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Power sums of Hecke's eigenvalues and application

Here the normalization is taken to have λ f (1) = 1 in the Fourier series of f ∈ H * k (N) at the cusp ∞,

(1.1) f (z) = ∞ n=1 λ f (n)n (k-1)
/2 e 2πinz (ℑmz > 0).

Inherited from the Hecke operators, the normalized Fourier coefficient λ f (n) satisfies the following relation

(1.2) λ f (m)λ f (n) = d|(m,n) (d,N )=1 λ f mn d 2
for all integers m 1 and n 1. In particular, λ f (n) is multiplicative. Following Deligne [START_REF] Deligne | La conjecture de Weil, I, II[END_REF], for any prime number p there are two complex numbers α f (p) and β f (p) such that

(1.3) α f (p) = ε f (p)p -1/2 , β f (p) = 0 if p | N |α f (p)| = α f (p)β f (p) = 1 if p ∤ N and (1.4) λ f (p ν ) = α f (p) ν+1 -β f (p) ν+1 α f (p) -β f (p)
for all integers ν 1, where ε f (p) = ±1. Hence λ f (n) is real and verifies Deligne's inequality (1.5)

|λ f (n)| d(n)
for all integers n 1, where d(n) is the divisor function. In particular for each prime number p ∤ N there is θ f (p) ∈ [0, π] such that (1.6) λ f (p) = 2 cos θ f (p).

See e.g. [START_REF] Iwaniec | Topics in Classical Automorphic Forms[END_REF] for basic analytic facts about modular forms.

Positive real moments of Hecke eigenvalues were firstly studied by Rankin ([14], [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF]). For f ∈ H * k (N) and r 0, consider the sum of the 2rth power of

|λ f (n)|: (1.7) S * f (x; r) := n x |λ f (n)| 2r .
The method of Rankin [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF] illustrates how to obtain optimally the lower and upper bounds for S * f (x; r) if we only know that the associated Dirichlet series

(1.8) F r (s) := n 1 |λ f (n)| 2r n -s (ℜe s > 1)
is invertible for ℜe s 1 (i.e. holomorphic and nonzero for ℜe s 1) when r = 1, 2.

(The invertibility of these two cases are known by Moreno & Shahidi [START_REF] Moreno | The fourth moment of Ramanujan τ -function[END_REF].) Rankin's result ( [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF], Theorem 1) reads that (1.9)

x(log x) δ ∓ r ≪ S * f (x; r) ≪ x(log x) δ ± r (r ∈ R ∓ )
for x x 0 (f, r), where

R -:= [0, 1] ∪ [2, ∞), R + := [1, 2],
and

δ - r := 2 r-1 -1, δ + r := 2 r-1 5 (2 r + 3 2-r ) -1.
The implied constants in (1.9) depend on f and r.

On the other hand, if the Sato-Tate conjecture holds for newform f , then

(1.10) S * f (x; r) ∼ C r (f )x(log x) θr (x → ∞), where C r (f ) is a positive constant depending on f, r and θ r := 4 r Γ(r + 1 2 ) √ πΓ(r + 2) -1.
Very recently, Tenenbaum [START_REF] Tenenbaum | Remarques sur les valeurs moyennes de fonctions multiplicatives[END_REF] (1.13) below for the definition of ρ + r ), as an application of his general result on the mean values of multiplicative functions and the fact that F 3 (s) and F 4 (s) are invertible for ℜe s 1, proven in the excellent work of Kim & Shahidi [START_REF] Kim | Cuspidality of symmetric powers with applications[END_REF]. Although the result ( [START_REF] Tenenbaum | Remarques sur les valeurs moyennes de fonctions multiplicatives[END_REF], Corollary) is stated only for Ramanujan's τ -function, it is apparent that Tenenbaum's method applies to establish the upper bound for S * f (x; r) in (1.11) below. It should be pointed out that Tenenbaum's approach is different from that of Rankin and does not give a lower bound for S * f (x; r).

improved Rankin's exponent δ + 1/2 = 0.0651 • • • to ρ + 1/2 = 0.1185 • • • (see
The first aim of this paper is to improve the lower and upper bounds in (1.9), by generalizing Rankin's method to incorporate the aforementioned results of Kim & Shahidi on F 3 (s) and F 4 (s).

