ð1� kdÞm
500
i

kdm
initial
i

ð3Þ

and the fibre-bundle volume fraction fi becomes

fi ¼
siqpaste

siqpaste � qfibreðsi � 1Þ
; ð4Þ

where qi is the volumetric mass of constituent i. No-
tice that Christensen et al. [11] used a theoretical va-
lue of 0.44 for the degradation coefficient kd. Here, kd
was determined experimentally, adding a fourth step
to the procedure described above on several unde-
formed samples. It consisted of performing a chemi-
cal attack (HCl) of the remaining mineral fillers to
make them totally disappear from the burned sample:
the mass of the sample then reduces to mfibre

i . From
the knowledge of mfibre

i , m800
i and m500

i , it was then pos-
sible to estimate kd from the measurements:

kd ¼
m500

i � m800
i

m500
i � mfibre

i

¼ 0:41� 0:025: ð5Þ

This coefficient, which is slightly different from the
theoretical value of 0.44 [11], was used in (3) for the
rest of the analyzed samples.

Fig. 2. TGA measurements. Evolution of the mass m of the sample (%)

and of its first derivative dm/dT (% �C�1) as functions of the temperature.
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Fig. 3. Influence of the sample size a of the cut samples on fi/f0 (open

circles). The black circles represent the mean value of fi/f0 calculated at

fixed value of a.
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2.4. Initial variability of the fibre-bundle content

The influence of the size of the cut samples on fi was
investigated on undeformed sheets. For this reason, many
samples of in-plane dimensions of a · a, (a = 25, 50 and
100 mm) were cut in sheets of mean fibre-bundle volume
fraction f0 (�17.4%). The estimated values fi/f0 as functions
of the lengths of the samples are given in Fig. 3. This figure
clearly reveals that the calculated mean value (black circles
in the figure) weakly depends on the sample dimensions
and is equal to the mean fibre-bundle volume fraction f0,
provided the number of samples is high enough. Moreover,
a higher scattering of fi is observed for smaller lengths: the
estimated standard deviation is �10%, 6.5% and 6% when
a equals 25, 50 and 100 mm, respectively. This is essentially
attributed to the initial local heterogeneity of the fibre-bun-
dle content. Note that similar trends have been observed

previously concerning the heterogeneity of the local strain
field of SMC samples deformed homogeneously at the
macroscopic scale [13]. Accounting for the last results
and for the studied ‘‘1D’’ type of flow (in (e1,e2)), the
fibre-bundle content will be next analysed using mean
values, each of them being calculated with 10 samples
of in-plane dimensions of 25 · 25 mm2 of identical x1-
coordinate.

3. Experimental results

3.1. Standard mould

Fig. 4 shows a collection of experimental results obtained
during the compression tests performed with the standard
mould. The graphs plotted in this figure show the evolutions
of local axial stresses as functions of the relative height
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I
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33 ((SC), T = 40 �C) at different imposed velocities _h.
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h � hf, hf being the final height of the considered sample.
Fig. 4(a) gives typical evolutions of rI

33 and rII
33 during the

‘‘standard’’ (SL) compression experiments performed with
an initial SMC temperature of 60 �C and with _h ¼ 1 mm
s�1. The axial stress rII

33 first exhibits a sharp increase until
reaching a peak or a threshold stress. During this first stage,
air as well as styrene entrapped inside the SMC are expelled,
and the wavy surface of the layers is flattened. From the
peak, the SMCeffectively starts to flow into themould: stress
levels exhibit a slight decrease, which is ascribed to the so-
called ‘‘squish’’ deformation mode [33]. Then, axial stresses
display a smooth increase that progressively stiffens during
the compression. Fig. 4(b) compares the axial stress rII

33

recorded during a (SL) compression and the axial stress rI
33

recorded during a (SC) compression. The two compressions
have been achieved with the same testing conditions, except
the initial positions of the sample in the mould. This figure
reveals that axial stresses are higher when the sample is ini-
tially placed on the left of the mould than at the center.

The role of the initial SMC temperature is underlined in
Fig. 4(c), which shows the evolution of rII

33 during the stan-
dard (SL) compression of three SMC samples, whose initial
temperatures were 30, 40 and 60 �C, respectively. As evident
from this figure, the higher the initial temperature, the lower
the threshold stress. Lastly, the influence of the compression
velocity _h is given in Fig. 4(d), in which the axial stresses rI

33

recorded during two compression experiments (SC) per-
formed with two different axial velocities are plotted. The
viscous behavior of the SMC samples is emphasized, since
the stress levels strongly increase with the imposed axial
velocity _h, and in consequence with the axial strain rate _h=h.

As in the case of the previous homogeneous rheometry
experiments [13], it is important to note that a large scatter-
ing of ±20% on stresses was systematically recorded. This
high value is commonly encountered in the study of SMC
rheology [40,20] and is probably induced by the rather
irregular initial thickness h0 of the samples (Dh0/h0 �
±10%), the inaccuracy of L0 and l0 (DL0/L0 = Dl0/
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l0 � ±2%) and the variability of the initial fibre content (cf.
previous section).

