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Abstract. We prove that the weakly damped cubic Schrödinger flow in L2(T)

provides a dynamical system that possesses a global attractor. The proof relies on

a sharp study of the behavior of the associated flow-map with respect to the weak

L2(T)-convergence inspired by [14]. Combining the compactness in L2(T) of the

attractor with the approach developed in [9], we show that the attractor is actually

a compact set of H2(T). This asymptotic smoothing effect is optimal in view of

the regularity of the steady states.

1 Introduction

The cubic nonlinear Schrödinger equation (NLS) can be derived as an asymp-
totic model to describe long waves propagation in different dispersive media.
In some physical contexts, an exterior forcing and some damping effects have
to be taken into account and this can lead to the following cubic NLS equa-
tion

ut + γu+ iuxx ∓ i|u|2u = f, (1)

where γ > 0 is the damping parameter and f is the forcing term. In this
paper we focus on the case where u(t, x) is a function from R+ × T to C,
with T = R/2πZ, and f ∈ L2(T) does not depend on time. Also since the
sign in front of the nonlinear term will not play any role in our analysis, we
will take the + sign in all this paper.

It is well-known since the work of Bourgain [3] that (1) provides an
infinite dimensional dynamical system on Hs(T) for s ≥ 0. Using an a priori
estimate in H1(T) related to the energy conservation of the classical cubic
NLS equation, the existence of a global attractor in H1(T) can be obtained
by a standard method (see for instance [18] or [8] where the additional
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regularity of the attractor is also proved). This method contains principally
two steps. A first step consists in proving the continuity of the flow-map
associated with the equation with respect to the weak topology of the phase
space. This ensures the existence of a compact global attractor for the weak
topology. The second step used the argument of Ball [2] to convert the weak
convergence to the attractor into a strong one. The standart way to prove
the first step is to use the well-posedness of the equation in a larger function
space where the phase space is compactly embedded (cf. for instance [5]).
This approach cannot be applied to (1) in L2(T) or L2(R) since the well-
posedness of this equation is not known below L2. Actually, the strong
ill-posedness of the classical cubic NLS equation below L2(T) has been even
proved (cf. [4], [14]). In [10] Goubet and the author used another approach
involving the so called Kato local smoothing effect for (1) on R to establish
the weak continuity of the flow-map in L2(R). However, in L2(T), the
situation seems more complicated since, as was shown in [14], the flow-map
of the classical cubic NLS equation is discontinuous for the weak topology
of L2(T). In this paper, proceeding as in [14], we precise some behaviors of
the flow-map with respect to the weak L2(T)-convergence. This information
supplemented with the argument of Ball enables to prove the existence of a
global attractor in L2(T). Finally, combining the approach developed in [8]-
[9] with the compactness of the attractor, we prove that the global attractor
actually belongs to H2(T) which can be view as an asymptotic smoothing
effect. This smoothing effect is optimal since for f belonging to L2(T) but
not to Hs(T), with s > 0, the steady state to (1) does not belong to Hs(T)
for s > 2, .

Our main result states as follows

Theorem 1.1 The nonlinear semigroup S(t) associated with (1) provides
an infinite-dimensional dynamical system in L2(T) that has a compact global
attractor A. Moreover, A is a compact set of H2(T).

Remark 1.2 Exactly the same proof as in Section 5 below shows that the
L2(R) global attractor to (1) on the line, that was constructed in [10], is
actually a compact set of H2(R).

The main new ingredient for proving Theorem 1.1 is the following result
on the behavior of the flow-map of (1) with respect to the weak L2(T)-
convergence.

Theorem 1.3 Let {u0,n} be a sequence of L2(T) converging weakly to u0 in
L2(T) and let {un} be the sequence of the associated emanating solutions of
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the weakly damped cubic Schrödinger equation (1). For any adherence value
a0 of {‖u0,n‖

2
L2} there exists a continuous function t 7→ a(t) from R to R+,

with a(0) = a0, and a subsequence {unk
} of {un} such that, for any t ∈ R,

unk
(t) converges weakly in L2(T) to v(t) where v ∈ C(R;L2(T))∩L4

loc(R×T)
is the unique solution to

{
vt + ivxx + γv + i|v|2v +

i

π

(
a(·) − ‖v(·)‖2

L2

)
v = f

v(0) = u0

. (2)

Remark 1.4 It is worth noticing that this theorem ensures that, in sharp
contrast with the case on the line (cf. [10]), the flow-map associated with
(1) is not continuous for the weak topology of L2(T). Indeed, following [14],
let u0 ∈ L2(T) different from 0 and let {φn} ⊂ L2(T) be a sequence such
that φn ⇀ 0 in L2(T) and ‖φn‖

2
L2 → 2π as n goes to infinity (one can take

for instance φn = einx). Setting u0,n = u0 + φn, we get that u0,n ⇀ u0 in
L2(T) and ‖u0,n‖

2
L2 → ‖u0‖

2
L2 + 2π as n→ ∞. On account of Theorem 1.3,

the emanating solutions un tend weakly in L2(T) for any fixed t ∈ R to v
satisfying (2). Observe that w = v − u is solution of

{
wt + iwxx + γw + i

(
|v|2w + (wu+ wv)u

)
= −

i

π

(
a(·) − ‖v(·)‖2

L2

)
v

w(0) = 0
.

(3)
Since v(0) = u0 6= 0 and a(0) = ‖u0‖

2
L2 + 2π 6= ‖v(0)‖2

L2 we infer that the
L2(T)-norm of the right-hand side of (3) cannot vanish for small t 6= 0.
Hence w(t) = 0 is not solution of (3) and thus v(t) 6= u(t) for small t 6= 0.
Finally, note that, since L2(T) is compactly embedded in Hs(T) for s < 0,
this proves that (1) is ill-posed in Hs(T) as soon as s < 0.

This paper is organized as follows. In the next section we introduce some
notations and the function spaces we will work with. Section 3 is devoted
to the proof of Theorem 1.3 and Section 4 is devoted to the existence of the
global attractor. Finally in Section 5 we prove the asymptotic smoothing
effect.