Theorem 1. For any f ∈ H * k (N), we have (1.11) x(log x)

ρ ∓ r ≪ S * f (x; r) ≪ x(log x) ρ ± r (r ∈ R ∓ )
for x x 0 (f, r), where

(1.12) R -:= [0, 1] ∪ [2, 3] ∪ [4, ∞), R + := [1, 2] ∪ [3, 4],
and In order to detect sign changes or cancellations among λ f (n), it is natural to study summatory function

(1.13)        ρ - r := 3 r-1 -
(1.14) S f (x) := n x λ f (n)
and compare it with (1.11). There is a long history on the investigation of the upper estimate for S f (x). In 1927, Hecke [START_REF] Hecke | Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik[END_REF] showed

S f (x) ≪ f x 1/2
for all f ∈ H * k (N) and x 1. Subsequent improvements came with the use of the identity:

1 Γ(r + 1) n x (x -n) r a f (n) = 1 (2π) 3 n 1 x n (k+3)/2 a f (n)J k+3 4π √ nx ,
where a f (n) := λ f (n)n (k-1)/2 and J k (t) is the first kind Bessel functions. Such an identity was first given by Wilton [START_REF] Wilton | A note on Ramanujan's arithmetical function τ (n)[END_REF] in which only the case of Ramanujan's τfunction was stated, and later generalized by Walfisz [START_REF] Walfisz | Über die Koeffizientensummen einiger Moduformen[END_REF] to other forms. Let ϑ be the constant satisfying

|λ f (n)| ≪ n ϑ (n 1). Walfisz proved that (1.15) S f (x) ≪ f x (1+ϑ)/3 (x 1).
Inserting the values of ϑ in the historical record into (1.15) yields

S f (x) ≪ f,ε          x 11/24+ε Kloosterman [10] x 4/9+ε Davenport [1], Salié [17] x 5/12+ε Weil [23] x 1/3+ε
Deligne [START_REF] Deligne | La conjecture de Weil, I, II[END_REF] for any ε > 0. Hafner & Ivić ([5], Theorem 1) removed the factor x ε of Deligne's result. On the other hand, by combining Walfisz' method with his idea in the study of (1.7), Rankin [START_REF] Rankin | Sums of cusp form coefficients, Automorphic forms and analytic number theory[END_REF] showed that

(1.16) S f (x) ≪ f,ε x 1/3 (log x) δ + 1/2 +ε
for any ε > 0 and x 2.

Here we propose a better bound, by combining Walfisz' method [START_REF] Walfisz | Über die Koeffizientensummen einiger Moduformen[END_REF] and Tenenbaum's approach [START_REF] Tenenbaum | Remarques sur les valeurs moyennes de fonctions multiplicatives[END_REF]. It is worthy to point out that Tenenbaum's method is not only to improve δ + 1/2 to ρ + 1/2 but also remove the ε in (1.16). Theorem 2. For f ∈ H * k (N), we have (1.17)

S f (x) ≪ x 1/3 (log x) ρ + 1/2
for x 2, where the implied constant depends on f .

In the opposite direction, Hafner & Ivić ([5], Theorem 2) proved that there is a positive constant D such that

S f (x) = Ω ± x 1/4 exp D(log 2 x) 1/4 (log 3 x) 3/4 ,
where log r denotes the r-fold iterated logarithm.

As an application of Theorems 1 and 2, we consider the quantities

(1.18) N ± f (x) := n x λ f (n)≷ 0 1. Very recently Kohnen, Lau & Shparlinski ([11], Theorem 1) proved (1.19) N ± f (x) ≫ f x (log x) 17 for x x 0 (f ). †
Here we propose a better bound. †

It is worthy to indicate that they gave explicit values for the implied constant in ≪ and x 0 (f ).

