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POWER SUMS OF HECKE EIGENVALUES AND APPLICATION

J. WU

Abstract. We sharpen some estimates of Rankin on power sums of Hecke eigen-
values, by using Kim & Shahidi’s recent results on higher order symmetric powers.
As an application, we improve Kohnen, Lau & Shparlinski’s lower bound for the
number of Hecke eigenvalues of same signs.

1. Introduction

Let k > 2 be an even ineteger and N > 1 be squarefree. Denote by H∗
k(N) the

set of all normalized Hecke primitive eigencuspforms of weight k for the congruence
modular group

Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 (modN)

}

.

Here the normalization is taken to have λf(1) = 1 in the Fourier series of f ∈ H∗
k(N)

at the cusp ∞,

(1.1) f(z) =
∞

∑

n=1

λf(n)n(k−1)/2e2πinz (ℑmz > 0).

Inherited from the Hecke operators, the normalized Fourier coefficient λf(n) satisfies
the following relation

(1.2) λf(m)λf(n) =
∑

d|(m,n)
(d,N)=1

λf

(

mn

d2

)

for all integers m > 1 and n > 1. In particular, λf(n) is multiplicative.
Following Deligne [3], for any prime number p there are two complex numbers

αf (p) and βf(p) such that

(1.3)

{

αf (p) = εf(p)p−1/2, βf(p) = 0 if p | N

|αf(p)| = αf (p)βf(p) = 1 if p ∤ N

and

(1.4) λf(p
ν) =

αf(p)ν+1 − βf(p)ν+1

αf(p) − βf(p)
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2 J. WU

for all integers ν > 1, where εf(p) = ±1. Hence λf(n) is real and verifies Deligne’s
inequality

(1.5) |λf(n)| 6 d(n)

for all integers n > 1, where d(n) is the divisor function. In particular for each
prime number p ∤ N there is θf (p) ∈ [0, π] such that

(1.6) λf(p) = 2 cos θf (p).

See e.g. [7] for basic analytic facts about modular forms.
Positive real moments of Hecke eigenvalues were firstly studied by Rankin ([14],

[15]). For f ∈ H∗
k(N) and r > 0, consider the sum of the 2rth power of |λf(n)|:

(1.7) S∗
f(x; r) :=

∑

n6x

|λf(n)|2r.

The method of Rankin [15] illustrates how to obtain optimally the lower and upper
bounds for S∗

f (x; r) if we only know that the associated Dirichlet series

(1.8) Fr(s) :=
∑

n>1

|λf(n)|2rn−s (ℜe s > 1)

is invertible for ℜe s > 1 (i.e. holomorphic and nonzero for ℜe s > 1) when r = 1, 2.
(The invertibility of these two cases are known by Moreno & Shahidi [13].) Rankin’s
result ([15], Theorem 1) reads that

(1.9) x(log x)δ∓r ≪ S∗
f(x; r) ≪ x(log x)δ±r (r ∈ R∓)

for x > x0(f, r), where

R− := [0, 1] ∪ [2,∞), R+ := [1, 2],

and

δ−r := 2r−1 − 1, δ+
r :=

2r−1

5
(2r + 32−r) − 1.

The implied constants in (1.9) depend on f and r.
On the other hand, if the Sato-Tate conjecture holds for newform f , then

(1.10) S∗
f(x; r) ∼ Cr(f)x(log x)θr (x → ∞),

where Cr(f) is a positive constant depending on f, r and

θr :=
4rΓ(r + 1

2
)√

πΓ(r + 2)
− 1.

