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ABSTRACT 
This paper concerns the analysis of stationary complex-valued signals, and its application to the 

condition monitoring field. More particularly, it is confirmed that usual tools such as correlation function 

or power spectrum are insufficient to entirely describe the statistical and geometrical properties of 

complex-valued signals. In that case, additional time and spectral domain quantities, namely the pseudo 

correlation function and the pseudo spectrum, have to be used. They lead to new important information, 

and allow to entirely describe second-order properties of complex-valued signals. Once these quantities 

theoretically defined, this paper describes their use in several condition monitoring problems, where 2 

dimensional signals are considered as complex-valued signals. The results obtained in these examples 

show that these quantities contain crucial information for condition monitoring not given by usual 

quantities such as the power spectrum, especially in terms of fault localization. 
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I. INTRODUCTION 

2 dimensional signals are frequently encountered in condition monitoring. Indeed, such signals can be 

delivered by two sensors measuring a 2D physical quantity (displacement, magnetic field, …). They can 

be also the result of mathematical transformations of real-valued signals, as analytic signals or space 

vectors. The usual way to analyze such signals is to consider each one of their components 

independently. In that case, the analysis of relations existing between the two components is neglected 

although this information is often crucial for condition monitoring. 

A simple way to take this information into account is to consider such signals as complex-valued by 

using one component as the real part and the other as the imaginary part. The result is a one dimensional 

complex-valued signal, which can be analyzed by using signal processing tools, such as spectral 

analysis. 

Second-order analysis tools adapted to stationary complex-valued signals are presented in this paper. 

More particularly, it is shown in section II that classical tools such as the correlation function and the 

power spectrum are not sufficient to describe second-order properties of such signals. Additional  time 

and spectral domain quantities, namely the pseudo correlation function and the pseudo spectrum, have to 

be used. They give access to new important information, and allow to entirely describe second-order 

properties of complex-valued signals. All these concepts are developed and illustrated through numerical 

examples in section II. 

Next, these tools are used to solve two particular condition monitoring problems. The first one is 

described in section III and concerns electrical unbalance monitoring of three-phase loads. The second 

one, developed in section IV, deals with voltage dips monitoring in three-phase power networks. The 

results obtained show that new second-order quantities such as the pseudo spectrum give access to 

crucial information for condition monitoring, especially in terms of fault localization. 

 

II. SIGNAL PROCESSING TOOLS FOR COMPLEX-VALUED SIGNALS 

II.1. Complex-valued signals 
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Let ( )x t  and ( )y t  be two zero-mean real-valued random signals, supposed to be jointly stationary. A 

zero-mean stationary complex-valued signal ( )z t  is then created by setting ( )x t  as its real part and ( )y t  

as its imaginary part: 

( ) ( ) ( )jz t x t y t= + , (1) 

where j 1= − . 

In practice, several ways can be envisaged to obtain such a complex-valued signal. For example, ( )x t  

and ( )y t  can be delivered by two sensors measuring a 2D physical quantity such as a displacement or a 

magnetic field. ( )x t  and ( )y t  can also be the result of mathematical transformations of real-valued 

signals, as in examples described in sections III and IV. 

The complex-valued signal ( )z t  can be graphically represented in the complex plane, where it follows a 

curve parameterized by the time index t . Through this representation, the concept of positive and 

negative frequency is clarified. Indeed, a positive frequency component corresponds to a rotation of ( )z t  

in the counter clockwise or positive sense, while a negative frequency component corresponds to a 

rotation in the opposite or negative sense. Fig. 1 shows an illustrative example of such a representation. 

It can be noted that ( )z t  and its complex conjugate ( )*z t  turn is the opposite direction because of the 

symmetry around the real axis. 

 

Figure 1: 2D representation of a complex-valued signal ( )z t  

The complex-valued signals considered in what follows being now defined, the following part describes 

analysis tools specially adapted to such quantities. 

II.2. Second-order analysis tools 
The statistical description of a complex valued signal ( )z t  not only necessitates the statistical analysis of 

( )z t , but also the joint analysis of ( )z t  and ( )*z t  [1, 2, 3]. As shown in this part, this fundamental remark 

leads to additional statistical quantities such as the pseudo correlation function in the time domain, and 

the pseudo spectrum in the spectral domain. In the following, all signals are supposed to be zero-mean 

stationary. 

Time domain analysis 
The classical time domain second-order analysis tool is the so-called correlation function, defined as the 

correlation coefficient between ( )z t  and ( )z t τ− : 

( ) ( ) ( )*
EzzC z t z tτ τ = −  , (2) 

where [ ]E ⋅  is the mathematical expectation. 