2 Function spaces and notations

When we affirm that a proposition is valid for x+ with x ∈ R, we mean that
there exists a small real number ǫ > 0 such that the proposition is valid for
any real number in the interval ]x, x+ ǫ[. For (x, y) ∈ R2, x . y means that
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there exists C > 0 such that x ≤ Cy. We will also denote by ε any function
from R+ into itself that goes to zero at infinity.
For a 2π-periodic function ϕ, we define its space Fourier transform by

ϕ̂(k) :=
1

2π

∫

T

e−ikx ϕ(x) dx, ∀k ∈ Z ,

and we denote by PNϕ and QNϕ the L2(T) orthogonal projections on re-
spectively the space Fourier modes |k| ≤ N and |k| > N .
We denote by V (·) the free group associated with the linearized Schrödinger
equation,

V̂ (t)ϕ(k) := e−ik2t ϕ̂(k), k ∈ Z .

The Sobolev spaces Hs(T) for 2π-periodic functions are defined as usually
and endowed with

‖ϕ‖Hs(T) := ‖〈k〉sϕ̂(k)‖l2(Z) = ‖Js
xϕ‖L2(T) ,

where 〈·〉 := (1 + | · |2)1/2 and Ĵs
xϕ(k) := 〈k〉sϕ̂(k).

For a function u(t, x) on R × T, we define its space-time Fourier transform
by

û(τ, ξ) := Ft,x(u)(τ, ξ) :=
1

2π

∫

R×T

e−i(τt+kx) u(t, x)dt dx, ∀(τ, k) ∈ R×Z .

and define the Bourgain spaces Xb,s and X̃b,s of functions on R×T respec-
tively endowed with the norm

‖u‖Xb,s := ‖〈τ + k2〉b〈k〉sû‖L2(R;l2(Z)) = ‖〈τ〉b〈k〉sFt,x(V (−t)u)‖L2(R;l2(Z)) .

and

‖u‖X̃b,s := ‖〈τ − k2〉b〈k〉sû‖L2(R;l2(Z)) = ‖〈τ〉b〈k〉sFt,x(V (t)u)‖L2(R;l2(Z)) .

Finally, for an open interval I ⊂ R we define the restriction in time spaces
Xb,s

I of functions on I × T endowed with the norm

‖u‖
Xb,s

I
:= inf

v∈Xb,s
{‖v‖Xb,s , v(·) ≡ u(·) on I } .

It is worth noticing that for b > 1/2 Xb,s
I is continuously embedding in

L∞(I;Hs(T)) with a constant of continuity that depends on b and on |I|
the length of I, i.e.

‖u‖L∞(I;Hs(T)) ≤ C(b, |I|)‖u‖
Xb,s

I
, ∀u ∈ Xb,s

I (4)
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3 Proof of Theorem 1.3

Theorem 1.3 is based on the observation made in [14] on the cubic NLS
equation posed on the one-dimensional torus. We first recall the following
well-posedness result due to Bourgain ([3]) for (1). Let us mention that this
result was established for the cubic Schrödinger equation without damping
and forcing but the adaptations for (1) are straightforward.

Theorem 3.1 Let s ≥ 0. For any u0 ∈ Hs(T), f ∈ Hs(T) and any T > 0,
there exists a unique solution

u ∈ L4(] − T, T [×T)

of (1). Moreover u ∈ C([−T, T ];Hs(T)) ∩ X
1/2+,s
]−T,T [ and the map data to

solution u0 7→ u is real analytic from Hs(T) to C([−T, T ];Hs(T)).

Let us recall that this theorem principally use the linear estimates in Bour-
gain’spaces for the free evolution and the retarded Duhamel operator

‖V (t)ϕ‖
Xb,s

]−T,T [
≤ C(T, b)‖ϕ‖Hs , b ∈ R, s ∈ R, 0 < T < 1, (5)

and for any 0 < ε << 1 and 0 < T < 1,

‖

∫ t

0
V (t− t′)f(t′) dt′‖

Xb,s
]−T,T [

≤ C(b, ε)T ε‖f‖
Xb−1+ε,s

]−T,T [
, 1/2 ≤ b < 1, (6)

as well as the following linear dispersive estimate

‖v‖L4(R×T) . ‖v‖X3/8,0 , ∀v ∈ X3/8,0 . (7)

This estimate is proven in [3] for functions on T2 but also holds for function
on R×T (See [13] for a shorter proof that works also clearly on R×T ). Note
that applying (7) with v we obtain that (6) also holds with X3/8,0 replaced
by X̃3/8,0. Moreover, according to [6] and [7], (7) ensures that for 0 < T < 1
it holds

‖V (t)ϕ‖L4(]−T,T [×T) . T 1/8‖ϕ‖L2(T), ∀ϕ ∈ L2(T) , (8)

which gives directly the existence and uniqueness in L4(] − T, T [×T) by

classical TT ∗ arguments. On the other hand, to prove that u ∈ X
1/2+,0
]−T,T [ , one

has to notice that (7) yields

‖u1u2u3‖X
−1/2+,0
]−T,T [

.

3∏

i=1

‖ui‖X
1/2,0
]−T,T [

, ∀ui ∈ X
1/2,0
]−T,T [ (9)
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Writing the Duhamel formulation of (1), using (5)-(6) and (9) and choosing
some small positive real number ε, one can then eventually derive the key
estimate :

‖u‖
X

1/2+,0
]−T,T [

. ‖u0‖L2(T) +T 0+
[
(‖u‖2

X
1/2+,0
]−T,T [

+γ)‖u‖
X

1/2+,0
]−T,T [

+‖f‖L2(T)

]
. (10)

This lead to the local existence result in X
1/2+,0
]−T,T [ . Finally, the fact that the

time of existence in Theorem 3.1 can be chosen arbitrarly large follows from
the a priori bound on the L2(T)-norm of the solution (see (12)) .