Very recently, Tenenbaum [20] improved Rankin’s exponent δ+
1/2 = 0.0651 · · · to

ρ+
1/2 = 0.1185 · · · (see (1.13) below for the definition of ρ+

r ), as an application of his

general result on the mean values of multiplicative functions and the fact that F3(s)
and F4(s) are invertible for ℜe s > 1, proven in the excellent work of Kim & Shahidi
[9]. Although the result ([20], Corollary) is stated only for Ramanujan’s τ -function,
it is apparent that Tenenbaum’s method applies to establish the upper bound for
S∗

f(x; r) in (1.11) below. It should be pointed out that Tenenbaum’s approach is
different from that of Rankin and does not give a lower bound for S∗

f (x; r).
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The first aim of this paper is to improve the lower and upper bounds in (1.9), by
generalizing Rankin’s method to incorporate the aforementioned results of Kim &
Shahidi on F3(s) and F4(s).

Theorem 1. For any f ∈ H∗
k(N), we have

(1.11) x(log x)ρ∓r ≪ S∗
f (x; r) ≪ x(log x)ρ±r (r ∈ R

∓)

for x > x0(f, r), where

(1.12) R
− := [0, 1] ∪ [2, 3] ∪ [4,∞), R

+ := [1, 2] ∪ [3, 4],

and

(1.13)















ρ−
r :=

3r−1 − 1

2
,

ρ+
r :=

102 + 7
√

21

210

(

6 −
√

21

5

)r

+
102 − 7

√
21

210

(

6 +
√

21

5

)r

+
4r

35
− 1.

The implied constants in (1.11) depend on f and r.

The upper bound part in (1.11) are essentially due to Tenenbaum [20], since his
method with a minuscule modification allows to obtain this result. The lower bound
part is new. The following table illustrates progress against Rankin’s (1.9) and the
difference from the conjectured values (1.10).

r 0 0.5 1 1.5 2 2.5 3 3.5 4

δ−r −0.5 −0.2929 0 0.4142 1 1.8284 3 4.6569 7

ρ−
r −0.3333 −0.2113 0 0.3660 1 2.0981 4 7.2945 13

θr 0 −0.1512 0 0.3581 1 2.1043 4 7.2781 13

ρ+
r 0 −0.1185 0 0.3502 1 2.1112 4 7.2576 13

δ+
r 0 −0.0652 0 0.2899 1 2.5266 5.6667 12.0177 24.7778

In order to detect sign changes or cancellations among λf(n), it is natural to study
summatory function

(1.14) Sf(x) :=
∑

n6x

λf (n)

and compare it with (1.11). There is a long history on the investigation of the upper
estimate for Sf(x). In 1927, Hecke [6] showed

Sf(x) ≪f x1/2

for all f ∈ H∗
k(N) and x > 1. Subsequent improvements came with the use of the

identity:

1

Γ(r + 1)

∑

n6x

(x − n)raf (n) =
1

(2π)3

∑

n>1

(x

n

)(k+3)/2

af (n)Jk+3

(

4π
√

nx
)

,
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where af(n) := λf(n)n(k−1)/2 and Jk(t) is the first kind Bessel functions. Such an
identity was first given by Wilton [22] in which only the case of Ramanujan’s τ -
function was stated, and later generalized by Walfisz [21] to other forms. Let ϑ be
the constant satisfying

|λf(n)| ≪ nϑ (n > 1).

Walfisz proved that

(1.15) Sf(x) ≪f x(1+ϑ)/3 (x > 1).

Inserting the values of ϑ in the historical record into (1.15) yields

Sf (x) ≪f,ε



















x11/24+ε Kloosterman [10]

x4/9+ε Davenport [1], Salié [17]

x5/12+ε Weil [23]

x1/3+ε Deligne [3]

for any ε > 0. Hafner & Ivić ([5], Theorem 1) removed the factor xε of Deligne’s
result. On the other hand, by combining Walfisz’ method with his idea in the study
of (1.7), Rankin [16] showed that

(1.16) Sf(x) ≪f,ε x1/3(log x)
δ+
1/2

+ε

for any ε > 0 and x > 2.
Here we propose a better bound, by combining Walfisz’ method [21] and Tenen-

baum’s approach [20]. It is worthy to point out that Tenenbaum’s method is not
only to improve δ+

1/2 to ρ+
1/2 but also remove the ε in (1.16).