3.2. Fibre-bundle segregation

Once the samples had been compressed, their fibre-bun-
dle content was analyzed following the methodology given
in Section 2.3. Fig. 5 shows typical examples of the evolu-
tion along the x1-coordinate of the fibre-bundle volume
fraction ratio f/f0, for three moulded parts: a compression
with the standard mould (SL) using an initial SMC temper-
ature of 60 �C, and two compressions using the modified
mould, at an initial temperature of 30 and 60 �C. For these
three examples, the axial punch velocity _h was set to
1 mm s�1. Accounting for the strong initial variability of
the fibre content, it is concluded that the fibre-bundle con-
tent is approximately kept constant (i.e. close to its initial
value f0 of 17.4%), even if a rather weak and wavy increase
of the fibre-bundle content, enhanced with the modified
mould, is observed just behind the free surface of the
sample.

4. A plug-flow shell model for the compression of SMC

4.1. Basic assumptions and balance equations

From the results obtained in previous studies [24,13] and
those obtained in this works, the following assumptions are
stated in order to build a plug flow shell model to approx-
imate the mould filling stage:

� The SMC is seen as a one-phase continuum medium:
this implies that the fibre network and the matrix have
the same velocity v. As a direct consequence, fibre bun-
dle segregation phenomena will not be accounted for in
the present model. Since weak segregation phenomena
have been observed during the ‘‘simple’’ compressions
investigated in this work (cf. previous subsection), this
is a first rough approximation of the SMC rheology.
For compressions involving more tortuous flows, such
as flow into severe in-plane convergents or ribs, non neg-
ligible bundle segregation may occur [44]: for those situ-
ations, much more complex and heavy two-phase
models have to be formulated [8,20,14].
� The filling phase duration is very short (<10 s) so that it
is reasonable as a first approximation to consider the
flow of the SMC without any curing of the polyester
resin. Moreover, the temperature in the stack of plies
may be considered as practically isothermal [3], except
near the upper and lower parts of the mould.
� The SMC is assumed to be an incompressible and purely
viscous body. Its stress tensor can therefore be written as

r ¼ �pdþ r
vðDÞ; ð6Þ

where p is the incompressibility pressure, d the identity
tensor and r

v the viscous stress tensor, function of the
strain rate tensor D:

D ¼ 1
2
ðgradvþ TgradvÞ: ð7Þ

� External and acceleration forces will be considered as
negligible quantities with respect to viscous forces gener-
ated by the deformation of the SMC.

Under such assumptions, the unique balance equations
that rule the flow of the SMC, i.e. the mass and momentum
balance equations, read:

divv ¼ 0;
divr ¼ 0:

�
ð8Þ

The plug flow kinematics constraints are now introduced,
restricting the current presentation to the case where the
mould cavity is a plate geometry whose midplane is con-
tained in the (e1,e2) plane: the extension of this 2D plate
model to a 3D shell model would be straightforward. The
velocity v of a material point of SMC composite is sup-
posed to be written:

v ¼ v1ðx1; x2Þe1 þ v2ðx1; x2Þe2 þ v3ðx1; x2; x3Þe3; ð9Þ

x3 being the height of the considered point from the mid-
plane of the sheet. Introducing the derivative symbol
vi,j = ovi/oxj, the mass balance Eq. (8a) can be written as

v1;1ðx1; x2Þ þ v2;2ðx1; x2Þ þ v3;3ðx1; x2; x3Þ ¼ 0; ð10Þ

from which one obtains:

v3;33ðx1; x2; x3Þ ¼ 0: ð11Þ

Noting h(x1,x2) the current thickness of the sheet, this
last equation can be integrated accounting for the fol-
lowing boundary conditions v3ðx1; x2; x3 ¼ hðx1; x2Þ=2Þ ¼
_hðx1; x2Þ=2 and v3ðx1; x2; x3 ¼ �h=2Þ ¼ � _hðx1; x2Þ=2:

v3ðx1; x2; x3Þ ¼
_h

h
ðx1; x2Þx3 ¼

_h

h
x3: ð12Þ

Hence, the strain rate D of a material point of SMC com-
posite is supposed to be of the form:

D ¼

v1;1
1
2
ðv1;2 þ v2;1Þ 0

1
2
ðv1;2 þ v2;1Þ v2;2 0

0 0
_h

h

0
BBB@

1
CCCA
ðe1; e2; e3Þ

¼ eD þ
_h

h
e3 � e3; ð13Þ

where the symbol ‘‘~’’ has been introduced to distinguish
2D-unknown fields and 2D-operators in (e1,e2) from 3D
ones. As the shear components Db3 (b 2 {1,2}) of the strain
rate tensor are constrained to zero, arbitrary reaction terms
(Lagrange multiplier) must consequently be added to the
stress tensor r:

r ¼ �pdþ T b3ðeb � e3 þ e3 � ebÞ þ r
v; b 2 f1; 2g: ð14Þ

These assumptions are now used to simplify the balance
equations of the problem. Hence, the incompressibility of
the composite (8a) now reads:
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fdiv~vþ
_h

h
¼ 0: ð15Þ

Likewise, the momentum balance Eq. (8b) in (e1,e2) are
integrated over the thickness h of the composite. Account-
ing for (14), they are now written as

�ggrad P þ 1

h
ðeTþ þ eT�Þ þ fdiv eRv

¼ ~0; ð16Þ

noting

P ¼
1

h

Z h=2

�h=2

pdx3; eRv
¼

1

h

Z h=2

�h=2

~r
v dx3 ð17Þ

and

ðeTþ þ eT�Þ � eb ¼ ½T b3�
h=2
�h=2 with b 2 f1; 2g: ð18Þ

P and eRv
represent, respectively, the pressure and the in-

plane viscous stresses averaged in the thickness of the
stack, whereas eT� and eTþ are the tangential stress vectors
exerted on the SMC sample by the upper (x3 = h/2) and
lower (x3 = �h/2) parts of the mould.

