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We introduce new estimates and tests of independence in copula models with unknown margins using φ-divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an interior point or not.

Introduction and motivations

Parametric models for copulas with unknown margins have been intensively investigated during the last decades. Copulas have become popular in applied statistics, because of the fact that they constitute a flexible and robust way to model dependence between the margins of random vectors. In this framework, semiparametric inference methods, based on pseudo-likelihood, have been applied to copulas by a number of authors (see, e.g., [START_REF] Shih | Inferences on the association parameter in copula models for bivariate survival data[END_REF], [START_REF] Wang | On assessing the association for bivariate current status data[END_REF], [START_REF] Tsukahara | Semiparametric estimation in copula models[END_REF] and the references therein). Throughout the available literature, investigations on the asymptotic properties of parametric estimators, as well as the relevant test statistics, have privileged the case where the parameter is an interior point of the admissible domain. However, for most parametric copula models of interest, the boundaries of the admissible parameter spaces include some important parameter values, typically among which, that corresponding to the independence of margins. We find in [START_REF] Joe | Multivariate models and dependence concepts[END_REF] many examples of parametric copulas, for which marginal independence is verified for some specific values of the parameter θ, on the boundary ∂Θ of the admissible parameter set Θ ⊆ Ê d , d ≥ 1. This paper concentrates on this specific problem. We aim, namely, to investigate parametric inference procedures, Date: February 2007.

in the case where the parameter belongs to the boundary of the admissible domain.

In particular, it will become clear, that the usual limit laws both for parametric copula estimators and test statistics become invalid under these limiting cases, and, in particular, under marginal independence. Motivated by this observation, we will introduce a new semiparametric inference procedure based on φ-divergences and the duality technique.

We will show that the proposed estimators remain asymptotically normal, even under the marginal independence assumption for appropriate choice of the divergence. This will allow us to introduce test statistics of independence, whose study will be made, both under the null and the alternative hypotheses. Let F (x 1 , x 2 ) := P (X 1 ≤ x 1 , X 2 ≤ x 2 ) be a 2-dimensional distribution function, and F i (x i ) := P (X i ≤ x i ), i = 1, 2 the marginal distribution of F . It is well known since the work of [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] that there exists a distribution function C on [0, 1] 2 with uniform marginals such that

C(u 1 , u 2 ) := P {F 1 (X 1 ) ≤ u 1 , F 2 (X 2 ) ≤ u 2 } .
See also [START_REF] Deheuvels | Propriétés d'existence et propriétés topologiques des fonctions de dépendance avec applications à la convergence des types pour des lois multivariées[END_REF], [START_REF] Deheuvels | Nonparametric test of independence[END_REF][START_REF] Deheuvels | A Kolmogorov-Smirnov type for independence and multivariate samples[END_REF], [START_REF] Moore | Unified large-sample theory of general chi-squared statistics for tests of fit[END_REF][START_REF] Moore | Unified large-sample theory of general chi-squared statistics for tests of fit[END_REF][START_REF] Schweizer | Thirty years of copulas[END_REF]. Formally, copulas can be defined as follows.

Definition 1.1. An p-dimensional copula is a function C : [0, 1] p → [0, 1] with the following properties

(1) C is grounded, i.e., for every u = (u 1 , . . . , u d ), C(u) = 0 if at least one coordinate [START_REF] Nelsen | An introduction to copulas[END_REF]);

u i = 0, i = 1, . . . , p; (2) C, is p-increasing, i.e., for every u ∈ [0, 1] p and v ∈ [0, 1] p such that u ≤ v, the C-volume V C [u, v] of the box [u, v] is non negative (see
(3) C(1, . . . , 1, u i , 1, . . . , 1) = u i for all u i ∈ [0, 1] p , u i = 0, i = 1, . . . , p.
Many useful multivariate models for dependence between X 1 and X 2 turn out to be generated by parametric families of copulas of the form {C θ ; θ ∈ Θ}, typically indexed by a vector valued parameter θ ∈ Θ ⊆ Ê d (see, e.g., Kimeldorf and Sampson (1975a), [START_REF] Kimeldorf | Uniform representations of bivariate distributions[END_REF], [START_REF] Nelsen | An introduction to copulas[END_REF][START_REF] Joe | Parametric families of multivariate distributions with given margins[END_REF] among others). In the sequel, we assume that C θ (•, •) admits a density c θ (•, •) with respect to the Lebesgue measure λ on Ê 2 . The nonparametric approach to copula estimation has been initiated by [START_REF] Deheuvels | Propriétés d'existence et propriétés topologiques des fonctions de dépendance avec applications à la convergence des types pour des lois multivariées[END_REF], who introduced and investigated the empirical copula process. In addition, [START_REF] Deheuvels | Nonparametric test of independence[END_REF][START_REF] Deheuvels | A Kolmogorov-Smirnov type for independence and multivariate samples[END_REF] described the limiting behavior of this empirical process (see, also [START_REF] Fermanian | Weak convergence of empirical copula processes[END_REF] and the references therein). In this paper, we consider the estimation and test problems for semiparametric copula models with unknown general margins. Let (X 1k , X 2k ) k = 1, . . . , n be a bivariate sample with distribution function