Now, let u0 ∈ L2(T) and {u0,n} ⊂ L2(T) be a sequence converging weakly
to u0 in L2(T). Note that, from Banach Steinhaus’theorem, {||u0,n||L2(T)} is
bounded in R+. It is well-known that the solutions of (1), given by Theorem
3.1, satisfy for all t ∈ R,

1

2

d

dt
||u||2L2(T) + γ||u||2L2(T) = Re

∫

T

fūdx (11)

By Young inequality and Gronwall lemma, we deduce that the L2-solutions
satisfy for any t ∈ R+,

||u(t)||2L2(T) ≤ e−γt||u0||
2
L2(T) +

1 − e−γt

γ2
||f ||2L2(T). (12)

Performing the change of variables (t, x) 7→ (−t, x) and proceeding as above
we also infer that for any t ∈ R− it holds

||u(t)||2L2(T) ≤ e3γ|t|||u0||
2
L2(T) +

e3γ|t| − 1

γ2
||f ||2L2(T) (13)

Therefore, from (11), we deduce that for any (t0, t1) ∈ R2 with t1 > t0,

∣∣∣||u(t1)||2L2
x
− ||u(t0)||

2
L2

x

∣∣∣ =
∣∣∣2γ

∫ t1

t0

||u(τ)||2L2(T) dτ + 2Re

∫ t1

t0

∫

T

fū(τ)dx τ
∣∣∣

≤ |t1 − t0|
[
3γ

(
e3γ|t0|||u0||

2
L2(T) +

e3γ|t0| − 1

γ2
||f ||2L2(T)

)

+
1

γ
||f ||2L2(T)

]
. (14)

Denoting by un the solution to (1) associated with the initial data u0,n, this
last inequality ensures that the sequence {t 7→ ||un(t)||L2(T)} is uniformly
equi-continuous on any bounded interval of R. It follows from Ascoli’s the-
orem that there exists a subsequence {t 7→ ||unk

(t)||L2(T)} that converges
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to some function t 7→ a(t) in C([−T, T ]) for any T > 0. Moreover, from

Theorem 3.1 we know that {unk
} is bounded in X

1/2+,0
]−T,T [ and thus, up to the

extraction of a subsequence, converges weakly to some v in X
1/2+,0
]−T,T [ .

Now, in [14] it is proven that the nonlinear term |u|2u can be rewritten as

|u|2u =
1

π
‖u‖2

L2u+ Λ1(u, u, u) + Λ2(u, u, u) , (15)

where Λi are continuous from (X
1/2+,0
1 )3 to X

−7/16,0
1 equipped with their

respective weak topology. We thus rewrite the Duhamel formulation for un

in the following way :

un(t) = V (t)u0,n − i

∫ t

0
V (t− t′)

(
Λ1(un(t′)) + Λ2(un(t′)

)
dt′

−
i

π

∫ t

0
V (t− t′)

(
‖un(t′)‖2

L2un(t′)
)
dt′ − γ

∫ t

0
V (t− t′)un(t′)dt′

+

∫ t

0
V (t− t′)fdt′ . (16)

According to the linear estimates (5)-(6), the decomposition (15), the con-
tinuity of the Λi’s for the weak topology and the above convergence results,
we can pass to the limit to obtain that

v(t) = V (t)u0 − i

∫ t

0
V (t− t′)

(
Λ1(v(t

′)) + Λ2(v(t
′)
)
dt′

−
i

π

∫ t

0
V (t− t′)(a(t′)v(t′)) dt′ − γ

∫ t

0
V (t− t′)v(t′)dt′ +

∫ t

0
V (t− t′)fdt′

and v is solution of the following Cauchy problem on ] − 1, 1[ :

{
vt + vxx + γv + i(Λ1 + Λ2)(v) +

i

π
a(·)v = f

v(0) = u0

. (17)

Proceeding exactly as for the cubic Schrödinger equation, it is easy to prove
that this Cauchy problem is globally well-posed1 in Hs(T), s ≥ 0, with a
solution belonging for all T > 0 to

C([−T, T ];Hs(T)) ∩ L4(] − T, T [×T) ∩X
1/2+,0
]−T,T [

1Note that the L2-norm is controlled on any bounded interval of R
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with uniqueness in L4(]−T, T [×T). Therefore, there exists only one possible

limit and thus the whole sequence {unk
} converges weakly to v in X

1/2+,0
]−1,1[ .

Moreover, using the equation satisfied by the un and the uniform bound
in L∞(] − T, T [;L2(T)) ∩ L4(] − T, T [×T), it is easy to check that for any
smooth 2π-periodic function φ, the family {t 7→ (unk

(t), φ)L2} is bounded in
C([−1, 1]) and uniformly equi-continuous on [−1, 1]. Ascoli’s theorem then
ensures that (unk

, φ) converges to (v, φ) on [−1, 1] and thus unk
(t) ⇀ v(t)

in L2(T) for all t ∈ [−1, 1]. By direct iteration this clearly also holds for all
t ∈ R.
Finally, according to (15), v can be also characterized as the unique solution
in L4(] − T, T [×T) to

{
vt + ivxx + γv + i|v|2v +

i

π

(
a(·) − ‖v(·)‖2

L2

)
v = f

v(0) = u0

. (18)

4 Existence of the global attractor

Let us denote by S(t) the nonlinear group associated with (1), i.e.

S(t)u0 := u(t), t ∈ R .

On account of Theorem 1.3 and (12), we infer that the ball of L2(T),

X :=
{
v ∈ L2(T), ‖v‖L2(T) ≤M0 := 2

||f ||L2(T)

γ

}

is a global absorbing set for the dynamical system under consideration and
that S(t) acts continuously on X . To prove that there exists a global
attractor it suffices to check the relative compactness in L2(T) of sequences
of the type {S(tn)bn} with tn ↑ +∞ and {bn} ⊂ X. This is the aim of the
following proposition.

Proposition 4.1 For any sequences {bn} ⊂ X and {tn} ↑ +∞, the se-
quence {S(tn)bn} has an adherence point in L2(T).

Proof . We combine Theorem 1.3 with the famous J. Ball’s argument (see [2],
[18], [12]). Let {bn} ⊂ X and let {tn} be a sequence of positive real numbers
that goes to infinity. From (12) the sequence {S(tn)bn} remains bounded
in L2(T) and thus, up to the extraction of a subsequence, converges weakly
in L2(T) to some v0. According to Theorem 1.3 there exists a subsequence
{S(tnk

)bnk
} and a continuous function t 7→ a(t) from R to R+ such that
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the solutions emanating from {S(tnk
)bnk

} converge weakly in L2(T) for all
t ∈ R to v(t) where v is the unique solution to

{
vt + ivxx + γv + i|v|2v +

i

π

(
a(·) − ‖v(·)‖2

L2

)
v = f

v(0) = v0
. (19)

From (11) we infer that for τ > 0 fixed and nk large enough,

‖S(tnk
)bnk

‖2
L2(T) = e−2γτ‖S(tnk

−τ)bnk
‖2

L2(T)−2Re

∫ τ

0

∫

T

e−2γsf S(tnk
−s)bnk

dsdx

(20)
where ‖S(tnk

− τ)bnk
‖2

L2(T) ≤ M2
0 and, according to the weak convergence

and the dominated convergence theorem,

lim
nk→+∞

2Re

∫ τ

0

∫

T

e−2γsf S(tnk
−s)bnk

dxds = 2Re

∫ τ

0

∫

T

e−2γsf v(−s)dxds .