4.2. Constitutive equations

4.2.1. Rheology of the composite

Based on previous homogeneous rheometry experiments
performed on the same type of formulation (LP606 with
inhibitor [24,13]), a continuum one-phase rheological
model has been proposed in [13] and will be used in the fol-
lowing. In order to account for both the ‘‘planar’’ micro-
structure of the fibre bundle network and the nonlinear
viscous character of its deformation, the composite is seen
as an incompressible power-law fluid displaying a trans-
verse isotropy, which axis is e, normal to the plane of the
sheet. The intrinsic form of the viscous stress tensor r

v is
obtained using the theory of anisotropic tensor functions
[7,17]. For the two particular geometries studied in this
work (e = e3) and the adopted kinematical restrictions,
one obtains [13]:

~r
v ¼ geq

2

1þ 2H

Deq

D0

� �n�1

eD ð19Þ

and

rv
33 ¼ geq

2H

1þ 2H

Deq

D0

� �n�1 _h

h
; ð20Þ

with

D2
eq ¼

2

1þ 2H
eD : eD þ H

_h

h

 !2
0
@

1
A: ð21Þ

In these equations, H is a rheological function that ac-
counts for the bundle network anisotropy, n is the power
law exponent of the SMC and geq is its elongational viscos-
ity during a simple compression deformation parallel to e

at an equivalent strain rate Deq of D0 (arbitrarily fixed to
1 s�1). The power-law exponent n was found to be equal

to 0.44 for the studied SMC (from f = 0.034 to 0.234)
and 0.6 for the matrix without fibre. Likewise, possible
expressions for the rheological functions H and geq were
given [13]:

H ¼
1þ 98f þ 980f 2

0:5þ 67f þ 670f 2
� 1; ð22Þ

geq ¼ gps 2
1þ H

1þ 2H

� �� nþ 1

2

¼ g0psð1þ 98f þ 980f 2Þ 2
1þ H

1þ 2H

� �� nþ 1

2
; ð23Þ

where the viscosities gps and g0ps correspond to the axial vis-
cosities recorded during homogeneous plane strain com-
pressions at an axial strain rate of 1 s�1 performed on the
SMC (volume fraction of fibre f) and the paste (f = 0),
respectively. The paste viscosity g0ps is temperature
dependent, it is supposed to follow this Arrhenius-like
relation:

g0ps ¼ g00pse
b 1

T
� 1

T0

� �
; ð24Þ

where b = 4500 K�1 and g00ps ¼ 0:18 MPa s is the plane
strain axial viscosity of the paste at 1 s�1 and
T = T0 = 296 K (arbitrary choice). Even if the proposed
rheological model does not describe the evolution of the
in-plane orientation of fibre bundles, it is rather simple, re-
quires few constitutive parameters and gives rather good
prediction of the stress levels at the beginning of the
SMC flow over a wide range of strain rates and volume
fractions of fibres [13].

4.2.2. Friction stresses

Friction stresses are assumed to be related to the shear-
ing of thin paste-rich boundary layers during the tangential
relative motion of the bulk composite and the mould upper
and lower surfaces. The geometry, the microstructure
(composition, fibre-bundle content and orientation) as well
as the deformation mechanisms of such boundary layers
may be very complex. Following the proposition of
Abrams and Castro [1], we will simply approximate friction
stresses as power-law functions of the tangential SMC
velocity:

eTþ ¼ eT� ¼ �k k~vk
v0

� �m�1

~v; ð25Þ

where v0 is a reference velocity (fixed here to 1 mm s�1), k a
hydrodynamic friction coefficient to determine, and where
m is a power-law exponent related to the rheology of the
boundary layers:

� m should probably range between the power-law expo-
nent of the matrix and that of the SMC at temperatures
close to the mould temperature. In the absence of rheo-
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logical data in such a temperature range for the tested
material, it will be next arbitrarily fixed to 0.6, assuming
(i) a low fibre-bundle content in the boundary layers and
(ii) a weak variation of the power-law exponent with the
temperature.
� Characteristic friction stresses Tc arising during the
compression can be roughly estimated considering (i) a
characteristic in-plane velocity vc of the bulk SMC and
(ii) characteristic thickness dc and viscosity lc of the
boundary layers:

lc � lc0ðT ; f ; fibre orientationÞ
vc

dc _c0

� �m�1

: ð26Þ

This yields:

T c � k
vc

v0

� �m�1

vc � lc0

vc

dc _c0

� �m�1

vc; ð27Þ

so that

k �
lc0

dmc

v0

_c0

� �m�1

: ð28Þ

In the following and for a sake of simplicity, k will be
kept constant, close to this characteristic value.