F θ T (•, •) = C θ T (F 1 (•), F 2 (•)
) where θ T ∈ Θ is used to denote the true unknown value of the parameter. In order to estimate θ T , some semiparametric estimation procedures, based on the maximization, on the parameter space Θ, of properly chosen pseudo-likelihood criterion, have been proposed by [START_REF] Oakes | Multivariate survival distributions[END_REF], [START_REF] Shih | Inferences on the association parameter in copula models for bivariate survival data[END_REF], [START_REF] Liang | On the asymptotic behaviour of the pseudolikelihood ratio test statistic[END_REF], [START_REF] Wang | On assessing the association for bivariate current status data[END_REF] and [START_REF] Tsukahara | Semiparametric estimation in copula models[END_REF] among others. In each of these papers, some asymptotic normality properties are established for √ n θ -θ T , where θ = θn denotes a properly chosen estimator of θ T . This is achieved, provided that θ T lies in the interior, denoted by Θ, of the parameter space Θ ⊆ Ê d . On the other hand, the case where θ T ∈ ∂Θ := Θ -Θ is a boundary value of Θ, has not been studied in a systematical way until present. Moreover, it turns out that, for the above-mentioned estimators, the asymptotic normality of √ n θ -θ T , may fail to hold for θ T ∈ ∂Θ. In the framework of full parametric models with i.i.d. data, [START_REF] Self | Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions[END_REF] summarized all the earlier work and provided the exact limiting distributions which are complicated by the number of unknown parameters, how many of them are on the boundary and the correlation between the components of the estimator proposed. Our approach is novel in this setting and it will become clear later on from our results, that the asymptotic normality of the estimate based on φ-divergences holds, even under the independence assumption, when, either, θ 0 is an interior, or a boundary point of Θ, independently of the dimension of the parameter space.

The proposed test statistics of independence using φ-divergences are also studied, under the null hypothesis H 0 of independence, as well as under the alternative hypothesis. The asymptotic distributions of the test statistics under the alternative hypothesis are used to derive an approximation to the power functions. An application of the forthcoming results will allow us to evaluate the sample size necessary to guarantee a pre-assigned power level, with respect to a specified alternative. To establish our results, we use similar arguments as those developed by [START_REF] Tsukahara | Semiparametric estimation in copula models[END_REF] in connection with the instrumental statements on rank statistics established by [START_REF] Ruymgaart | Asymptotic normality of nonparametric tests for independence[END_REF] and [START_REF] Rüschendorf | Asymptotic distributions of multivariate rank order statistics[END_REF] among others, combined with a new technique (based on the law of iterated logarithm given in Lemma 6.1 below) to show both existence and consistency of our estimates and test statistics. All mathematical developments are relegated to the appendix.

A new inference procedure

Recall that the φ-divergences between a bounded signed measure Q, and a probability P on D, when Q ≪ P is absolutely continuous with respect to P , is defined by

D φ (Q, P ) := D φ dQ dP dP,
where φ is a proper closed convex function from ] -∞, ∞[ to [0, ∞[ with φ(1) = 0 and such that the domain domφ := {x ∈ Ê : φ(x) < ∞} is an interval with end points a φ < 1 < b φ . The Kullback-Leibler, modified Kullback-Leibler, χ 2 , modified χ 2 , Hellinger and L 1 divergences are examples of φ-divergences; they are obtained respectively for

φ(x) = x log x -x + 1, φ(x) = -log x + x -1, φ(x) = 1 2 (x -1) 2 , φ(x) = 1 2 (x-1) 2
x , φ(x) = 2( √ x-1) 2 and φ(x) = |x-1|. We refer to [START_REF] Liese | Convex statistical distances[END_REF] for a systematic theory of divergences. In the sequel, for all θ, we denote by D φ (θ, θ T ) the φ-divergences between C θ and C θ T , i.e.,

D φ (θ, θ T ) := I φ dC θ dC θ T dC θ T (u 1 , u 2 ) = I φ c θ c θ T dC θ T (u 1 , u 2 ). (2.1)
Denote C n the empirical copula associated to the data, i.e.,