Following [1, 2, 3], the pseudo correlation function defined as the correlation coefficient between ( )z t  

and ( )*
z t τ+  is also necessary to describe the second-order statistics of ( )z t : 

( ) ( ) ( )* E
zz

C z t z tτ τ= +   . (3) 

Rez

Imz

( )0z

( )z t

positive 

sense 
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It can first be noted from these definitions that the lag τ  is added for the pseudo correlation function 

(Eq. (3)) whereas it is substracted for the correlation function (Eq. (2)). This fact allows the conservation 

of the Wiener-Khintchine theorem which links time domain et spectral domain quantities as shown later. 

Moreover, it can easily be checked that these two quantities are equal and contain exactly the same 

information in the real case. Indeed, if ( )z t  is a real-valued signal, the previous equations lead to 

( ) ( ) ( )* zz zzzz
C C Cτ τ τ= − =  thanks to the symmetry property of the correlation function. This is 

obviously not true in the complex case. 

Some new properties of random signals can be deduced from these definitions [1, 4, 5, 8]. One of them is 

the properness [4, 5], also called second-order circularity [1]. A complex-valued signal ( )z t  is proper or 

second-order circular if ( )* 0
zz

C τ = , whatever τ . In that case, the second-order statistics of the signal 

are entirely described by the correlation function ( )zzC τ . This is for example the case if the real and 

imaginary parts of the signal are uncorrelated and have the same correlation function [5], a property 

usually verified by additive measurement noises present on different sensors. 

Eq. (2) and (3) define the temporal quantities used to describe the whole second-order statistics of a 

complex-valued signal. The next paragraph defines their frequency counterparts thanks to the Wiener-

Khintchine theorem. 

Spectral domain analysis 

The Wiener-Khintchine theorem states that the spectrum ( )zzS f  of a complex-valued stationary signal 

( )z t  is defined as the Fourier transform of its correlation function: 

( ) ( )FTzz zzS f C τ=    , (4) 

where [ ]FT ⋅  is the Fourier transform. 

This spectral quantity has a clear and well-known physical meaning: it represents the repartition of the 

total signal power in the frequency domain. This explains why the spectrum is a nonnegative real-valued 

function ( ( ) 0zzS f ≥ ), whatever f. 

Similarly, the Fourier transform of the pseudo correlation function leads to an additional spectral 

quantity ( )*zz
S f  called the pseudo spectrum: 

( ) ( )* *FT
zz zz

S f C τ =   . (5) 

This spectral quantity is more difficult to understand, but it can be viewed as the cross-spectrum between 

( )z t  and its complex conjugate ( )*z t , and represents the joint statistics between these two signals. 

Moreover, it has been shown in [1] that ( )*zz
S f  is a complex-valued even function, which verifies the 

relation ( ) ( ) ( )*

2

zz zzzz
S f S f S f≤ − . 

Together, these two functions entirely describe the second-order statistical behaviour of the complex-

valued signal ( )z t  in the spectral domain. It can be noted that if ( )z t  is real-valued, these quantities are 

equal and contain the same information. Such tools have been generalized to higher order statistics in 

[2, 3]. 

After these theoretical definitions, simple complex-valued signals are analyzed in the next part to 

understand what kind of information contain each of these quantities. 

II.3. Application to synthetic data 

Mono-frequency signal 
Let ( )z t  be a mono-frequency zero-mean stationary complex-valued random signal defined by: 
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( ) 0 0j2 -j2
e e

f t f t
z t P N

π π= + , (6) 

where: 

− 0f  is the frequency of the complex-valued signal, 

− j PeP P ∠=  and 
j NeN N ∠=  are two complex random variables with deterministic moduli and 

uniform random phases verifying the relation P N∠ + ∠ = constant. 

Because of the stationary assumption, the random variables P  and N  verify several properties: 

− spectral components with different frequencies are uncorrelated: 
*E 0PN  =  , 

− spectral components have a constant power: 
2 2 2 2

E ;EP P N N   = =
    , 

− spectral components are proper [15]: 
2 2E E 0P N   = =    . 

Moreover, the previous properties imply that [ ] ( )j
E e

P N
PN P N

∠ +∠=  is a complex-valued deterministic 

constant. 