(21)
On the other hand, using the energy identity for equation (19) , we get

||v0||
2
L2(T) = e−2γτ ||v(−τ)||2L2(T) − 2Re

∫ τ

0

∫

T

e−2γsf v(−s)dxds. (22)

But since S(tnk
− τ)bnk

⇀ v(−τ) in L2(T), it follows from (12) that

‖v(−τ)‖L2(T) ≤M2
0 .

Gathering the above three equalities, we thus infer that for any fixed τ > 0,

lim sup
nk→+∞

||S(tnk
)bnk

||2L2(T) ≤ ||v0||
2
L2(T) + 2e−2γτM2

0 , (23)

which ensures that S(tnk
)bnk

converges actually strongly to v0 in L2(T).
This completes the proof of Theorem 4.1. �

Proposition 4.1 ensures the existence of a compact global attractor in L2(T).
More precisely, from classical arguments (see for instance the proof of The-
orem 1.1 in [16]), it follows that the invariant closed set

A := ω(X) =
⋂

s>0

⋃

t>s

S(t)X

is non-empty and attracts any bounded set of L2(T). The compactness of
A follows as well. Indeed, let {an} ⊂ A. Taking a sequence {tn} ↑ +∞ and
setting bn = S(−tn)an, we get that an = S(tn)bn with {bn} ⊂ A ⊂ X and
thus {an} has got an adherence point in L2(T).
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5 Asymptotic smoothing effect

In this section we prove that the global attractor lies actually in H2(T) and
is moreover compact in this space. Following the approach developed in [9],
we split the solution u(t) = S(t)u0 emanating from u0 into two parts by
setting2

vt + ivxx + γv + |v|2v = f − PN (|u|2u) + PN (|v|2v) (24)

wt + iwxx + γw +QN (|u|2u) −QN (|v|2v) = 0 (25)

with initial conditions

v(0) = PN (u0) and w(0) = QN (u0) . (26)

In [9], Goubet introduced this decomposition for the weakly damped KdV
equation. A first step of his analysis consists in proving that the high fre-
quency part w(t) is decreasing to 0 in L2(T). This decay of ‖w(t)‖L2(T)

, which is uniform for all u0 in the absorbing ball, is obtained by using
the dispersive damping effect on the high-high frequencies interactions that
occurs for the nonlinear part of the KdV equation above H−1/2(T). This
is related to the fact that the associated Cauchy problem is well-posed in
Hs(T) for s ≥ −1/2. For the cubic Schrödinger equation the situation is
more delicate since as recalled in the introduction, this equation is ill-posed
below L2(T). Actually, due to some resonant parts in the nonlinear term,
there is no damping effect on high-high-high interactions. To overcome this
difficulty we will work directly on the global attractor and use in a cru-
cial way that we already proved that it is compact in L2(T). Note that,
the a priori compactness of the global attractor is not required in [9] where
the compactness of the attractor can be obtained as a consequence of the
asymptotic behavior of v and w.

The second step of the analysis in [9] consists in proving an uniform
bound in H3(T) on v. This uniform estimate follows from an uniform bound
in L2(T) on the time derivative vt of v. To get this last bound the author
uses among others that, in view of the equation satisfied by v, the low
frequencies PNvt belongs to any Hs(T), s ∈ R. We will not be able to use
this approach here since for v ∈ L2(T), PN (|v|2v) does not belong a priori to
any Hs(T). Inspired by [17] we will instead introduce the auxiliary function

z := QNv − gN , where gN is defined by ĝN (k) := Q̂N f(k)
−ik2+γ , and prove that z

2Recall that PN and QN are the projections on respectively the spatial Fourier modes

|k| ≤ N and |k| > 0.
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is uniformly bounded in H2(T).

The key proposition to derive the regularity of the attractor is the following.

Proposition 5.1 There exist functions h and K : R+ → R+ with limt→+∞ h(t) =
0 such that for all N > 0 large enough and all u0 ∈ A the function v and w
constructed in (24)-(26) satisfy

‖w(t)‖L2(T) ≤ h(t) and ‖v(t)‖H2(T) ≤ K(N) , ∀t ∈ R+ . (27)

With Proposition 5.1 in hand it is straightforward to check that A is em-
bedded in H2(T). Indeed, let a ∈ A and {tn} ↑ +∞. For all n ∈ N we can
write a as

a = S(tn)S(−tn)a = S(tn)bn

with bn = S(−tn)a ∈ A. From Proposition 5.1 it follows that, for any n ∈ N,
a can be decomposed as a = vn+wn with ‖vn‖H2(T) ≤ K and ‖wn‖L2(T) → 0
as n → +∞. Therefore a ∈ H2(T) and ‖a‖H2(T) ≤ K. Hence, there exists
K > 0 such that the following uniform bound holds on the attractor :

‖a‖H2(T) ≤ K , ∀a ∈ A. (28)

5.1 Proof of Proposition 5.1

5.1.1 Preliminaries

The L2(T)-compactness of A ensures the following uniform bound on the
L2(T)-norm of the high frequency part to the elements of A.

Proposition 5.2 There exists a function ε from R+ into itself that goes to
zero at infinity such that

‖QNa‖L2(T) ≤ ε(N) , ∀a ∈ A . (29)

Thanks to this remark we will have to prove a damping effect only on terms
of the form PN/2u1PN/2u2QNu3. This is the aim of the following lemma :

Lemma 5.3 Let I ⊂ R be a bounded interval, N be a positive integer and

let ui ∈ X
1/2,0
I , i = 1, 2, 3. Then it holds

‖PN/2u1PN/2u2QNu3‖X
−1/2,0
I

. N−1/4
3∏

i=1

‖ui‖X
1/2,0
I

(30)

11



Proof. We take extensions vi of the ui’s such that ‖vi‖X1/2,0 ≤ 2‖ui‖X
1/2,0
I

.