C n (u 1 , u 2 ) := 1 n n k=1 ½ {F 1n (X 1k )≤u 1 } ½ {F 2n (X 2k )≤u 2 } , (u 1 , u 2 ) ∈ I, (2.2) and F jn (t) := 1 n n k=1 ½ ]-∞,t] (X jk ), j = 1, 2.
In order to estimate the divergences D φ (θ, θ T ) for a given θ ∈ Θ in particular for θ = θ 0 , and the parameter θ T , we will make use of the dual representation of φ-divergences obtained by [START_REF] Broniatowski | Minimization of φ-divergences on sets of signed measures[END_REF] Theorem 4.4 and Keziou (2003) Theorem 2.3. By this, we readily obtain that D φ (θ 0 , θ T ) can be rewritten into

D φ (θ 0 , θ T ) := sup f ∈F I f dC θ 0 - I φ * (f ) dC θ T , (2.3)
where φ * is used to denote the convex conjugate of φ, namely, the function defined by

φ * : t ∈ Ê → φ * (t) := sup x∈Ê {tx -φ(x)} ,
and F is an arbitrary class of measurable functions fulfilling the following two condi-

tions: ∀f ∈ F , |f | dC θ 0 is finite and φ ′ (dC θ 0 /dC θ T ) ∈ F .
Furthermore, the sup in the above display is unique and is achieved at

f = φ ′ (dC θ 0 /dC θ T ).
Note that the plug-in estimate

I φ dC θ dC n dC n (u 1 , u 2 ) of D φ (θ, θ T ) is not well defined since C θ is not absolutely continuous with respect to C n ;
the use of the dual representation, as we will show, avoids this problem. By the above statement, taking the class of functions

F = {u ∈ I → φ ′ (1/c θ ) ; θ ∈ Θ} ,
we obtain the formula

D φ (θ 0 , θ T ) = sup θ∈Θ I φ ′ 1 c θ du 1 du 2 - I 1 c θ φ ′ 1 c θ -φ 1 c θ dC θ T (u 1 , u 2 ) , (2.4) whenever I |φ ′ (1/c θ )| du 1 du 2 is finite for all θ ∈ Θ.
Furthermore, the sup is unique and reached at θ = θ T . Hence, the divergence D φ (θ 0 , θ T ) and the parameter θ T can be estimated respectively by

sup θ∈Θ I φ ′ 1 c θ du 1 du 2 - I 1 c θ φ ′ 1 c θ -φ 1 c θ dC n (u 1 , u 2 ) (2.5) and arg sup θ∈Θ I φ ′ 1 c θ du 1 du 2 - I 1 c θ φ ′ 1 c θ -φ 1 c θ dC n (u 1 , u 2 ) , (2.6) in which C θ T is replaced by C n .
Note that this class of estimates contains the maximum pseudo-likelihood (MPL) estimator proposed by [START_REF] Oakes | Multivariate survival distributions[END_REF]; it is obtained for the KL mdivergence taking φ(x) = -log(x)+x-1. Under some regularity conditions, we can prove that these estimates are consistent and asymptotically normal in the same way as the MPL estimate when the parameter θ T is an interior point of the parameter space Θ. The interest of divergence remains in the fact that a properly choice of the divergence may ameliorate the MPL one in terms of efficiency-robustness. The results in [START_REF] Bouzebda | A test of independence in some copula models[END_REF] show that, for Θ = [θ 0 , ∞), and when the true value θ T of the parameter is equal to θ 0 (corresponding to the independence assumption), the classical asymptotic normality property of the MPL estimate is no more satisfied. To overcome this difficulty, in what follows, we enlarge the parameter space Θ into a wider space Θ e ⊃ Θ. This is tailored to let θ 0 become an interior point of Θ e . More precisely, set

Θ e := θ ∈ Ê d such that |φ ′ (1/c θ (u 1 , u 2 ))| du 1 du 2 < ∞ .
(2.7) So, applying (2.3), with the class of functions

F := {(u 1 , u 2 ) → φ ′ (1/c θ (u 1 , u 2 )); θ ∈ Θ e } ,
we obtain

D φ (θ 0 , θ T ) = sup θ∈Θe I φ ′ 1 c θ du 1 du 2 - I 1 c θ φ ′ 1 c θ -φ 1 c θ dC θ T (u 1 , u 2 ) . (2.8)
Furthermore, the sup in this display is unique and reached in θ = θ T . Hence, we propose to estimate D φ (θ 0 , θ T ) by

D φ (θ 0 , θ T ) := sup θ∈Θe I m(θ, u 1 , u 2 ) dC n (u 1 , u 2 ), (2.9)
and to estimate the parameter θ T by

θ n := arg sup θ∈Θe I m(θ, u 1 , u 2 ) dC n (u 1 , u 2 ) , (2.10) 
where

m(θ, u 1 , u 2 ) := I φ ′ 1 c θ (u 1 , u 2 ) du 1 du 2 -φ ′ 1 c θ (u 1 , u 2 ) 1 c θ (u 1 , u 2 ) -φ 1 c θ (u 1 , u 2 )
.