Theorem 2. For f ∈ H∗
k(N), we have

(1.17) Sf(x) ≪ x1/3(log x)
ρ+
1/2

for x > 2, where the implied constant depends on f .

In the opposite direction, Hafner & Ivić ([5], Theorem 2) proved that there is a
positive constant D such that

Sf (x) = Ω±

(

x1/4 exp

{

D(log2 x)1/4

(log3 x)3/4

})

,

where logr denotes the r-fold iterated logarithm.

As an application of Theorems 1 and 2, we consider the quantities

(1.18) N
±

f (x) :=
∑

n6x
λf (n)≷0

1.

Very recently Kohnen, Lau & Shparlinski ([11], Theorem 1) proved

(1.19) N
±

f (x) ≫f
x

(log x)17

for x > x0(f).†

Here we propose a better bound.

†It is worthy to indicate that they gave explicit values for the implied constant in ≪ and x0(f).
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Corollary 1. For any f ∈ H∗
k(N), we have

N
±

f (x) ≫ x

(log x)1−1/
√

3

for x > x0(f), where the implied constant depends on f . If we assume Sato-Tate’s
conjecture, the exponent 1− 1/

√
3 ≈ 0.422 can be improved to 2− 16/(3π) ≈ 0.302.

In a joint paper with Lau [12], we shall remove the logarithmic factor by a com-
pletely different method.

Acknowledgment. The author would like to thank Winfried Kohnen for the
preprint [11] and Yuk Kam Lau for his many suggestions that improved the writting
of this paper.

2. Method of Rankin

Let k > 2 be an even integer, N > 1 be squarefree, f ∈ H∗
k(N) and r > 0. Fol-

lowing Rankin’s idea [15], we shall find two optimal multiplicative functions λ±
f,r(n)

such that

(2.1) λ∓
f,r(p

ν) 6 |λf(p
ν)|2r 6 λ±

f,r(p
ν) (r ∈ R

∓)

for all primes p and integers ν > 1, and furthermore, their associated Dirichlet
series Λ±

f,r(s) (see (2.8) below) in the half-plane ℜe s > 1 is controlled by Fj(s)
for j = 1, . . . , 4. Then we can apply Tauberian theorems to obtain the asymptotic
behaviour of the summatory functions of λ±

f,r(n).

2.1. Construction of λ+
f,r(n). For a := (a1, . . . , a4) ∈ R4 and r > 0, consider the

function

(2.2) hr(t; a) := tr − a1t − a2t
2 − a3t

3 − a4t
4 (0 6 t 6 1)

and let

(2.3) κ− := 1
4
, η− := 3

4
, κ+ := 6−

√
21

20
, η+ := 6+

√
21

20
.

In Subsection 2.3, we shall explain the reason behind this choice.

Lemma 2.1. If the function hr(t; a) defined by (2.2) satisfies

h′
r(κ−; a) = h′

r(η−; a) = hr(κ−; a) = hr(η−; a) = 0,

then

(2.4) aj = a−
j :=

P−
j (κ−, η−) − P−

j (η−, κ−)

(κ− − η−)3

for 1 6 j 6 4, where

P−
1 (κ, η) := {(4 − r)κ + (r − 2)η}κr−1η2,

P−
2 (κ, η) := {(2r − 8)κ2 + (1 − r)κη + (1 − r)η2}κr−2η,

P−
3 (κ, η) := {(4 − r)κ2 + (4 − r)κη + 2(r − 1)η2}κr−2,

P−
4 (κ, η) := {(r − 3)κ + (1 − r)η}κr−2.
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Proof. This can be done by routine calculation. �

Lemma 2.2. If the function hr(t; a) defined by (2.2) is such that
{

h′
r(κ+; a) = h′

r(η+; a) = 0,

hr(κ+; a) = hr(η+; a) = hr(1; a),

then

(2.5) aj = a+
j :=

P+
j (κ+, η+) − P+

j (η+, κ+)