Corollary 1. For any f ∈ H * k (N), we have

N ± f (x) ≫ x (log x) 1-1/ √ 3
for x x 0 (f ), where the implied constant depends on f . If we assume Sato-Tate's conjecture, the exponent 1 -1/ √ 3 ≈ 0.422 can be improved to 2 -16/(3π) ≈ 0.302.

In a joint paper with Lau [START_REF] Lau | The number of Hecke eigenvalues of same signs[END_REF], we shall remove the logarithmic factor by a completely different method.

Acknowledgment. The author would like to thank Winfried Kohnen for the preprint [START_REF] Kohnen | On the number of sign changes of Hecke eigenvalues of newforms[END_REF] and Yuk Kam Lau for his many suggestions that improved the writting of this paper.

Method of Rankin

Let k 2 be an even integer, N 1 be squarefree, f ∈ H * k (N) and r > 0. Following Rankin's idea [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF], we shall find two optimal multiplicative functions λ

± f,r (n) such that (2.1) λ ∓ f,r (p ν ) |λ f (p ν )| 2r λ ± f,r (p ν ) (r ∈ R ∓
) for all primes p and integers ν 1, and furthermore, their associated Dirichlet series Λ ± f,r (s) (see (2.8) below) in the half-plane ℜe s 1 is controlled by F j (s) for j = 1, . . . , 4. Then we can apply Tauberian theorems to obtain the asymptotic behaviour of the summatory functions of λ ± f,r (n). 

h ′ r (κ -; a) = h ′ r (η -; a) = h r (κ -; a) = h r (η -; a) = 0, then (2.4) a j = a - j := P - j (κ -, η -) -P - j (η -, κ -) (κ --η -) 3 for 1 j 4, where P - 1 (κ, η) := {(4 -r)κ + (r -2)η}κ r-1 η 2 , P - 2 (κ, η) := {(2r -8)κ 2 + (1 -r)κη + (1 -r)η 2 }κ r-2 η, P - 3 (κ, η) := {(4 -r)κ 2 + (4 -r)κη + 2(r -1)η 2 }κ r-2 , P - 4 (κ, η) := {(r -3)κ + (1 -r)η}κ r-2 .
Proof. This can be done by routine calculation.

Lemma 2.2. If the function h r (t; a) defined by (2.2) is such that

h ′ r (κ + ; a) = h ′ r (η + ; a) = 0, h r (κ + ; a) = h r (η + ; a) = h r (1; a), then (2.5)
a j = a + j := P + j (κ + , η + ) -P + j (η + , κ + ) (κ + -1) 2 (η + -1) 2 (κ + -η + ) 3 for 1 j 4, where

P + 1 (κ, η) := rκ r-1 η(κ -1)(η -κ)(κη + 2κ + η)(η -1) 2 + 2(κ r -1)κη(η -1) 2 (2κη + 4κ -η 2 -2η -3), P + 2 (κ, η) := rκ r-1 (κ -1)(κ -η)(η -1) 2 (2κη + κ + η 2 + 2η) + (η r -1)(κ -1) 2 (8κη 2 + 4η 2 -ηκ 2 -2κη -3η -κ 3 -2κ 2 -3κ), P + 3 (κ, η) := rκ r-1 (κ -1)(κ + 2η + 1)(η -κ)(η -1) 2 + 2(κ r -1)(2κ 2 + 2κη -η 2 -2η -1)(η -1) 2 , P + 4 (κ, η) := rκ r-1 (κ -1)(κ -η)(η -1) 2 + (η r -1)(κ -1) 2 (3η -κ -2).
Proof. This is done by routine calculation as well.