In the sequel we denote by ∂ ∂θ m(θ, u 1 , u 2 ) the d-dimensional vector with entries

∂ ∂θ i m(θ, u 1 , u 2 ) and ∂ 2 ∂θ 2 m(θ, u 1 , u 2 ) the d × d-matrix with entries ∂ 2 ∂θ i ∂θ j m(θ, u 1 , u 2 ).
Remark 2.1. Divergences measures have been intensively used in estimation and test in the framework of the discret parametric models with independent identically distributed data; the estimates of the divergences and the parameter are obtained by the plug-in method; see [START_REF] Liese | Convex statistical distances[END_REF], [START_REF] Pardo | Statistical inference based on divergence measures, volume 185 of Statistics: Textbooks and Monographs[END_REF] and the references therein. For continuous parametric models the plug-in procedure does not lead to well defined estimates; [START_REF] Keziou | Dual representation of φ-divergences and applications[END_REF], [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF], [START_REF] Broniatowski | Parametric estimation and tests through divergences and duality technique[END_REF] introduce new estimates and tests, using the dual representation of divergences, extending the maximum likelihood procedure.

The asymptotic behavior of the estimates

In this section, we provide both weak and strong consistency of the estimates (2.9) and

(2.10). We also state their asymptotic normality and evaluate their limiting variance.

Statistics of the form

Ψ n := I ψ(u 1 , u 2 ) dC n (u 1 , u 2 ),
belong to the general class of multivariate rank statistics. Their asymptotic properties have been investigated at length by a number of authors, among whom we may cite [START_REF] Ruymgaart | Asymptotic normality of nonparametric tests for independence[END_REF], [START_REF] Ruymgaart | Asymptotic normality of nonparametric tests for independence[END_REF] and [START_REF] Rüschendorf | Asymptotic distributions of multivariate rank order statistics[END_REF]. In particular, the previous authors have provided regularity conditions, imposed on ψ(•, •), which imply the asymptotic normality of Ψ n . The corresponding arguments have been modified by [START_REF] Genest | A semiparametric estimation procedure of dependence parameters in multivariate families of distributions[END_REF], as to establish almost sure convergence of the estimators that they consider (see, e.g., [START_REF] Genest | A semiparametric estimation procedure of dependence parameters in multivariate families of distributions[END_REF] Proposition A.1). In the same spirit, the limiting behavior, as n tends to the infinity, of the estimators and test statistics which we will introduce later on, will make an instrumental use of the general theory of multivariate rank statistics, and rely, in particular, on Proposition A.1 in [START_REF] Genest | A semiparametric estimation procedure of dependence parameters in multivariate families of distributions[END_REF]. The existence and consistency of our estimators will be established through an application of the law of the iterated logarithm for empirical copula processes, in combination with general arguments from multivariate rank statistics theory (we refer to Deheuvels (1979a), [START_REF] Fermanian | Weak convergence of empirical copula processes[END_REF] and references therein). We will use the following notations

K 1 (θ, u 1 , u 2 ) := φ ′ 1 c θ (u 1 , u 2 ) and K 2 (θ, u 1 , u 2 ) := φ ′ 1 c θ (u 1 , u 2 ) 1 c θ (u 1 , u 2 ) -φ 1 c θ (u 1 , u 2 ) .
Definition 3.1.

(i) Let Q be the set of continuous functions q on [0, 1] which are positive on (0, 1), symmetric about 1/2, increasing on [0, 1/2] and satisfy

1 0 {q(t)} -2 dt < ∞.
(ii) A function r : (0, 1) → (0, ∞) is called u-shaped if it is symmetric about 1/2 and increasing on (0, 1/2].

(iii) For 0 < β < 1 and and u-shaped function r, we define

r β (t) =    r(βt) if 0 < t ≤ 1/2; r{1 -β(1 -t)} if 1/2 < t ≤ 1/2.
If for β > 0 in a neighborhood of 0, there exists a constant M β , such that r β ≤ M β r on (0, 1), then r is called a reproducing u-shaped function. We denote by R the set of reproducing u-shaped functions.

We make use of the following conditions.

(C.1) There exists a neighborhood N(θ T ) ⊂ Θ e of θ T such that the first and the second partial derivatives with respect to θ of K 1 (θ, u 1 , u 2 ) are dominated on N(θ T ) by some λ-integrable functions;