By duality we have to prove that

sup
‖w‖

X1/2,0=1

∣∣∣
(
w,PN/2v1PN/2v2QNv3)

)
L2(R×T)

∣∣∣ . N−1/4
3∏

i=1

‖vi‖X1/2,0 .

It thus suffices to estimate

J =

∫

R3

∑

(k1,k2,k3)∈A(N)

|ŵ(τ, k)||v̂1(τ1, k1)||v̂2(τ2, k2)||v̂3(τ3, k3)| dτ1 dτ2 dτ3

where τ = τ1 + τ2 + τ3, k = k1 + k2 + k3 and

A(N) := {(k1, k2, k3) ∈ Z3, |k1| ≤ N/2, |k2| ≤ N/2 and |k3| > N } .

To do this we will use the famous resonant relation for the Schrödinger
equation. Setting σ = τ + k2, σ1 = τ1 + k2

1 , σ2 = τ2 + k2
2 and σ̃3 = τ3 − k2

3 ,
it holds

σ − σ1 − σ2 − σ̃3 = 2(k3 + k1)(k3 + k2) . (31)

This ensures that on R3 ×A(N),

max(|σ|, |σ1|, |σ2|, |σ̃3|) & N2 .

Therefore we get, thanks to (7),

J . N−1/4

∫

R3

∑

(k1,k2,k3)∈A(N)

|σ|1/8|ŵ(τ, k)||σ1|
1/8|v̂1(τ1, k1)|

|σ2|
1/8|v̂2(τ2, k2)||σ̃3|

1/8|v̂3(τ3, k3)| dτ1 dτ2 dτ3

. N−1/4‖ F−1(|σ|1/8|ŵ|)‖L4(R×T)‖F
−1(|σ̃|1/8|v̂3|)‖L4(R×T)

2∏

i=1

‖F−1(|σ|1/8|v̂i|)‖L4(R×T)

. N−1/4‖w‖X1/2,0

3∏

i=1

‖vi‖X1/2,0

where we used that according to the remark after (7),

‖F−1(|σ̃|1/8|v̂3|)‖L4(R×T) . ‖v3‖X̃1/2,0 = ‖v3‖X1/2,0 .

This completes the proof of the lemma. �

We are now in position to prove the Proposition 5.1. Let u0 ∈ A we
decompose u(t) = S(t)u0 by

u(t) = v(t) + w(t)

where v and w are defined as in (24)-(26).
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5.1.2 Decay in time of w

The equation for w can be rewritten as

wt+iwxx+γw+iQN (|w|2w−2|w|2u−w2u)+iQN (2|u|2w+u2w) = 0 . (32)

Since u ∈ X
1/2+,0
]−T,T [ for any T > 0, proceeding as in Theorem 3.1 it is easy to

prove that the Cauchy problem for w is locally well-posed in L2(T). We can
thus multiply (32) with 2w and integrate over T to obtain

d

dt
‖w‖2

L2(T) + 2γ‖w‖2
L2(T) ≤

∣∣∣
∫

T

(2|w|2u− w2u)w
∣∣∣

+
∣∣∣
∫

T

u2w2
∣∣∣ . (33)

From Theorem 3.1, (10) and the fact that u belongs to the attractor, we
know that for all t ∈ R ,

‖u‖
X

1/2+,0
]t−1,t+1[

. M0 and ‖QNu‖X
1/2,0
t−1,t+1

. ε(N) . (34)

Therefore, proceeding as in the proof of Theorem 3.1, we get the following
estimate on w for all t ∈ R and 0 < δ < 1,

‖w‖
X

1/2+,0
]t−δ,t+δ[

. ‖w(t)‖L2(T)+δ
0+‖w‖

X
1/2+,0
]t−δ,t+δ[

(
‖w‖2

X
1/2+,0
]t−δ,t+δ[

+‖u‖2

X
1/2+,0
]t−δ,t+δ[

+
+1

)
.

(35)
Assuming that ‖w(t)‖L2(T) is bounded by some constant A > 0 on [0, T ] for
some positive time T > 0, we deduce that there exists δ0 = δ0(A) > 0 such
that for 0 < δ < δ0,

‖w‖
X

1/2+,0
]t−δ,t+δ[

. ‖w(t)‖L2(T), ∀t ∈ [0, T ] . (36)

From now on, we fix 0 < δ < δ0 such that (36) holds. From this last
inequality and (4) we infer that

inf
τ∈]t,t+δ[

‖w(τ)‖L2(T) & ‖w(t)‖L2(T), ∀t ∈ [0, T ] . (37)

Integrating (33) with respect to time we obtain the following estimate for
any t ∈ [0, T ],

‖w(t+ δ)‖2
L2(T) ≤ ‖w(t)‖2

L2(T)e
−γδ − γ

∫ t+δ

t
e−γ(t−s)‖w(s)‖2

L2(T) ds

+

∫ t+δ

t
e−γ(t−s)

∣∣∣
∫

T

(2|w|2u− w2u)w
∣∣∣ ds

+

∫ t+δ

t
e−γ(t−s)

∣∣∣
∫

T

u2w2
∣∣∣ ds . (38)
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From (37) we infer that,

− γ

∫ t+δ

t
e−γ(t−s)‖w(s)‖2

L2(T) ds ≤ −C (1 − e−γδ)‖w(t)‖2
L2(T) . (39)

Let us estimate now the two last time integrals in (38). First, we deduce
from (9), (34) and (36) that

I1 :=

∫ t+δ

t
e−γ(t−s)

∣∣∣
∫

T

(2|w|2u− w2u)w
∣∣∣ ds

. ‖(2|w|2u−w2u)‖
X

−1/2,0
]t,t+δ[

‖w‖
X

1/2,0
]t,t+δ[

. ‖w‖3

X
1/2,0
]t,t+δ[

(
‖w‖

X
1/2,0
]t,t+δ[

+ ‖u‖
X

1/2,0
]t,t+δ[

)

. ‖w(t)‖3
L2(T)

(
‖w(t)‖L2(T) +M0

)
(40)

To estimate the last time integral we split it into two parts in the following
way :