4.3. Initial and boundary conditions

At the beginning of the compression, i.e. for t = 0, the
composite occupies a surface X(x1,x2, t = 0) = X0 of
boundary oX(x1,x2, 0) = oX0 in the principal plane (e1,e2)
of the mould whose total surface and boundary are
XM(X0 � XM) and oXM, respectively. The initial height
h(x1,x2, 0) = h0 is given, and the initial velocity of the com-
posite is zero. During the compression, i.e. for t > 0, the
local thickness h(x1,x2, t) is imposed, so that the composite
of surface X(x1,x2, t) of boundary oX(x1,x2, t) fills the
mould cavity, accounting for the following set of boundary
conditions:

� ~v � ~n ¼ 0 on ovX = oX \ oXM, where ~n is the unit out-
ward normal to X and ovX is the part of oX which is
in contact with the mould boundary oXM;
� eR � ~n ¼ ~0 on orX = oX � ovX, where orX stands for the
free surface of the composite.

4.4. Analytical solution for the standard mould –

determination of k

From the as-described shell model, it is possible to
obtain an analytical solution for the compression with
the standard mould (cf. Appendix A). Indeed, the local
and mean axial stresses at the upper or lower parts of the
mould x3 = ±h/2, i.e. R33(x1) and Ær33æ = ÆR33æ, can be
expressed as the sums of two contributions, i.e. one related
to the bulk rheology of the SMC (rheo) and another related
to frictions stresses (fric):

R33ðx1Þ ¼ gps
j _h=hj

D0

 !n�1
_h

h
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

rrheo
33

�
2k

mþ 1

j _hj

v0

 !m�1
_h

hmþ1
xmþ11 �

l0h0

ah

� �mþ1
!

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rfric

33

;

ð29Þ

hr33i ¼ gps
j _h=hj

D0

 !n�1
_h

h
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

rrheo
33

þ
2k

mþ 2

j _hj

v0

 !m�1
_h

hmþ1
l0h0

ah

� �mþ1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hrfric

33 i

¼ gps
j _h=hj

D0

 !n�1
_h

h
ð1þ QÞ; ð30Þ

where a, respectively, equals 1 and 2 for the (SL) and (SC)
compression mouldings, and where the origin of the x1 axis
is, respectively, located at the left extremity or at the center
of the mould for the (SL) and (SC) compression mouldings
(see Fig. 1).

Since the problem is symmetric about x3 = 0 and h is
small, it is expected that the gradient of r33 through the
thickness is small [6]. Therefore, it is assumed that
R33 � r33.

The dimensionless number Q

Q ¼
2

ðmþ 2Þ

k

gps

Dn�1
0

vm�10

_h

h

����
����
m�n�1

_h

h2
l0h0

ah

� �mþ1

; ð31Þ

gauges the importance of friction stresses ‘‘fric’’ vs. bulk
stresses ‘‘rheo’’. Typically, accounting for (22), the higher
the fibre content, or the lower the initial SMC temperature,
or the thicker the initial charges, or the smaller their
in-plane dimensions, then the lower the friction stresses.
Conversely, Q (or friction stresses) increases during the
compression. At last the role of the axial strain rate on Q

also depends on m � n.
From (29) and the (SL) experiments, it is now possible

to determine k, using the difference R33ð0Þ � R33ðL0=2Þ ¼
rII
33 � rI

33:

k ¼
2mðmþ 1Þhmþ1

ðj _hj=v0Þ
m�1 _hLmþ1

0

½rII
33 � rI

33�: ð32Þ

Please note that this form is independent of the bulk rheol-
ogy of the SMC, that could be different from the viscous
model used in this work.

The averaged values of k, calculated from the (SL)
mouldings, are plotted as functions of the temperature in
Fig. 6. Despite the very large scattering of the results, an
increase of k with T is observed. In their recent work,
Abrams and Castro [1] have assumed that the boundary
layers were only made of matrix (i.e. lc0 = lmatrix0 in
(28)). Following this hypothesis, the recorded increase of
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k with T should be correlated to a diminishing of the char-
acteristic thickness dc of the lubricating layers. Notice that
the other trend could also be a possible explanation.
Indeed, an increase of both the thickness dc and the fibre-
bundle content f inside the layers with the initial tempera-
ture of the SMC (lc0(T, f)) could also yield an increase of k
with the initial SMC temperature, as evident from (28).
These two opposite and possible scenari only prove that
the knowledge of the geometry, the microstructure and
the rheology of the lubricating layers is still an open prob-
lem: further microstructural observations such as X-ray
microtomography measurements (for instance) would be
very helpful to obtain some answers.

4.5. Comparison with the mouldings

Fig. 7 compares the stresses rI
33 and rII

33 recorded during
the (SL) or (SC) mouldings with the predictions of (29). As
shown from this figure, a rather good correlation is found
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between the model and the experiments for various pro-
cessing conditions, despite the simplicity of the established
plug flow model and accounting for the scattering of the
experimental results.