(C.2) There exists a neighborhood N(θ T ) of θ T , such that for all θ ∈ N(θ T ), the function ∂ ∂θ m(θ, u 1 , u 2 ) : (0, 1) 2 → Ê is continuously differentiable and there exist functions

r i ∈ R, r i ∈ R and q ∈ Q (i, j = 1, 2, i = j and ℓ, ℓ ′ = 1, . . . , m) with (i) ∂ ∂θ ℓ m(θ, u 1 , u 2 ) ≤ r 1 (u 1 )r 2 (u 2 ), ∂ 2 ∂θ ℓ ∂u i m(θ, u 1 , u 2 ) ≤ r i (u i )r j (u j ); (ii) m 2 (θ, u 1 , u 2 ) ≤ r i (u i )r j (u j ); (iii) ∂ 3 ∂θ 3 K 2 (θ, u 1 , u 2 ) ≤ r i (u i )r j (u j ); (iv) m(θ, u 1 , u 2 ) ≤ r i (u i )r j (u j ); (v) ∂ ∂θ ℓ m(θ, u 1 , u 2 ) 2 ≤ r i (u i )r j (u j ), ∂ 2 ∂θ ℓ ∂θ ℓ ′ m(θ, u 1 , u 2 ) ≤ r i (u i )r j (u j ); (vi) ∂ ∂u i m(θ, u 1 , u 2 ) ≤ r i (u i )r j (u j ) and I {r 1 (u 1 )r 2 (u 2 )} 2 dC θ T (u 1 , u 2 ) < ∞, I {q i (u i ) r i (u i )r j (u j )} dC θ T (u 1 , u 2 ) < ∞; (C.3) The matrix (∂ 2 /∂ 2 θ)m(θ, u 1 , u 2 )dC θ T (u 1 , u 2 ) is non singular; (C.4) The function (u 1 , u 2 ) ∈ I → ∂ ∂θ m(θ T , u 1 , u 2
) is of bounded variation on I.

Theorem 3.1. Assume that conditions (C.1-3) hold.

(1) Let B(θ T , n -1/3 ) := θ ∈ Θ e , |θ -θ T | ≤ n -1/3 , then as n tends to infinity, with probability one, the function θ → m(θ, u 1 , u 2 ) dC n (u 1 , u 2 ) attains its maximum value at some point θ n in the interior of B(θ T , n -1/3 ), which implies that the estimate θ n is consistent and satisfies

∂ ∂θ m( θ n , u 1 , u 2 ) dC n (u 1 , u 2 ) = 0.
(2) √ n( θ n -θ) converges in distribution to a centered multivariate normal random variable with covariance matrix

Ξ φ = S -1 MS -1 , (3.1) with S := - ∂ 2 ∂θ 2 m(θ T , u 1 , u 2 )dC θ T (u 1 , u 2 ), (3.2) 
and

M := V ar ∂ ∂θ m(θ T , F 1 (X 1 ), F 2 (X 2 )) + W 1 (θ T , X 1 ) + W 2 (θ T , X 2 ) , (3.3) 
where

W i (θ T , X i ) := I ½ {F i (X i )≤u i } ∂ 2 ∂θ∂u i m (θ T , u 1 , u 2 ) c θ T (u 1 , u 2 ) du 1 du 2 , i = 1, 2.
The proof of Theorem 3.1 is postponed to section 6.

New tests of independence

One of our motivation is to build a statistical test of independence, based on φ-divergence.

In the framework of the parametric copula model, the null hypothesis, i.e., the indepen-

dence case C θ (u 1 , u 2 ) = u 1 u 2 corresponds to H 0 : θ T = θ 0 .
We consider the composite alternative hypothesis H 1 : θ T = θ 0 . Since, θ 0 is a boundary value of the parameter space Θ, we can see that the convergence in distribution of the corresponding pseudo-likelihood ratio statistic to a χ 2 random variable does not hold; see [START_REF] Bouzebda | A test of independence in some copula models[END_REF].

We give now a solution to this problem. We propose the following statistics

T n := 2n φ ′′ (1) D φ (θ 0 , θ T ). (4.1)
We will see that the proposed statistic converges in distribution, under the null hypothesis H 0 , to a χ 2 random variable with d degrees of freedom, which permits to build a test of H 0 against H 1 asymptotically of level α. The limit law of T n is given also under the alternative hypothesis H 1 . We will use the following additional conditions

(C.5) We have lim θ→θ 0 ∂ 2 ∂θ ℓ ∂u i m(θ, u 1 , u 2 ) = 0,
and there exist M 1 > 0 and δ 1 > 0 such that, for all θ in some neighborhood of θ 0 , one has, for i = 1, 2,

∂ 2 ∂θ ℓ ∂u i m(θ, u 1 , u 2 )c θ T (u 1 , u 2 ) < M 1 r(u i ) -1.5+δ 1 r(u 3-i ) 0.5+δ 1 ,
where r(u) := u(1 -u) for u ∈ (0, 1).

Remark 4.1. When θ T = θ 0 , under the conditions (C.1) and (C.5) we can see that S and M can be written as

S = M = ∂ ∂θ m(θ T , u 1 , u 2 ) ∂ ∂θ m(θ T , u 1 , u 2 ) ⊤ dC θ T (u 1 , u 2 ).
Theorem 4.1.