I2 :=

∫ t+δ

t
e−γ(t−s)

∣∣∣
∫

T

u2w2
∣∣∣ ds

=

∫ t+δ

t
e−γ(t−s)

∣∣∣
∫

T

(QN/2u(s))(QN/2u(s) + 2PN/2u(s))(w(s))2
∣∣∣ ds

+

∫ t+δ

t
e−γ(t−s)

∣∣∣
∫

T

(PN/2u(s))
2(w(s))2

∣∣∣ ds

= I21 + I22 . (41)

To estimate I21 we proceed as above using (34) and (36) to get

I21 . ‖u‖
X

1/2,0
]t,t+δ[

‖QN/2u‖X
1/2,0
]t,t+δ[

‖w‖2

X
1/2,0
]t,t+δ[

. M0 ε(N/2)‖w(t)‖2
L2 (T) . (42)

Finally, to estimate I22 we use Lemma 5.3 (recall that w = QNw) and (36)
to obtain

I22 . ‖(PN/2v(s))
2w‖

X
−1/2,0
]t,t+δ[

‖w‖
X

1/2,0
]t,t+δ[

.
M2

0

N1/4
‖w‖2

X
1/2,0
]t,t+δ[

.
M2

0

N1/4
‖w(t)‖2

L2(T) . (43)
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Gathering (38)-(43) we thus infer that for all t ∈ [0, T ],

‖w(t + δ)‖2
L2(T) − ‖w(t)‖2

L2(T)e
−γδ

≤
[
C1

(
‖w(t)‖L2(T)(‖w(t)‖L2(T) +M0) +M0 ε(N/2) +

M2
0

N1/4

)

−C2(1 − e−γδ)
]
‖w(t)‖2

L2(T) . (44)

Since w(0) = QN (u0), according to Proposition 5.2, we can choose N > 0
large enough so that the right-hand side of the above inequality is negative
at t = 0. By direct iteration in time and (37) we thus infer that

‖w(t)‖L2(T) . e−γt‖w(0)‖L2(T) . e−γt‖QNu0‖L2(T) . e−γtε(N) , ∀t ∈ [0, T ] .
(45)

In particular, ‖w(t)‖L2(T) is bounded by

A = C‖w(0)‖L2(T) . ‖u0‖L2(T) . M0

on [0, T ] and thus, by a continuity argument, (45) holds actually for any
T > 0. This proves the first assertion of Proposition 5.1.

5.1.3 Estimate on QNv

For N fixed, since by construction PNv = PNu and u belongs to the global
attractor, we get thanks to (34) that

‖PNv(t)‖H2 . ‖PNu‖X
1/2+,2
]t−1,t+1[

≤ C(N), ∀t ∈ R . (46)

It thus remains to control the high frequencies of v. Inspired by [17] we
introduce the function gN defined by

ĝN (k) =
Q̂Nf(k)

−ik2 + γ
(47)

so that gN satisfies the equation

∂tgN + i∂2
xgN + γg = QNf .

Therefore, setting z := QNv − gN , z = QNz and is solution of
{
zt + izxx + γz + iQN (|v|2v) = 0
z(0) = −gN

. (48)

We plan to prove that z(t) is uniformly bounded in H2(T) for positive times.
We will need the following result on the behavior of gN with respect to N .
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Lemma 5.4 gN ∈ H2(T) ∩X
1/2,1
]−1,1[ and it holds

‖gN‖H2(T) + ‖gN‖
X

1/2,1
]−1,1[

≤ ε(N) (49)

where ε(N) → 0 as N → +∞.

Proof. It is clear that

‖gN‖H2(T) ≤ ‖QNf‖L2(T) → 0 as N → +∞ .

Let now ψ ∈ C∞
0 (] − 2, 2[) such that ψ ≡ 1 on [−1, 1]. It holds

‖gN‖
X

1/2,1
]−1,1[

≤ ‖ψgN‖X1/2,1 = ‖〈τ + k2〉1/2〈k〉ψ̂ĝN‖L2(R×Z)

≤ ‖〈τ〉1/2ψ̂‖L2(R)‖〈k〉ĝN‖L2(Z) + ‖ψ‖L2(R)‖〈k〉
2ĝN‖L2(Z) . ‖gN‖H2(T) .

It is worth noticing that combining (29), (49), (34), (36) and (45) it
clearly holds

‖z(t)‖L2(T) ≤ ε(N) and ‖z‖
X

1/2+,0
]t−1,t+1[

. M0, ∀t ≥ 0, (50)

where ε(N) → 0 as N → +∞. Therefore, taking β > 0 small enough, it
holds

‖z‖
X

1/2,0
]t−1,t+1[

. ‖z‖
2β

1+2β

X0,0
]t−1,t+1[

‖z‖
1

1+2β

X
1/2+β,0
]t−1,t+1[

. ε(N) (51)

where ε(N) → 0 as N → +∞.
According to the linear estimates (5)-(6), to prove that the equation (48)

is globally well-posed in H2(T), it suffices to prove the following estimate :

Lemma 5.5 Assuming that z ∈ X
1/2+,2
I for some time interval I ⊂ R with

|I| ≤ 1. The following estimate holds :

∥∥∥QN (|v|2v)
∥∥∥

X
−1/2+ǫ,2
I

. C(N) + ‖z‖
X

1/2+,2
I

(52)

Proof. We decompose v as v = PNu+ z + gN so that we have to estimate

∥∥∥QN

(
|PNu+ z + gN |2(PNu+ z + gN )

)∥∥∥
X

−1/2+ǫ,2
I

.