Thereby, we have plotted in Fig. 8 the evolution of the
dimensionless number Q during the compression moul-
dings, for all the investigated processing conditions with
the standard mould. As evident from this figure, Q ranges
between 0.01 and 10, it never exceeds 10, and its mean
value is �0.8: the contribution of the SMC rheology in
the overall averaged normal stresses (or on the mould clo-
sure forces) can therefore not be neglected, at least in the
investigated range of processing conditions.

5. FE application

It has been shown that the developed shell model was
able to give acceptable predictions of simple compression
mouldings. This section briefly exposes its implementation
in a specially designed Finite Element code, towards the
simulation of more complex mouldings.

5.1. Resolution scheme

The flow of the composite is described by an Eulerian
approach with respect to a reference surface containing
(e1,e2). In the present application, this reference is the
mid-surface of the mould XM that is meshed using triangu-
lar elements, each of them having a specific height h. Dur-
ing compression moulding, the composite fills the mould
cavity so that X grows from X0 to XM and the evolution
of the free surface orX has to be determined. As in many
mould filling applications [12,37], this was achieved with

an additional scalar variable v describing the local volume
fraction of the composite in the mould (i.e. v = 0/1 if the
considered material point is empty/full of composite).
The dynamic of the variable v(x1,x2, t) is ruled by the fol-
lowing transport equation:

Dv

Dt
¼ 0; ð33Þ

where D
Dt

stands for the material time derivative. Thus, the
scalar field v is added to the unknown fields ~v and P. All are
dependent on time t and space variables x1 and x2. An
usual strategy is employed to solve this problem. It consists
of splitting the time and the spatial discretizations as in
many usual FE treatments. Thereby, the time interval
]0,T] of moulding is subdivided into a finite number of time
steps ]tn, tn+1] that can have different lengths.1 Given the
solution at time tn, the step n + 1 consists of (i) finding
the new domain Xn+1 occupied by the composite, and (ii)
determining the unknown fields ~vnþ1, Pn+1 and vn+1 in
Xn+1. These two points are detailed below.

(i) The calculation of the new domain Xn+1 from the
knowledge of Xn, ~vn and vn requires (a) the computa-
tion of the time increment Dt = Dtn!n+1 (it is deter-
mined such as the flow front progression is of the
order of a typical element dimension), (b) the deter-
mination of tn+1 such as tn+1 = tn + Dt, (c) the calcu-
lation of hn+1 and _hnþ1 for each element of the mesh,
and (d) the determination of the elements that are
gained by the composite between tn and tn+1.

(ii) The problem is then subdivided into two sub-
problems.
� Sub-problem (SP1), called the pressure–velocity

problem. It aims at finding ~vnþ1 and Pn+1, and cou-
ples the incompressibility Eq. (15) and the nonlin-
ear momentum balance Eq. (16). This first sub-
problem would be equivalent to the well-known
Stokes problem in the particular case where n = 1.

� Sub-problem (SP2), called the free surface prob-
lem. It consists of solving the transport Eq. (33)
on Xn+1 to compute vn+1.

5.2. FE formulation of the pressure–velocity problem

5.2.1. Weak formulation

The pressure–velocities problem SP1 is re-casted into a
weak form by multiplying the Eqs. (16) and (15) by a set
of test functions ~v	 and P* (belonging to appropriate spaces
V and Q) and by integrating over X applying the diver-
gence theorem. The problem consists now of finding the
set of unknowns functions ð~v; P Þ 2 ðV 
 QÞ such as
8ð~v	; P 	Þ 2 ðV 
 QÞ:

Fig. 8. (SL) and (SC) compression with the standard mould – evolution of

the dimensionless number Q with h � hf.

1 In the following, we will find the following notation for every function

f : f(x, tn) = fn(x).
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R
X
eRv

: eD	 dV �
R
X

eTþþeT�
h
� ~v	 dV

�
R
X
P fdiv~v	 dV ¼

R
ovX

~v	 � eR � ~ndS;
R
X
P 	 fdiv~vdV ¼ �

R
X

_h

h
P 	 dV ;

8
>>>><
>>>>:

ð34Þ

where the boundary conditions eR � ~n ¼ ~0 on orX are taken
into account, and where eD	 is the strain rate tensor associ-
ated with test functions ~v	. It is important to underline that
this system is highly nonlinear due to the power-laws used
to determine eRv

and eTþ þ eT� (see Section 4.2).

5.2.2. FE approximations

A mixed finite element method is used to discretize the
previous weak formulation. The considered elements are
P2+ for the two velocity fields and P1 for the through-
thickness integrated pressure. The interpolation of the
velocity fields is quadratic (six degrees of freedom plus an
internal velocity node) whereas the interpolation of the
pressure is piecewise linear. The use of these elements
allows to circumvent the Brezzi–Babuška compatibility
condition. The following matrix formulation of the pres-
sure–velocity problem can be readily obtained via the stan-
dard Galerkin discretization process:

AðeV Þ tB

B 0

� � eV
P

� �
¼

F ðeV Þ
G

� �
; ð35Þ

where eV is the vector of nodal velocities unknowns and P

stands for the vector of integrated pressure nodal un-
knowns, F is a vector that accounts for the boundary con-
ditions, G contains terms arising from the incompressibility
constraint associated to _h=h, and where the blocks A and B

accounts for constitutive equations and incompressibility
condition, respectively.