(1) Assume that conditions (C.1-5) hold. If θ T = θ 0 , then the statistic T n converges in distribution to a χ 2 variable with d degrees of freedom.

(2) Assume that conditions (C.1-4) hold. If θ T = θ 0 , then

√ n D φ (θ 0 , θ T ) -D φ (θ 0 , θ T )
converges in distribution to a centered normal variable with variance

σ 2 φ (θ 0 , θ T ) := V ar [m(θ T , F 1 (X 1 ), F 2 (X 2 )) + Y 1 (θ T , X 1 ) + Y 2 (θ T , X 2 )] , (4.2)
where

Y i (θ T , X i ) := I ½ {F i (X i )≤u i } ∂ ∂u i m (θ T , u 1 , u 2 ) c θ T (u 1 , u 2 ) du 1 du 2 , i = 1, 2.
The proof of Theorem 4.1 is postponed to section 6.

Remark 4.2. An application of Theorem 4.1, leads to reject the null hypothesis H 0 : θ T = θ 0 , whenever the value of the statistic T n exceeds q 1-α , namely, the (1 -α)-quantile of the χ 2 law with d degrees of freedom. The corresponding test is then, asymptotically of level α, when n → ∞. The critical region is, accordingly, given by

CR := {T n > q 1-α } .
The fact that this test is consistent follows from Theorem 4.1. Further, this theorem can be used to give an approximation to the power function θ T ∈ Θ → β(θ T ) := P θ T {CR} in a similar way to [START_REF] Keziou | On empirical likelihood for semiparametric twosample density ratio models[END_REF]. We so obtain that

β(θ T ) ≈ 1 -Φ √ n σ φ (θ 0 , θ T ) q 1-α 2n -D φ (θ 0 , θ T ) , (4.3) 
where Φ denotes, as usual, the cumulative distribution function of a N(0, 1) standard normal random variable. A useful consequence of (4.3) is the possibility of computing an approximate value of the sample size ensuring a specified power β(θ T ), with respect to some pre-assigned alternative θ T = θ 0 . Let n 0 be the positive root of the equation

β = 1 -Φ √ n σ φ (θ 0 , θ T ) q 1-α 2n -D φ (θ 0 , θ T ) ,
which can be rewritten into

n 0 = (a + b) -a(a + 2b) 2D φ (θ 0 , θ T ) 2 ,
where a := σ φ (θ 0 , θ T ) (Φ -1 (1 -β)) 2 and b := q 1-α D φ (θ 0 , θ T ). The sought-after approximate value of the sample size is then given

n * := ⌊n 0 ⌋ + 1,
where ⌊u⌋ denote the integer part of u.

Remark 4.3. From Theorem 3.1 and 4.1, it is clear that an asymptotic 1 -α confidence interval or region, R α about θ can be easily constructed using the Intersection method as described in [START_REF] Feng | Statistical inference using maximum likelihood estimation and the generalized likelihood ratio when the true parameter is on the boundary of the parameter space[END_REF].

Remark 4.4. The above regularity conditions are satisfied by a large number of parametric families of bivariate copulas; see for instance [START_REF] Tsukahara | Semiparametric estimation in copula models[END_REF].

Remark 4.5. The parameters (3.2) and (3.3) may be consistently estimated respectively by the sample mean of

∂ 2 ∂θ 2 m( θ n , F 1n (X 1,k ), F 2n (X 2,k )), k = 1, . . . , n, (4.4)
and the sample variance of

∂ ∂θ m θ n , F 1n (X 1,k ), F 2n (X 2,k ) + W 1 ( θ n , X 1,k ) + W 2 ( θ n , X 2,k ), k = 1, . . . , n, (4.5) 
as was done in [START_REF] Genest | A semiparametric estimation procedure of dependence parameters in multivariate families of distributions[END_REF]. The asymptotic variance (4.2) can be consistently estimated in the same way.

Concluding remarks

We have introduced a new estimation and test procedure in parametric copula models with unknown margins. The methods is based on divergences between copulas and the duality technique. It generalizes the maximum pseudo-likelihood one, and applies both when the parameter is an interior or a boundary value, in particular for testing the null hypothesis of independence. It will be interesting to investigate the problem of the choice of the divergence which leads to an "optimal" (in some sense) estimate or test in terms of efficiency and robustness.

Appendix

First we give a technical Lemma which we will use to prove our results.