Lemma 2.3. Let a ± := (a ± 1 , . . . , a ± 4 ), where each a ± i is given by the value in Lemmas 2.1-2.2, respectively. Then for 0 t 1 we have h r (t; a -) ≷ 0 and h r (t; a + ) ≶ h r (1; a + ) for r ∈ R ∓ .

Proof. We have h (4) r (t; a -) = r(r -1)(r -2)(r -3)t r-4 -24a - 4 , so h (4) r (t; a -) has at most one zero for t > 0 and h (i) r (t; a -) has at most 5 -i zeros for t > 0 (i = 3, 2, 1, 0). Since h r (κ -; a -) = h r (η -; a -) = h r (0; a -), it follows that h ′ r (ξ -; a -) = h ′ r (ξ ′ -; a -) = 0 for some ξ -∈ (0, κ -) and ξ ′ -∈ (κ -, η -). Therefore ξ -, κ -, ξ ′ -and η -are the only zeros of h ′ r (t; a -) in (0, 1). Now

h ′′ r (κ -; a -) = 8 • 4 -r (2r 2 -2r + 3 + 2r3 r-2 -11 • 3 r-2 ) and h ′′ r (η -; a -) = 8 • 4 -r (2r 2 -6r -3 -2r3 r + 43 • 3 r-2
). From these, it is easy to verify that

h ′′ r (κ -; a -), h ′′ r (η -; a -) ≷ 0 if r ∈ R ∓ • , = 0 if r = 1, 2, 3, 4,
where R ∓

• denotes the interior of R ∓ . Hence h r (t; a -) takes its mimimum (maximum, respectively) values in [0, 1] at 0, κ -, η -when r ∈ R -

• (r ∈ R + • , respectively).
Moreover, h r (t; a -) has local maxima (minima, respectively) at ξ -, ξ ′ -when r ∈ R -

• (r ∈ R + • , respectively
). This proves the assertion about h r (t; a -).

Similarly we can prove the corresponding result on h r (t; a + ).

Now we define the multiplicative function λ

± f,r (n) by (2.6) λ ∓ f,r (p ν ) :=        0 j 4 2 2(r-j) a ∓ j λ f (p) 2j if ν = 1 and r > 0, 0 if ν 2 and r ∈ R ∓ , |λ f (p ν )| 2r if ν 2 and r ∈ R ± ,
where (2.7) a - 0 := 0 and a + 0 := 1 -a + 1 -a + 2 -a + 3 -a + 4 . In view of (1.6), we can apply Lemma 2.3 with t = | cos θ f (p)| to deduce that the inequality (2.1) hold for all primes p and integers ν 1. Thanking to the multiplicativity, these inequalities also hold for all integers n 1.

Dirichlet series associated to λ

± f,r (n). For f ∈ H * k (N), r > 0 and ℜe s > 1, we define (2.8) Λ ± f,r (s) := n 1 λ ± f,r (n)n -s .
Next we shall study their analytic properties in the half-plane ℜe s 1 by using the higher order symmetric power L-functions L(s,

sym m f ) associated to f ∈ H * k (N), due to Gelbart & Jacquet [4] for m = 2, Kim & Shahidi ([8], [ 9]) for m = 3, 4, 5, 6, 7, 8. 
Here the symmetric mth power associated to f is defined as

L(s, sym m f ) := p 0 j m 1 -α f (p) m-j β f (p) j p -s -1
for ℜe s > 1, where α f (p) and β f (p) are given by (1.3) and (1.4). According to the literature mentioned above, it is known that the function L(s, sym m f ) for m = 2, 3, . . . , 8 is invertible for ℜe s 1.

We start to study F 1 (s), F 2 (s), F 3 (s) and F 4 (s).