In the case of a linear system (n = m = 1), the problem
can be solved by applying the Uzawa algorithm for decou-
pling the momentum equations and the incompressibility
constraint. To reduce the number of iterations up to con-
vergence, the Uzawa algorithm was modified by solving
the saddle-point problem for the augmented Lagrangian
function of the system (35) defined as

Lrð eU ;QÞ ¼ 1
2
t eUA eU þ 1

2
rtðB eU � GÞðB eU � GÞ

� t eUF þ tðB eU � GÞQ; ð36Þ

where r is a constant [36,31]. Notice that the problem (36)
can be generally written into a linear system of equations:

Aþ rtBB tB

B 0

� � eV
P

 !
¼

F þ rtBG

G

� �
: ð37Þ

If the problem is nonlinear (n 6¼ 1 and/or m 6¼ 1), a New-
ton–Raphson method is used. Starting with an initial solu-
tion ðPnr; V nrÞ at the iteration nr, the Newton–Raphson
algorithm consists of solving at the iteration nr + 1 the
residual function R:

RðeV nrþ1;Pnrþ1Þ ¼ 0; ð38Þ

whose components write

R1ðeV ;PÞ

R2ðeV ;PÞ

 !
¼
ðAðeV Þþ rtBBÞeV þ tBP�F ðeV Þ� rtBG

BeV �G

!
:

ð39Þ

For that purpose, it is thus required that each Newton–
Raphson iterate satisfies the relations:

oR1ðeV nr;PnrÞ

oeV
oR1ðeV nr;PnrÞ

oP

oR2ðeV nr;PnrÞ

oeV
oR2ðeV nr;PnrÞ

oP

0
BBB@

1
CCCA

DeV nr

DPnr

 !

¼ �
R1ðeV nr;PnrÞ

R2ðeV nr;PnrÞ

 !

eV nrþ1 ¼ eV nr þ DeV nr;

Pnrþ1 ¼ Pnr þ DPnr;

nr nr þ 1:

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð40Þ

The above system can be written as

oAðeV nrÞ

oeV
þAðeV nrÞ þ rtBB�

oF ðeV nrÞ

oeV
tB

B 0

0
@

1
A DeV nr

DPnr

 !
¼ � � �

¼
�ðAðeV nrÞ þ rtBBÞeV nr �

tBPnr þ F ðeV nrÞ þ rtBG

�BeV nr þG

!
:

ð41Þ

To find the solution of this linearized system, we apply the
modified Uzawa algorithm used to solve the linear prob-
lems. Thus the general algorithm for solving the nonlinear
pressure–velocity problem combines the Newton–Raphson
and Uzawa algorithms. In practice, the components of the
matrices and vectors of the previous system are computed
using a standard Gaussian quadrature integration method
[45]. The solver of the matrix system given by combining
the Newton–Raphson and Uzawa algorithms is based on
a biconjugate gradient algorithm.

5.3. Free surface transport

The solution of the free surface evolution Eq. (33) is
obtained through a finite element discretization in space
and a characteristic based method discretization in time.
The variational formulation of the Eq. (33) reads as
Z

X

Dvnþ1

Dt
v	 dV ¼ 0; 8v	 2 U; ð42Þ

where vn+1 is the solution of the variable v field at time tn+1

and v* a test function defined in an appropriate space U.
From (42), the characteristic method is applied to approx-
imate the material derivative D

Dt
vnþ1. It consists of writing

the following finite difference scheme:

Dvnþ1

Dt
¼

vnþ1ð~xÞ � vnðeXn
Þ

Dt
; with eXn

¼ ~xnþ1 � Dt~vnþ1;

ð43Þ
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where it is important to notice that eXn
is the first-order

approximation of the position of the particle at the time
tn, Dt = tn+1 � tn. Finding this position, i.e. the ‘‘foot’’ of
the characteristic line, is the main difficulty of the method.
In the current application, a first order intersection method
is employed to find this position. The variational formula-
tion finally becomes:
Z

X

vnþ1v	 dV ¼

Z

X

vnðeXn
Þv	 dV ; 8v	 2 U: ð44Þ

A standard Galerkin finite element scheme yields to a ma-
trix global formulation, which writes as

ðMðvÞÞðvnþ1Þ ¼ ðWðvÞÞ; ð45Þ

with vn+1 the vector of nodal unknowns, M(v) a mass ma-
trix built on the left-hand side of integral (44) and W(v) a
vector built on the right-hand side of (44). Simple linear
P1 elements are used in this discretization scheme.

5.4. Simulation of the mouldings

To test the capability of the developed FE code, com-
pression mouldings identical to those achieved experimen-
tally were simulated. For that purpose, the initial SMC
charge of dimensions L0 · l0 = 170 · 500 mm3 in (e1,e2)
were initially located on the left side (SL) or at the center
(SC) of the rectangular mould, whose dimensions in
(e1,e2) are L0 · L0 (L0 = 500 mm). The shell mesh and the
boundary conditions related to the simulated boundary
values problems are given in Fig. 9 in the case of the
(SL) mouldings.