Lemma 6.1. Let F θ T have a continuous margins and let C θ T have continuous partial derivatives. Assume that  is a continuous function, with bounded variation. Then

I (u 1 , u 2 ) d (C n (u 1 , u 2 ) -C(u 1 , u 2 )) = O n -1/2 (log log n) 1/2 (a.s.). (6.1)
Proof of Lemma 6.1. Recall that the modified empirical copula C n , is slightly different from the empirical copula n (u 1 , u 2 ), introduced by Deheuvels (1979a), and defined by

n (u 1 , u 2 ) = F n F -1 1n (u 1 ), F -1 2n (u 2 ) for (u 1 , u 2 ) ∈ (0, 1) 2 , (6.2)
where F -1 1n (•) and F -1 2n (•) denote the empirical quantile functions, associated with F 1n (x 1 ) = F n (x 1 , ∞) and F 2n (x 2 ) = F n (∞, x 2 ), respectively, and defined by

F -1 jn (t) := inf{x ∈ Ê | F jn (x) ≥ t}, j = 1, 2. (6.3)
Here, F n (•, •) denotes the joint empirical distribution function, associated with the sample {(X 1k , X 2k ); k = 1, . . . , n}, defined by

F n (x 1 , x 2 ) = 1 n n k=1 ½ {X 1k ≤x 1 } ½ {X 2k ≤x 2 } , -∞ < x 1 , x 2 < ∞.
(6.4)

We know that n and C n coincide on the grid {(i/n, j/n) , 1 ≤ i ≤ j ≤ n} . The subtle difference lies in the fact that n is left-continuous with right-hand limits, whereas C n on the other hand is right continuous with left-hand limits. The difference between n and C n , however, is small

sup u∈I | n (u) -C n (u)| ≤ max 1≤i,j≤n n i n , j n -n i -1 n , j -1 n ≤ 2 n . (6.5)
Using integration by parts, as in [START_REF] Fermanian | Weak convergence of empirical copula processes[END_REF], we see that

√ n I (u 1 , u 2 ) d(C n -C)(u 1 , u 2 ) = I √ n(C n -C)(u 1 , u 2 ) d(u 1 , u 2 ) - I √ n(C n -C)(u 1 , 1) d(u 1 , u 2 ) - I √ n(C n -C)(1, u 2 ) d(u 1 , u 2 ) - [0,1] √ n(C n (u 1 , 1) -u 1 ) d(u 1 , 1) - [0,1] √ n(C n (1, u 2 ) -u 2 ) d(1, u 2 ).
Hence,

√ n I (u 1 , u 2 ) d(C n -C)(u 1 , u 2 ) ≤ 5 √ n sup u∈I |(C n -C)(u)| I d |(u)| .
From this and (6.5), applying Theorem 3.1 in Deheuvels (1979a), we obtain the following result

I (u 1 , u 2 ) d(C n -C)(u 1 , u 2 ) = O n -1/2 (log log n) 1/2 (a.s.).
Proof of Theorem 3.1 (1) Under the Assumption (C.1) and (C.2.iii), a simple calculation gives

I ∂ ∂θ m(θ, u 1 , u 2 )dC θ T (u 1 , u 2 ) = 0, (6.6) and I ∂ 2 ∂θ 2 m(θ, u 1 , u 2 )dC θ T (u 1 , u 2 ) = -φ ′′ 1 c θ T ċθ T ċ⊤ θ T c 3 θ T dλ = -S (6.7)
We see that the matrix S is symmetric and positive using the fact that the second derivative φ ′′ (•) is nonnegative by the assumption that the function φ( 

I m(θ, u 1 , u 2 )dC n (u 1 , u 2 ) -n I m(θ T , u 1 , u 2 ) dC n (u 1 , u 2 ) = n 2/3 v ⊤ Φ n (θ T ) + 2 -1 n 1/3 vSv ⊤ + O(1) (a.s.) (6.12)
uniformly in v with |v| ≤ 1. On the other hand, since

∂ ∂θ ℓ m(θ T , u 1 , u 2 ) 2 dC θ T (u 1 , u 2 ) < ∞, and ∂ ∂θ ℓ m(θ, •, •
) is of bounded variation by assumption (C.4)(ℓ = 1, . . . , d), using Lemma 6.1 we can show that

I ∂ ∂θ ℓ m(θ T , u 1 , u 2 ) dC n (u 1 , u 2 ) = O n -1/2 (log log n) 1/2 (a.s.
). (6.13) Therefore, using (6.12) and (6.13), we obtain for any θ = θ T + vn -1/3 with |v| = 1: Using (6.9) and (6.11), by Slutsky theorem, we conclude then √ n( θ n -θ T ) → N(0, Ξ φ ), (6.16)

n I m(θ, u 1 , u 2 ) dC n (u 1 , u 2 ) -n I m(θ T , u 1 , u 2 ) dC n (u 1 , u 2 ) ≤ O(n 1/6 (log log n) 1/2 ) -2 -1 ϑn 1/3 + O(1) (a.s.), ( 6 
where we recall that Ξ φ is defined in (3.1).