The signal defined by Eq. (6) can be viewed in the complex plane as the sum of two contra-rotating 

phasors. The phasor 0j2
e

f t
P

π  has a positive frequency and rotates in the positive sense at the rotating 

frequency 0f , while the phasor 0-j2
e

f t
N

π  rotates in the opposite sense at the same rotating frequency. Here 

again, the concept of positive and negative frequency is clearly interpreted. It can be shown [6, 7] that 

such a signal represented in the complex plane rotates around the origin at rotating frequency 0f  in the 

positive (resp. negative) sense if P N>  (resp. P N< ), and follows an ellipse shape as shown in 

Fig. 2. Moreover, the main parameters of this ellipse, i.e. its semimajor axis majr , semiminor axis minr  

and inclination angle ϕ  depend on P  and N  as follows: 

maj min
,         ,     

2

P N
r P N r P N ϕ ∠ + ∠= + = − = . (7) 

Figure 2: 2D representation of a mono-frequency complex-valued signal 

Thanks to the properties of P  and N , the parameters defined by Eq. (7) are deterministic. Therefore, 

they completely characterize the shape followed in the complex plane by the signal (6), whatever its 

realization. The next paragraph shows how power and pseudo spectra can be used to estimate these 

parameters and entirely characterize the corresponding shape. 

Second-order analysis 
The question we have to answer is what kind of information is contained in the second-order analysis 

tools defined by Eq. (2) to (5) when applied to the previous signal. More precisely, is it possible to easily 

determine the parameters (7) by applying these tools to a mono-frequency complex-valued signal. 

Applying (2) and (3) to (6) and taking Fourier transforms, we obtain the following power and pseudo 

spectra: 

 ( ) ( ) ( )2 2

0 0zzS f P f f N f fδ δ= − + +  (8) 

z(t) 

majr

minr

ϕ

Imz

Rez
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 ( ) ( ) ( ) ( )*

j

0 0e
P N

zz
S f P N f f f fδ δ∠ +∠= − + +    

where ( )fδ  denotes the Dirac function. 

Eq. (8) shows that the power spectrum and the pseudo spectrum are both necessary to completely 

characterize the shape followed by the analyzed signal in the complex plane. Indeed, ( )0zzS f and 

( )0zzS f−  give access to 
2

P  and 
2

N , and therefore to minr , majr  and the sense of rotation of ( )z t . 

Concerning the evaluation of the inclination angle ϕ , the phase of the pseudo spectrum has to be used 

since ( )* 0zz
S f P N∠ ± = ∠ + ∠ . 

These results can be further explain thanks to a statistical interpretation of ( )*
zz

S f  given in [2, 3]. In 

this article, the authors show that if the Fourier transform ( )Z f  of the complex-valued signal ( )z t  exists, 

then ( ) ( ) ( )* E
zz

S f Z f Z f≡ −   . This means that the pseudo spectrum can be viewed as the cross-

spectrum between spectral components with positive and negative frequency, or equivalently as the 

correlation between ( )Z f  and ( )*Z f− . Geometrically, this quantity measure the statistical ability of 

( )Z f  and ( )*Z f−  to rotate in the same sense [8], which explains why the pseudo spectrum leads to 

important phase information. 

Powerful estimators of ( )zz
S f  have been studied in the literature [9], and the so-called Welch method 

(time-averaging of ( ) 2

Z f ) will be used in the following. Few results exist concerning the estimation of 

the pseudo spectrum ( )*
zz

S f , but the previous interpretation suggests that it can be estimated through 

the time-averaging of ( ) ( )Z f Z f− . This estimator is built on the same principle of the Welch method, 

and will be used in what follows. 

Generalization to the noisy case 
Let ( )z t  be the same mono-frequency signal as previously, added with a complex-valued white proper 

noise ( )b t : 

( ) ( )0 0j2 -j2
e e

f t f t
z t P N b t

π π= + + , (9) 

where ( )b t  has a variance 2

bσ  and is uncorrelated with the mono-frequency part of the signal. If ( )z t  

represents a 2D physical quantity measured by two different sensors, the additive noise ( )b t  can for 

example model a measurement noise present on each sensor. 

Thanks to its properness, ( )b t  has no influence on the pseudo spectrum and ( )*
zz

S f  is exactly the same 

as in (8). Concerning the power spectrum, the whiteness of ( )b t  induces that: 

 ( ) ( ) ( )2 2 2

0 0zz bS f P f f N f fδ δ σ= − + + + . (10) 

These theoretical results show that the variance of the additive noise and the parameters of the ellipse 

followed by the mono-frequency part of the signal (9) can be estimated thanks to power and pseudo 

spectra of ( )z t . Indeed, the pseudo spectrum being unchanged, the inclination angle ϕ  is still given by 

the relation ( )* 0zz
S f P N∠ ± = ∠ + ∠ . Moreover, ( )0zzS f  gives access to 

2 2

bP σ+ , ( )0zzS f−  to 

2 2

b
N σ+ , and ( )*

2

0zz
S f±  to 

2 2
P N . All these values can be used to determine 2

bσ , P  and N , and 

therefore minr , majr  and the sense of rotation of ( )z t . An illustrative example is given in Fig. 3, where 

Fig. 3.a shows the 2D representation of the noisy mono-frequency complex-valued signal to analyze. 