Lemma 2.4. Let k 2 be an even integer, N 1 be squarefree and f ∈ H * k (N). For j = 1, 2, 3, 4 and ℜe s > 1, we have

(2.9) F j (s) = ζ(s) m j G j (s)H j (s),
where

(2.10) m 1 := 1, m 2 := 2, m 3 := 5, m 4 := 14,
and

G 1 (s) := L(s, sym 2 f ), G 2 (s) := L(s, sym 2 f ) 3 L(s, sym 4 f ), G 3 (s) := L(s, sym 2 f ) 9 L(s, sym 4 f ) 5 L(s, sym 6 f ), G 4 (s) := L(s, sym 2 f ) 34 L(s, sym 4 f ) 20 L(s, sym 6 f ) 7 L(s, sym 8 f )
are invertible for ℜe s 1. Here the function H j (s) admits a Dirichlet series convergent absolutely in ℜe s > 1 2 and H j (s) = 0 for ℜe s = 1.

Proof. Write x for the trace of a local factor of L(s, f ) (i.e. α f (p) + β f (p)), and denote by T n (x) the polynomial for the trace of its symmetric nth power. Then

T 2 = x 2 -1, T 4 = x 4 -3x 2 + 1, T 6 = x 6 -5x 4 + 6x 2 -1, T 8 = x 8 -7x 6 + 15x 4 -10x 2 + 1,
from which we deduce

x 2 = 1 + T 2 , x 4 = 2 + 3T 2 + T 4 , x 6 = 5 + 9T 2 + 5T 4 + T 6 , x 8 = 14 + 34T 2 + 20T 4 + 7T 6 + T 8 .
This implies (2.9). By using results on L(s, sym m f ) mentioned above, G j (s) is invertible for ℜe s 1. This completes the proof.

Lemma 2.5. Let k 2 be an even integer, N 1 be squarefree and f ∈ H * k (N). For r > 0 and ℜe s > 1, we have

(2.11) Λ ± f,r (s) = ζ(s) ρ ± r +1 H ± f,r (s) 
, where

(2.12) ρ ± r := 2 2r-8 (2 8 a ± 0 + 2 6 a ± 1 + 2 4 • 2a ± 2 + 2 2 • 5a ± 3 + 14a ± 4 ) -1 and H ± f,r (s 
) is invertible for ℜe s 1. Proof. By definition (2.6), for ℜe s > 1 we can write

Λ - f,r (s) = p 1 + 0 j 4 2 2(r-j) a - j λ f (p) 2j p -s = 0 j 4 F j (s) 2 2(r-j) a - j H - r (s) 
for r ∈ R -, and

Λ - f,r (s) = p 1 + 0 j 4 2 2(r-j) a - j λ f (p) 2j p -s + ν 2 |λ f (p ν )| 2r p -νs = 0 j 4 F j (s) 2 2(r-j) a - j H - r (s) 
for r ∈ R + , where F 0 (s) = ζ(s) is the Riemann zeta-function and H - r (s) is a Dirichlet series absolutely convergent for ℜe s > 1 2 such that H - r (s) = 0 for ℜe s = 1. Now the desired result with the sign '-' follows from Lemma 2.4. The other part can be treated in the same way.

Optimalisation of λ ±

f,r (p) and choice of κ ± , η ± . If we regard κ ± , η ± as parameters, the ρ ± r given by (2.12) are functions of these parameters. We choose (κ ± , η ± ) in (0, 1) 2 optimally, which can be done by using formal calculation via Maple. Their values are given by (2.3).

Proof of Theorem 1

In view of Lemma 2.5 and the classical fact on ζ(s), we can write

(3.1) Λ ± f,r (s) = H ± f,r (1) (s -1) ρ ± r +1 + g ± f,r (s) 
in some neighbourhood of s = 1 with ℜe s > 1, where H ± f,r (1) = 1 and g ± f,r (s) is holomorphic at s = 1. Since λ ± f,r (n) 0, we can apply Delange's tauberian theorem [START_REF] Delange | Généralisation du théorème de Ikehara[END_REF] to write

(3.2) n x λ ± f,r (n) ∼ H ± f,r (1)x(log x) ρ ± r (x → ∞).
Now Theorem 1 follows from (2.1) and (3.2).