Proof of Theorem 4.1

(1) Assume that θ T = θ 0 . Hence, from (6.15), using (6.7), we obtain √ n θ n -θ T = -S -1 √ nΦ n (θ T ) + o P (1). (6.17 Φ n (θ T )( θ n -θ T )-n φ ′′ (1) ( θ n -θ T ) ⊤ Υ n (θ T )( θ n -θ T )+o P (1). (6.18) Using (6.7), (6.17 Finally, use the convergence in (6.9) and the fact that M = φ ′′ (1)I θ T when θ T = θ 0 , to conclude that [ 2n φ ′′ (1) ] D φ (θ 0 , θ T ) converge in distribution to a χ 2 variable with d degrees of freedom when θ T = θ 0 .

(2) Assume that θ T = θ 0 , using Taylor expansion again of (1972) once more, converges to a centred normal variable with variance given in (4.2).

  .14)where ϑ is the smallest eigenvalue of the matrix S. Observe that ϑ is positive since S is symmetric, positive and non singular by assumption (C.3) Using (6.14) and the fact thatthe function θ → I m(θ T , u 1 , u 2 ) dC n (u 1 , u 2 ) is continuous, we conclude that as n → ∞, with probability one, θ → I m(θ T , u 1 , u 2 ) dC n (u 1 , u 2 ) reaches its maximum value at some point θ n fulfills I ∂ ∂θ m( θ n , u 1 , u 2 ) dC n (u 1 , u 2 ) = 0 and | θ n -θ T | = O(n -1/3 ).(2) Using the first part of Theorem 3.1, by a Taylor expansion ofI ∂ ∂θ m( θ n , u 1 , u 2 ) dC n (u 1 , u 2 ) in θ n around θ T , we obtain 0 = I ∂ ∂θ m( θ n , u 1 , u 2 ) dC n (u 1 , u 2 ) T , u 1 , u 2 ) dC n (u 1 , u 2 ) + ( θ n -θ T ) ⊤ I ∂ 2 ∂θ 2 (θ T , u 1 , u 2 ) dC n (u 1 , u 2 ) + o(n -1/2 ).Hence, √ n( θ n -θ T ) = -[Υ n (θ T )] -1 √ nΦ n (θ T ) + o P (1) (6.15)

)

  On the other hand, expanding in Taylor series2n φ ′′ (1) D φ (θ 0 , θ n ) = 2n φ ′′ (1) I m( θ n , u 1 , u 2 ) dC n (u 1 , u 2 ) in θ n around θ T , in combination with the fact that I m(θ T , u 1 , u 2 ) dC n (u 1 , u 2 ) = 0, we get 2n φ ′′ (1) D φ (θ 0 , θ n ) = 2n φ ′′ (1)

  ) and the fact that S = φ ′′ (1)I θ T (I θ T denotes the Fisher information matrix) when θ T = θ 0 to obtain 2n φ ′′ (1) D φ (θ 0 , θ n )

  D φ (θ T , θ 0 ) = I m( θ n , u 1 , u 2 ) dC n (u 1 , u 2 ) in θ n around θ T , combined with the fact that I ∂ ∂θ m(θ T , u 1 , u 2 ) dC θ T (u 1 , u 2 ) = 0, we obtain from part (2) of Theorem 3.1 I m( θ n , u 1 , u 2 ) dC n (u 1 , u 2 ) = I m(θ T , u 1 , u 2 ) dC n (u 1 , u 2 ) + o P (n -1/2 ). Hence, √ n D φ (θ 0 , θ T ) -D φ (θ 0 , θ T ) = √ n I m(θ T , u 1 , u 2 ) dC n (u 1 , u 2 ) -I m(θ T , u 1 , u 2 ) dC θ T (u 1 , u 2 ) + o P(1), which under assumption (C.2.ii) and (C.2.vi) by Theorem 2.1 in Ruymgaart et al.

  •) is convexe. Hence, S is positive definite by (C.3). Introduce the statistic Φ n (θ T ) defined by

	Φ n (θ T ) :=	I	∂ ∂θ	m(θ, u 1 , u 2 ) dC n (u 1 , u 2 ),	(6.8)
	and combine (6.6) with Theorem 2.1 in Ruymgaart et al. (1972) to show that, as n → ∞
	√	nΦ n (θ T )	d → N(0, M),	(6.9)
	where M is defined in (3.3). Denote			
	Υ				

n (θ T ) := I ∂ 2 ∂θ 2 m(θ, u 1 , u 2 ) dC n (u 1 , u 2 ), (6.10)

we make use of (6.7) and (C.2.v) in combinaison with Proposition A.1 of Genest et al.

(1995), one finds Υ n (θ T ) → -S, (a.s.). (6.11)

We recall that S is in (3.2). Now, for any θ = θ T + vn -1/3 with |v| ≤ 1, consider a Taylor expansion of m(θ, u 1 , u 2 ) dC n (u 1 , u 2 ) in θ around θ T , and use (6.11), and (C.2.iii) to obtain n
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