Let us first estimate the expression containing gN , i.e. terms of the form
‖QN (gNw1w2)‖X

−1/2+ǫ,2
I

or ‖QN (w1gNw2)‖X
−1/2+ǫ,2
I

with (w1, w2) ∈ {gN , PNu, z}
2.
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By the triangular inequality we can write

‖QN (gNw1w2)‖X
−1/2+ǫ,2
I

. ‖QN (gNw1w2)‖X
−1/2+ǫ,0
I

+ ‖QN (gND
2
xw̃1w2)‖X

−1/2+ǫ,0
I

+‖QN (gNw1D
2
xw̃2)‖X

−1/2+ǫ,0
I

+ ‖QN (D2
xgNw1w2)‖X

−1/2+ǫ,0
I

+‖QN (gND
2
xgNw2)‖X

−1/2+ǫ,0
I

(53)

with (w̃1, w̃2) ∈ {PNu, z}. The terms containing no derivative on gN of the
above right-hand side can be estimated thanks to (7), (9), (49) and (50) by

‖gN‖
X

1/2,0
I

(‖PNu‖X
1/2,2
I

+ ‖z‖
X

1/2,2
I

+ ‖gN‖
X

1/2,0
I

)(‖PNu‖X
1/2,0
I

+ ‖z‖
X

1/2,0
I

+ ‖gN‖
X

1/2,0
I

)

. ε(N)(M2
0N

2 +M0‖z‖X
1/2,2
I

+ ε(N)) . (54)

For the terms that contains two derivatives on gN we write

‖QN (D2
xgNw1w2)‖X

−1/2+ǫ,0
I

. ‖gN‖H2(T)‖w1‖L∞

I L∞(T)‖w2‖L∞

I L∞(T)

. ε(N)‖w1‖
3/4
L∞

I L2(T)
‖w2‖

3/4
L∞

t L2(T)
‖w1‖

1/4
L∞

I H2(T)
‖w2‖

1/4
L∞

I H2(T)

. ε(N)(M2
0N

2 + ε(N)‖z‖
X

1/2+,2
I

+ ε(N)) . (55)

The terms of the form ‖QN (wgNw2)‖X
−1/2+ǫ,2
I

can be treated exactly in the

same way. It remains to consider the terms where gN is not involved. From
(7), (9) and (51) ,

‖|z|2z‖
X

−1/2+ǫ,2
I

. ‖z‖2

X
1/2,0
I

‖z‖
X

1/2,2
I

. ε(N)2‖z‖
X

1/2,2
I

, (56)

and

‖PNu|z|
2‖

X
−1/2+ǫ,2
I

+ ‖PNuz
2‖

X
−1/2+ǫ,2
I

. ‖PNu‖X
1/2,0
I

‖z‖
X

1/2,0
I

‖z‖
X

1/2,2
I

+ ‖PNu‖X1/2,2‖z‖2
X1/2,0

. ε(N)M0‖z‖X
1/2,2
I

+N2M0ε(N)N−2‖z‖
X

1/2,2
I

. ε(N)M0‖z‖X
1/2,2
I

. (57)

To deal with (PNu)
2z we decompose it as

(PNu)
2z = (QN/2PNu)(QN/2PNu+2PN/2u)z+(PN/2u)

2z := A1+A2 . (58)

Clearly, (34) yields

‖A1‖X
−1/2+ǫ,2
I

. ε(N/2)M0‖z‖X
1/2,2
I

(59)
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and using Lemma 5.3 it is easy to check that

‖A2‖X−1/2+ǫ,2 . N−1/4M2
0 ‖z‖X

1/2,2
I

. (60)

Finally,

‖|PNu|
2z|‖X−1/2+ǫ,2 . ‖PNu‖X

1/2,0
I

‖PNu‖X
1/2,2
I

‖z‖
X

1/2,0
I

+ ‖PNu‖
2

X
1/2,0
I

‖z‖
X

1/2,2
I

.M2
0 (N2N−2 + 1)‖z‖

X
1/2,2
I

. M2
0 ‖z‖X

1/2,2
I

(61)

and
‖|PNu|

2PNu|‖X
−1/2+ǫ,2
I

. N2M3
0 . (62)

Gathering all the above estimates, (52) follows. � From the above

lemma and (5)-(6)we deduce that z ∈ X
1/2+,2

loc
and that , for any t ≥ 0 and

any 0 < δ < 1, it holds

‖z‖
X

1/2+,2
]t−δ,t+δ[

. ‖z(t)‖H2(T) + C δ0+
(
C(N) + ‖z‖

X
1/2+,2
]t−δ,t+δ[

)
.

This ensures that for δ > 0 small enough,

‖z‖
X

1/2+,2
]t−δ,t+δ[

. ‖z(t)‖H2(T) + C(N) . (63)

We will proceed as in the preceding subsection. From now on we fix 0 <
δ < 1 such that (63) holds. As in (37), this implies that

inf
τ∈]t−δ,t+δ[

‖z(τ)‖H2(T) ≥ C‖z(t)‖H2(T) − C(N), ∀t ∈ R . (64)

On the other hand, taking the real part of the H2(T) hermitian-product of
(48) with 2z, we get

d

dt
‖z‖2

H2(T) + 2γ‖z‖2
H2(T) =ℜ

[
−i2((QN (|v|2v), z))H2

]
. (65)

Integrating with respect to time this implies the following estimate for any
t ≥ 0,

‖z(t+ δ)‖2
H2(T) ≤‖z(t)‖2

H2(T)e
−γδ − γ

∫ t+δ

t
e−γ(t−s)‖z(s)‖2

H2(T) ds

+2
[∫ t+δ

t
e−γ(t−s)ℑ

[
((QN (|v(s)|2v(s)), z(s)))H2

]
ds

≤‖z(t)‖2
H2(T)e

−γδ + (1 − e−γδ)
(
C(N) − C‖z(t)‖2

H2(T)

)

+2
∣∣∣ℑ

[∫ t+δ

t
((|v(s)|2v(s), z(s)))H2 ds

]∣∣∣ (66)
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To estimate the last term of the above right-hand side we decompose v as
in Lemma 5.5. In view of (54)-(62) to get the following estimate :

∣∣∣ℑ
[∫ t+δ

t
((|v(s)|2v(s), z(s)))H2 ds

]∣∣∣ . C(N) + ε(N)‖z‖2
X1/2+,2 , (67)

we only have to care about

I :=
∣∣∣ℑ

∫ t+δ

t
(|PNu(s)|

2z(s), z(s))H2 ds
∣∣∣ .