A first set of simulations consisted of reproducing all the
compressions performed with the standard mould
(h0 � 8.15 mm). The validation of the developed code was
achieved with the help of the analytical expressions (29)
and (30). It was shown that a very good reproducing
(<5%) of the analytical expressions of local stresses rI

33

and rII
33 was obtained whatever the testing conditions and

considering the rather coarse mesh used to run the simula-
tion (cf. Fig. 9, average size of triangle elements 20 mm).

A second type of simulation was then performed in
order to model compression mouldings with the mould dis-
playing thickness variations (cf. Fig. 1(c)). In this case, the
initial uniform height of the SMC charge was set to
h0 � 16 mm, and a variable height h(x1,x2, t) was attributed
for each finite element during the simulation. The experi-
mental and predicted time evolutions of the local axial
stresses recorded during the compression using this mould
( _h ¼ 1 mm s�1, initial SMC temperature = 40 and 60 �C)
have been plotted in Fig. 10. Even if the simulated stresses
at the center of the mould slightly underestimate the exper-
imental data, numerical results give acceptable reproducing

Fig. 9. Reference geometry, boundary conditions and P2+/P1 mesh used

to run the simulation.
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Fig. 10. (SL) compression with the modified mould – comparison between the experimental and simulated time evolutions of the axial stresses rI
33 and rII

33:

(a) _h ¼ 1 mm s�1, initial SMC temperature T = 40 �C, (b) _h ¼ 1 mm s�1, initial SMC temperature T = 60 �C.
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of experimental data, considering the very simple rheolog-
ical and frictional models used to run the simulation.

6. Conclusion

Compression moulding experiments have been per-
formed on an instrumented industrial press under various
processing conditions and using a standard SMC formula-
tion. Experimental results have underlined the influence of
the position of the stack charge in the mould, its initial tem-
perature as well as the axial punch velocity on recorded
local normal stress levels. A destructive technique was then
used in order to measure the fibre-bundle content (aver-
aged in the thickness) inside the moulded parts. Small
fibre-bundle segregations were observed just behind the
flow front of the composite, i.e. �10–15% of the initial
fibre-bundle content. They seemed to be enhanced using
the mould with thickness convergents, but were further
assumed to be negligible accounting for the rather strong
variability of the fibre-bundle content of the initial SMC.
From the experimental results obtained previously in the
literature and those gained in this work, a one-phase plug
flow shell model was then formulated, extending the plug
flow model initially proposed in [6]. A rather simple model
was used for the bulk rheology of SMC, that was assumed
to behave like an incompressible and purely viscous (in
power-law) body displaying transverse isotropy. The con-
stitutive parameters of the model were entirely determined
in a previous study over a wide range of strain rates, tem-
peratures and fibre contents, using a SMC formulation
very close to that used in this work. Friction stresses
between the SMC and the mould were also modelled in a
very simple manner, reducing a very complex situation to
a phenomenological hydrodynamic friction law with con-
stant friction parameters. From this plug flow model, ana-
lytical solution were derived in the case of the standard
mould, underlining the role of both the SMC rheology
and frictions on the overall stress levels. The unique
unknown constitutive parameter, i.e. the friction coeffi-
cient, was determined from the analytical solution and
the (SL) mouldings. It was found to be temperature depen-
dent. The local physical reasons of such a trend still remain
unclear and demand further analysis of the microstructure
of the lubricating layers. Nonetheless, the predictions of the
as-identified simple plug flow model were satisfactory for
the compression mouldings with the standard mould and
for a quite wide range of processing conditions. There
from, it has been clearly shown that the bulk rheology of
the composite should not be neglected with respect to fric-
tion stresses.

For that purpose, a specific finite element code able to
account for both bulk and friction stresses in the plug flow
shell model was then developed within an Eulerian frame-
work and using (i) a nonlinear mixed pressure–velocity for-
mulation of the flow problem and (ii) a volume fraction of
SMC advected with the SMC velocity to model the free
surface of the composite. Compared with the experiments,

predictions of the simulated compression mouldings using
the mould with thickness convergents were found to be
acceptable.

Efforts are now focusing in implementing in the plug
flow model more sophisticated rheological model based
on upscaling approaches and able to account for the strong
coupling between rheology and bundle orientation
[43,42,15,38,22,23].
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Appendix A. Analytical solutions for the mean and local

axial stresses for the standard mouldings (SL) and (SC)

Accounting for the unidirectional properties of the flow
problem through the standard rectangular mould, the
velocity fields v and the strain rate tensor D can be written,
respectively:

v ¼ v1ðx1Þe1 þ
_h

h
x3e3 and

D ¼ v1;1e1 � e1 þ
_h

h
e3 � e3:

ð46Þ

The mass balance equation, see Eq. (15), writes:

v1;1 þ
_h

h
¼ 0: ð47Þ

Noting that _h=h ¼ cste and accounting for the boundary
conditions v1(x1 = 0) = 0, the solution of this equation is
simply:

v1ðx1Þ ¼ �
_h

h
x1: ð48Þ

This velocity field when introduced into the rheological and
friction laws, see Eqs. (19) and (25), yields the following
system of momentum balance equations, see Eq. (16):