(κ+ − 1)2(η+ − 1)2(κ+ − η+)3

for 1 6 j 6 4, where

P+
1 (κ, η) := rκr−1η(κ − 1)(η − κ)(κη + 2κ + η)(η − 1)2

+ 2(κr − 1)κη(η − 1)2(2κη + 4κ − η2 − 2η − 3),

P+
2 (κ, η) := rκr−1(κ − 1)(κ − η)(η − 1)2(2κη + κ + η2 + 2η)

+ (ηr − 1)(κ − 1)2(8κη2 + 4η2 − ηκ2 − 2κη − 3η − κ3 − 2κ2 − 3κ),

P+
3 (κ, η) := rκr−1(κ − 1)(κ + 2η + 1)(η − κ)(η − 1)2

+ 2(κr − 1)(2κ2 + 2κη − η2 − 2η − 1)(η − 1)2,

P+
4 (κ, η) := rκr−1(κ − 1)(κ − η)(η − 1)2 + (ηr − 1)(κ − 1)2(3η − κ − 2).

Proof. This is done by routine calculation as well. �

Lemma 2.3. Let a
± := (a±

1 , . . . , a±
4 ), where each a±

i is given by the value in Lemmas
2.1-2.2, respectively. Then for 0 6 t 6 1 we have

hr(t; a
−) ≷ 0 and hr(t; a

+) ≶ hr(1; a+) for r ∈ R
∓.

Proof. We have

h(4)
r (t; a−) = r(r − 1)(r − 2)(r − 3)tr−4 − 24a−

4 ,

so h
(4)
r (t; a−) has at most one zero for t > 0 and h

(i)
r (t; a−) has at most 5 − i zeros

for t > 0 (i = 3, 2, 1, 0). Since hr(κ−; a−) = hr(η−; a−) = hr(0; a−), it follows that
h′

r(ξ−; a−) = h′
r(ξ

′
−; a−) = 0 for some ξ− ∈ (0, κ−) and ξ′− ∈ (κ−, η−). Therefore ξ−,

κ−, ξ′− and η− are the only zeros of h′
r(t; a

−) in (0, 1).
Now

h′′
r(κ−; a−) = 8 · 4−r(2r2 − 2r + 3 + 2r3r−2 − 11 · 3r−2)

and
h′′

r(η−; a−) = 8 · 4−r(2r2 − 6r − 3 − 2r3r + 43 · 3r−2).

From these, it is easy to verify that

h′′
r(κ−; a−), h′′

r(η−; a−)

{

≷ 0 if r ∈ R∓◦

,

= 0 if r = 1, 2, 3, 4,

where R∓◦

denotes the interior of R∓. Hence hr(t; a
−) takes its mimimum (maxi-

mum, respectively) values in [0, 1] at 0, κ−, η− when r ∈ R−◦

(r ∈ R+
◦

, respectively).

Moreover, hr(t; a
−) has local maxima (minima, respectively) at ξ−, ξ′− when r ∈ R

−◦

(r ∈ R
+

◦

, respectively). This proves the assertion about hr(t; a
−).
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Similarly we can prove the corresponding result on hr(t; a
+). �

Now we define the multiplicative function λ±
f,r(n) by

(2.6) λ∓
f,r(p

ν) :=















∑

06j64 22(r−j)a∓
j λf(p)2j if ν = 1 and r > 0,

0 if ν > 2 and r ∈ R∓,

|λf(p
ν)|2r if ν > 2 and r ∈ R±,

where

(2.7) a−
0 := 0 and a+

0 := 1 − a+
1 − a+

2 − a+
3 − a+

4 .

In view of (1.6), we can apply Lemma 2.3 with t = | cos θf (p)| to deduce that
the inequality (2.1) hold for all primes p and integers ν > 1. Thanking to the
multiplicativity, these inequalities also hold for all integers n > 1.