To deal with this term we decompose it as

I .
∣∣∣ℑ

∫ t+δ

t
(|PNu|

2z, z)H1 ds
∣∣∣ +

∣∣∣ℑ
∫ t+δ

t

∫

T

(
2∂x(|PNu|

2)∂xz + ∂2
x(|PNu|

2)z
)
∂2

xz dxds
∣∣∣

+
∣∣∣ℑ

∫ t+δ

t

∫

T

|PNu|
2|∂2

xz|
2 dxds

∣∣∣ (68)

and notice that the last term of the right-hand side vanishes. We thus get

I . ‖|PNu|
2z‖

X
−1/2,1
]t,t+δ[

‖z‖
X

1/2,1
]t,t+δ[

+
∥∥∥2∂x(|PNu|

2)∂xz + ∂2
x(|PNu|

2)z
∥∥∥

X
−1/2,0
]t,t+δ[

‖z‖
X

1/2,2
]t,t+δ[

.M2
0 ε(N)‖z‖

X
1/2,2
]t,t+δ[

+
(
M2

0Nε(N)1/2‖z‖
1/2

X
1/2,2
]t,t+δ[

+M2
0N

2ε(N)
)
‖z‖

X
1/2,2
]t,t+δ[

. ε(N)‖z‖2

X
1/2,2
]t,t+δ[

+ C(N) . (69)

Combining this last estimate with (54)-(61), (67) follows.
We thus infer that

‖z(t+ δ)‖2
H2(T) ≤‖z(t)‖2

H2(T)e
−γδ + C(N)

+C1

(
ε(N) − C2(1 − e−γδ)

)
‖z(t)‖2

H2(T) ds . (70)

For N large enough the last term of the right-hand side is clearly negative
and is bounded from above by

−α ‖z(t)‖2
H2(T) ,

for some small real number α > 0. This ensures that, taking N > 0 large
enough, there exists C(N) > 0 such that

‖z(t)‖H2(T) ≤ C(N), ∀t ≥ 0, (71)

and thus on account of (46), (49), (63) and the definition of z, there exists
K(N) > 0 such that

‖v‖
X

1/2+,2
]t−1,t+1[

+ ‖v(t)‖H2(T) ≤ K(N), ∀t ≥ 0 . (72)

This completes the proof of Proposition 5.1. �
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5.2 Compactness in H
2(T)

To prove the compactness in H2(T), it suffices to show that

‖z(t)‖H2(T) ≤ ε(N), ∀t ≥ 0 . (73)

Indeed, this will imply the same estimate on v and thus on any a ∈ A which
will clearly prove the H2(T) compactness of A. For proving (73), we revisit
Lemma 5.5 with (28) in hand. Combining Theorem 3.1 with (28), the crucial
new information is that there exists C > 0 such that

‖u‖
X

1/2+,2
]t−1,t+1[

≤ C, ∀t ∈ R .

It is then easy to check that the terms involving gN in Lemma (52) can now
be estimated by

ε(N)
(
‖z‖

X
1/2+,2
I

+ 1
)
. (74)

and that (see (68) above)

∣∣∣ℑ
∫ t+δ

t

(
|PNu(s)|

2z(s), z(s)
)

H2
ds

∣∣∣ .
(
ε(N)(M2

0 +C2)+M2
0CN

−1
)
‖z‖2

X
1/2,2
]t,t+δ[

.

(75)
To conclude we need the following estimate that we will prove hereafter.

∥∥∥QN

(
|PNu|

2PNu
)∥∥∥

X
−1/2,2
]t−1,t+1[

. ε(N), ∀t ∈ R . (76)

Proceeding as in the obtention of (67) but with(74)-(76) in hand it is easy
to see that it actually holds

∣∣∣ℑ
[∫ t+δ

t

(
(QN (|v(s)|2v(s)), z(s))

)
H2
ds

]∣∣∣ . ε(N)(1 + ‖z‖2

X
1/2+,2
]t,t+δ[

) (77)

and thus

‖z(t+ δ)‖H2(T) ≤‖z(t)‖H2(T)e
−γδ + ε(N)

+C1

(
ε(N) − C2(1 − e−γδ)

)
‖z(t)‖2

H2(T) . (78)

which ensures that (73) holds.
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5.2.1 Proof of Estimate (76).

We take an extension θ of PNu such that θ = PNθ, ‖θ‖X1/2,2 ≤ 2‖PNu‖X
1/2,2
]t−1,t+1[

and ‖QN/6θ‖X1/2,2 ≤ 2‖QN/6PNu‖X
1/2,2
]t−1,t+1[

. By duality we have to prove

that
sup

‖h‖
X1/2,−2=1

∣∣∣
(
h,QN (|θ|2θ)

)
L2(R×T)

∣∣∣ . ε(N)‖θ‖3
X1/2,2 .

It thus suffices to estimate

I =

∫

R3

∑

(k1,k2,k3)∈A(N)

|ĥ(τ, k)||θ̂(τ1, k1)||θ̂(τ2, k2)||θ̂(τ3, k3)| dτ1 dτ2 dτ3

where τ = τ1 + τ2 + τ3, k = k1 + k2 + k3 and

A(N) := {(k1, k2, k3) ∈ Z3, |ki| ≤ N for i ∈ {1, 2, 3}, N < |k1+k2+k3| ≤ 3N } .

By symetry we can assume that |k1| ≥ |k2|. Note that by the definition of
A(N), we must have max(|ki|) ≥ |k|/3 > N/3. We divide A(N) into two
regions :
• The region |k1+k3| ≤ max(|k1|, |k3|)/2. In this region it holds min(|k1|, |k3|) >
N/6 and it is easy to check using (7) and (34) that

I . ‖h‖X1/2,−2‖θ‖X1/2,0‖QN/6θ‖X1/2,0‖θ‖X1/2,2

.CM0 ε(N/6)‖h‖X1/2,−2 .

• The region |k1+k3| > max(|k1|, |k3|)/2.. In this region we use the resonant
relation (31). Notice that, in A(N), |ki +kj| ≥ 1 for i 6= j. (31) thus ensures
that on R3 ×A(N),

max(|σ|, |σ1|, |σ2|, |σ̃3|) & max
i=1,2,3

(|ki|) & 2|(k1 + k3)(k2 + k3)| & |k1| & N ,

where σ = τ + k2, σ1 = τ1 + k2
1 , σ2 = τ2 + k2

2 and σ̃3 = τ3 − k2
3 . Therefore

proceeding as in the proof of Lemma 5.3 we obtain

I .N−1/8‖h‖X1/2,−2

3∏

i=1

‖θ‖2
X1/2,0‖θ‖X1/2,2

.CM2
0N

−1/8‖h‖X1/2,−2 ,

which completes the proof of (76).
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