Proof of Theorem 2

By (3.1), it follows that

p 1 + ν 1 λ ± f,r (p ν ) p νσ = H ± f,r (1) 
(σ -1) ρ ± r +1 + g ± f,r (σ) 
for σ > 1. From this, (2.6), (2.7) and Deligne's inequality, we deduce that

p λ ± f,r (p) p σ = (ρ ± r + 1) log(σ -1) -1 + C ± f,r + o(1) (σ → 1+),
where C ± f,r is some constant. On the other hand, the prime number theorem implies, by a partial integration, that

p p -σ = log(σ -1) -1 + C + o(1) (σ → 1+),
where C is an absolute constant. Thus the preceding relation can be written as 9) of [START_REF] Rankin | Sums of cusp form coefficients, Automorphic forms and analytic number theory[END_REF], the first term on the right-hand side of (10) of [START_REF] Rankin | Sums of cusp form coefficients, Automorphic forms and analytic number theory[END_REF] is replaced by x 1/2 z -1/2 (log x) ρ + 1/2 . Applying (4.2) with r = 1 2 again to the second term on the right-hand side of (10) of [START_REF] Rankin | Sums of cusp form coefficients, Automorphic forms and analytic number theory[END_REF], it follows that S f (x) ≪ x 1/2 z -1/2 (log x) ρ + 1/2 + z(log x) ρ + 1/2 .

Taking z = x 1/3 , we obtain the required result when the level is N = 1. The general case can be treated similarly as indicated in [START_REF] Rankin | Sums of cusp form coefficients, Automorphic forms and analytic number theory[END_REF].

Proof of Corollary 1

By comparing (1.17) and the lower bound part in (1.11) with r = 1 2 , it is easy to deduce that

n x λ f (n)≷ 0 |λ f (n)| ≫ f x(log x) ρ - 1/2
for x x 0 (f ). Since ρ - 1/2 = -(1 -1/ √ 3)/2 and ρ + 1 = 0, a simple application of the Cauchy-Schwarz inequality yields the following result.

The second assertion can be obtained by noticing that θ 1/2 = 8/(3π) -1.
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 1 Introduction Let k 2 be an even ineteger and N 1 be squarefree. Denote by H * k (N) the set of all normalized Hecke primitive eigencuspforms of weight k for the congruence modular group Γ 0 (N) := a b c d ∈ SL 2 (Z) : c ≡ 0 (mod N) .
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 1 (p) -(ρ ± r + 1) p σ = C ± f,r + (ρ ± r + 1)C + o(1) (σ → 1+).According to Exercise II.7.8 of[START_REF] Tenenbaum | Exercices corrigés de théorie analytique et probabiliste des nombres[END_REF], the formula (4.1) impliesp λ ± f,r (p) -(ρ ± r + 1) p = C ± f,r + (ρ ± r + 1)C. Hence p x λ ± f,r (p) p = (ρ ± r + 1) log 2 x + C ± f,r + (ρ ± r + 1)C + o(1) (x → ∞).Now we apply a well known result of Shiu[START_REF] Shiu | A Brun-Titchmarsh theorem for multiplicative functions[END_REF] and (2log x) ρ + r for r ∈ R -, any ε > 0, x x 0 (ε) and x 1/4 z x. Using this with r = in (

  In Subsection 2.3, we shall explain the reason behind this choice. Lemma 2.1. If the function h r (t; a) defined by (2.2) satisfies

	and let (2.3)	κ -:= 1 4 ,	η -:= 3 4 ,	κ + := 6-20 , √ 21	η + := 6+ 20 . √ 21

2.1. Construction of λ +

f,r (n). For a := (a 1 , . . . , a 4 ) ∈ R 4 and r > 0, consider the function (2.2) h r (t; a) := t r -a 1 t -a 2 t 2 -a 3 t 3 -a 4 t 4 (0 t 1)