2.2. Dirichlet series associated to λ±
f,r(n). For f ∈ H∗

k(N), r > 0 and ℜe s > 1,
we define

(2.8) Λ±
f,r(s) :=

∑

n>1

λ±
f,r(n)n−s.

Next we shall study their analytic properties in the half-plane ℜe s > 1 by us-
ing the higher order symmetric power L-functions L(s, symmf) associated to f ∈
H∗

k(N), due to Gelbart & Jacquet [4] for m = 2, Kim & Shahidi ([8], [9]) for
m = 3, 4, 5, 6, 7, 8. Here the symmetric mth power associated to f is defined as

L(s, symmf) :=
∏

p

∏

06j6m

(

1 − αf (p)m−jβf (p)jp−s
)−1

for ℜe s > 1, where αf(p) and βf (p) are given by (1.3) and (1.4). According to
the literature mentioned above, it is known that the function L(s, symmf) for m =
2, 3, . . . , 8 is invertible for ℜe s > 1.

We start to study F1(s), F2(s), F3(s) and F4(s).

Lemma 2.4. Let k > 2 be an even integer, N > 1 be squarefree and f ∈ H∗
k(N).

For j = 1, 2, 3, 4 and ℜe s > 1, we have

(2.9) Fj(s) = ζ(s)mjGj(s)Hj(s),

where

(2.10) m1 := 1, m2 := 2, m3 := 5, m4 := 14,

and

G1(s) := L(s, sym2f),

G2(s) := L(s, sym2f)3L(s, sym4f),

G3(s) := L(s, sym2f)9L(s, sym4f)5L(s, sym6f),

G4(s) := L(s, sym2f)34L(s, sym4f)20L(s, sym6f)7L(s, sym8f)

are invertible for ℜe s > 1. Here the function Hj(s) admits a Dirichlet series con-
vergent absolutely in ℜe s > 1

2
and Hj(s) 6= 0 for ℜe s = 1.
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Proof. Write x for the trace of a local factor of L(s, f) (i.e. αf (p) + βf (p)), and
denote by Tn(x) the polynomial for the trace of its symmetric nth power. Then

T2 = x2 − 1,

T4 = x4 − 3x2 + 1,

T6 = x6 − 5x4 + 6x2 − 1,

T8 = x8 − 7x6 + 15x4 − 10x2 + 1,

from which we deduce

x2 = 1 + T2,

x4 = 2 + 3T2 + T4,

x6 = 5 + 9T2 + 5T4 + T6,

x8 = 14 + 34T2 + 20T4 + 7T6 + T8.

This implies (2.9). By using results on L(s, symmf) mentioned above, Gj(s) is
invertible for ℜe s > 1. This completes the proof. �

Lemma 2.5. Let k > 2 be an even integer, N > 1 be squarefree and f ∈ H∗
k(N).

For r > 0 and ℜe s > 1, we have

(2.11) Λ±
f,r(s) = ζ(s)ρ±r +1H±

f,r(s),

where

(2.12) ρ±
r := 22r−8(28a±

0 + 26a±
1 + 24 · 2a±

2 + 22 · 5a±
3 + 14a±

4 ) − 1

and H±
f,r(s) is invertible for ℜe s > 1.

Proof. By definition (2.6), for ℜe s > 1 we can write

Λ−
f,r(s) =

∏

p

(

1 +
∑

06j64

22(r−j)a−
j λf(p)2jp−s

)

=
∏

06j64

Fj(s)
22(r−j)a−

j H−
r (s)

for r ∈ R−, and

Λ−
f,r(s) =

∏

p

(

1 +
∑

06j64

22(r−j)a−
j λf (p)2jp−s +

∑

ν>2

|λf(p
ν)|2rp−νs

)

=
∏

06j64

Fj(s)
22(r−j)a−

j H−
r (s)

for r ∈ R+, where F0(s) = ζ(s) is the Riemann zeta-function and H−
r (s) is a

Dirichlet series absolutely convergent for ℜe s > 1
2

such that H−
r (s) 6= 0 for ℜe s = 1.