�P ;1 þ
1
h
ðeT þ þ eT �Þ1 ¼ 0;

�P ;2 ¼ 0;

(
ð49Þ

whose solution P(x1) is given integrating (49), accounting
for the boundary condition at the flow front (x1 = L =
(l0h0)/h) for the stress state (eR11 ¼ �P ðx1 ¼ LÞ þ eRv

11 ¼ 0):

Pðx1Þ ¼ �gps
1

1þ H

� �
1

Dn�1
0

_h

h

����
����
n�1

_h

h
þ � � �

þ
2k

mþ 1

� �
1

vm�10

1

h

� �
_h

h

����
����
_h

h
xmþ11 �

l0h0

ah

� �mþ1
!
;

ð50Þ

where a = 1 or 2 for the (SL) and (SC) moulidngs,
respectively.
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It is also possible to calculate the mean axial stress Ær33æ:

hr33i ¼
F 3

S
¼

1

L

Z L

0

r33 dx1

¼ �
1

L

Z L

0

pðx1; x3Þdx1 þ rv
33; 8x3; ð51Þ

where F3 is the axial compression force and S = L0L the
current surface of the compounds inside the mould and
where rv

33 has a constant value, see Eq. (20). The mean ax-
ial stress writes in particular for x3 = h/2:

hr33i ¼ �
1

L

Z L

0

pðx1; h=2Þdx1 þ rv
33: ð52Þ

The global form of momentum balance equation along e3
allows to write:
Z L

0

pðx1; x3Þdx1 ¼

Z L

0

pðx1; h=2Þdx1;

so that

1

h

Z h=2

�h=2

Z L

0

pðx1; x3Þdx1

	 

dx3

¼
1

h

Z h=2

�h=2

Z L

0

pðx1; h=2Þdx1

	 

dx3

()

Z L

0

P ðx1Þdx1 ¼

Z L

0

pðx1; x3 ¼ h=2Þdx1; ð53Þ

which leads to the following expression of Ær33æ accounting
for (50):

hr33i ¼
2k

mþ 2

j _hj

v0

 !m�1
_h

hmþ1
l0h0

ah

� �mþ1

þ gps
j _h=hj

D0

 !n�1
_h

h
: ð54Þ

In the same way, it is also possible to determine R33(x1),
which is given by

R33ðx1Þ ¼ �
1

h

Z h=2

�h=2

pðx1; x3Þdx3 þ
1

h

Z h=2

�h=2

rv
33 dx3

() R33ðx1Þ ¼ �P ðx1Þ þ rv
33

() R33ðx1Þ ¼ �
2k

mþ 1

j _hj

v0

 !m�1
_h

hmþ1


 xmþ11 �
l0h0

ah

� �mþ1
!
þ gps

j _h=hj

D0

 !n�1
_h

h
:

ð55Þ
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[24] Le Corre S, Orgéas L, Favier D, Tourabi A, Maazouz A, Venet C.

Shear and compression behaviour of sheet molding compounds.

Compos Sci Technol 2002;62(4):571–7.

[25] Lee CC, Folgar F, Tucker CL. Simulation of compression molding

for fiber-reinforced thermosetting polymers. J Eng Ind 1984;106:

114–25.

[26] Lee C, Tucker C. Flow and heat transfer in compression mold filling.

J Non-Newtonian Fluid Mech 1987;24(3):245–64.

[27] Lee LJ, Marker LF, Griffith RM. The rheology and mold flow of

polyester sheet molding compound. Polym Compos 1981;2(4):

209–18.

15



[28] Leterrier Y, G’Sell C. Multilayer plug flow modeling of the fast

stamping process for a polypropylene/glass fiber composite. Polym

Compos 1996;17(2):231–40.

[29] Lin C-M, Weng C-I, Ho C-T. Anisotropy in sheet molding

compounds during compression molding. Polym Compos 1997;

18(5):613–22.

[30] Lin C-M, Weng C-I. Simulation of compression molding for sheet

molding compound considering the anisotropic effect. Polym Compos

1999;20(1):98–113.

[31] Liu W, Xu S. A new improved Uzawa method for finite element

solution of Stokes problem. Comput Mech 2001;27:305–10.

[32] Michaeli W, Mahlke M, Osswald T, Nolke M. Simulation of the flow

in SMC. Kunststoffe German Plastics 1990;80(6):31–3.

[33] Odenberger P, Andersson H, Lundström T. Experimental flow-front

visualisation in compression moulding of SMC. Composites Part A

2004;35:1125–34.

[34] Osswald TA, Tucker CL. Compression mold filling simulation for

non-planar parts. Int Polym Process 1990;2:79–87.

[35] Osswald T, Tucker C. Compression mold filling simulation for non-

planar parts. Int J Polym Process 1990;5(2):79–87.

[36] Robichaud MP, Tanguy PA, Fortin M. An iterative implementation

of the Uzawa algorithm for 3D-fluid flow problems. Int J Numer

Meth Fluids 1990;10:429–42.

[37] Scardovelli R, Zaleski S. Direct numerical simulation of free-surface

and interfacial flow. Ann Rev Fluid Mech 1999;31:567–603.
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