Now the desired result with the sign ‘−’ follows from Lemma 2.4. The other part
can be treated in the same way. �

2.3. Optimalisation of λ±
f,r(p) and choice of κ±, η±. If we regard κ±, η± as pa-

rameters, the ρ±
r given by (2.12) are functions of these parameters. We choose

(κ±, η±) in (0, 1)2 optimally, which can be done by using formal calculation via
Maple. Their values are given by (2.3).
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3. Proof of Theorem 1

In view of Lemma 2.5 and the classical fact on ζ(s), we can write

(3.1) Λ±
f,r(s) =

H±
f,r(1)

(s − 1)ρ±r +1
+ g±

f,r(s)

in some neighbourhood of s = 1 with ℜe s > 1, where H±
f,r(1) 6= 1 and g±

f,r(s) is

holomorphic at s = 1. Since λ±
f,r(n) > 0, we can apply Delange’s tauberian theorem

[2] to write

(3.2)
∑

n6x

λ±
f,r(n) ∼ H±

f,r(1)x(log x)ρ±r (x → ∞).

Now Theorem 1 follows from (2.1) and (3.2).

4. Proof of Theorem 2

By (3.1), it follows that

∏

p

(

1 +
∑

ν>1

λ±
f,r(p

ν)

pνσ

)

=
H±

f,r(1)

(σ − 1)ρ±r +1
+ g±

f,r(σ)

for σ > 1. From this, (2.6), (2.7) and Deligne’s inequality, we deduce that

∑

p

λ±
f,r(p)

pσ
= (ρ±

r + 1) log(σ − 1)−1 + C±
f,r + o(1) (σ → 1+),

where C±
f,r is some constant.

On the other hand, the prime number theorem implies, by a partial integration,
that

∑

p

p−σ = log(σ − 1)−1 + C + o(1) (σ → 1+),

where C is an absolute constant. Thus the preceding relation can be written as

(4.1)
∑

p

λ±
f,r(p) − (ρ±

r + 1)

pσ
= C±

f,r + (ρ±
r + 1)C + o(1) (σ → 1+).

According to Exercise II.7.8 of [19], the formula (4.1) implies

∑

p

λ±
f,r(p) − (ρ±

r + 1)

p
= C±

f,r + (ρ±
r + 1)C.

Hence

∑

p6x

λ±
f,r(p)

p
= (ρ±

r + 1) log2 x + C±
f,r + (ρ±

r + 1)C + o(1) (x → ∞).
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Now we apply a well known result of Shiu [18] and (2.1) to write

(4.2)

∑

x6n6x+z

|λf(n)|2r ≪ z

log x
exp

(

∑

p6x

|λf(p)|2r

p

)

≪ z

log x
exp

(

∑

p6x

λ+
f,r(p)

p

)

≪ z(log x)ρ+
r

for r ∈ R−, any ε > 0, x > x0(ε) and x1/4 6 z 6 x. Using this with r = 1
2

in (9) of [16], the first term on the right-hand side of (10) of [16] is replaced by

x1/2z−1/2(log x)
ρ+
1/2 . Applying (4.2) with r = 1

2
again to the second term on the

right-hand side of (10) of [16], it follows that

Sf (x) ≪ x1/2z−1/2(log x)ρ+
1/2 + z(log x)ρ+

1/2 .

Taking z = x1/3, we obtain the required result when the level is N = 1. The general
case can be treated similarly as indicated in [16]. �

5. Proof of Corollary 1

By comparing (1.17) and the lower bound part in (1.11) with r = 1
2
, it is easy to

deduce that
∑

n6x
λf (n)≷0

|λf(n)| ≫f x(log x)
ρ−
1/2

for x > x0(f). Since ρ−
1/2 = −(1 − 1/

√
3)/2 and ρ+

1 = 0, a simple application of the

Cauchy-Schwarz inequality yields the following result.
The second assertion can be obtained by noticing that θ1/2 = 8/(3π) − 1. �
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