The ellipse shape followed in the positive sense by this signal is clearly visible, as well as the presence 
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of a small additive white proper noise. The signal power spectrum and the phase of its pseudo spectrum 

estimated through the Welch method are represented in Fig. 3.b. The strong spectral components of 

frequency 0
f±  are easily detectable on the power spectrum. The phase of the pseudo spectrum is only 

represented for these strong components. By using these spectral quantities, the ellipse parameters are 

estimated and the corresponding estimated ellipse is shown in Fig. 3.c (red plain curve), superimposed 

on the original noisy signal (blue dotted curve). 

a) signal 2D representation b)  second-order spectral analysis quantities c) estimated ellipse 

Figure 3: Second-order spectral analysis of a noisy mono-frequency complex-valued signal 

This illustrative example is based on a mono-frequency signal, but the power and pseudo spectra being 

spectral quantities, they obviously can be applied to complex-valued signal with several frequencies. In 

that case, Fig. 3.b would present several strong spectral components at different frequencies, and the 

same parameters as in the previous case could be estimated for each of these frequencies. 

II.4. Conclusion 
The previous example shows that second-order spectral analysis quantities defined by Eq. (4) and (5) are 

simple and powerful tools to characterize complex-valued signals, even in the presence of noise. They 

lead to a complete second-order statistical and geometrical description of the analyzed signal, at each 

frequency. Moreover, the basic structure of the Welch method (time-averaging of windowed Fourier 

transforms) [9] can be used to elaborate a simple and powerful estimator of the pseudo spectrum. 

This work can be viewed as a generalization to the random case of the directional spectrum [6] which as 

been developed in a pure deterministic case to realise orbit analysis. 

The following sections describe some application examples of power and pseudo spectra to condition 

monitoring problems. 

 

III. CASE 1: UNBALANCE MONITORING IN 3-PHASE LOADS 

III.1. Problem statement 
This application deals with electrical unbalance monitoring in three-phase loads. More particularly, the 

example of a induction machine is studied in details. The supplying network is supposed to be balanced 

and sinusoidal, such that the only component to study is the fundamental component. During the lifetime 

of the machine, small differences can appear between the stator phases (due to short-circuits in one phase 

for example). The machine then becomes an unbalanced load and generates unbalanced three-phase 

currents in the network. Therefore, the electrical unbalance of the machine can be detected and 

quantified by the measure of the unbalance of the line current three-phase system. In the next paragraph, 

power and pseudo spectra are used to realise this monitoring task. 

 III.2. Proposed method 
It is well known since Fortescue [10, 14] that unbalanced three-phase systems can be entirely 

represented and analyzed thanks to their symmetrical components. These components are calculated 

from the complex amplitudes 1 2 3,  ,  X X X  of the three considered line quantities (voltages or currents): 

-0.5 0 0.5
0

0.5

Power spectrum

-0.5 0 0.5
0

2

Phase of  the pseudo spec trum

Normalized f requenc y
-1 0 1

-1.5
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0

0.5

1

1.5
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-1
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2

1

2

2

0

3

1
1

1
3

1 1 1

P

N

X a a X

X a a X

X X

     
     =     
         

, (11) 

where 
2
j
3ea
π

= . 
PX  is the positive-sequence component, 

NX  the negative-sequence component and 
0X  the zero-

sequence component. The negative-sequence component completely characterizes the unbalance of the 

studied three-phase system through the “complex unbalance” u defined by: 
N

P

X
u

X
= . (12) 

The magnitude of this complex number N PX X  quantifies (most often in %) the unbalance of the 

studied three-phase system, while its phase N PX X∠ − ∠  can be used to localize the phase in fault  [10]. 

The classical way to estimate the unbalance u is to apply a Fourier transform to each line quantity in 

order to obtain the complex amplitudes 1 2 3,  ,  X X X  of their fundamental component. The unbalance is 

then determined by Eq. (11) and (12). 

Another way to describe a three-phase system is to calculate its instantaneous symmetrical components. 

They are obtained through the same kind of transformation as previously, but directly applied to the 

instantaneous line quantities ( ) ( ) ( )1 2 3,  ,  x t x t x t : 

( )
( )
( )

( )
( )
( )

2

1

2

2

0

3

1
2

1
3

1 1 1
2 2 2

P

N

x t a a x t

x t a a x t

x t x t

    
    =     
         

. (13) 

The instantaneous direct-sequence component ( )P
x t  is a complex-valued signal also called “space 

vector” [7, 11]. Applied to the same three-phase system as previously, this signal expresses as [12, 13]: 

( ) ( )0 0
*

j2 -j2e ef t f tP P Nx t X Xπ π= + , (14) 

where 0f  is the fundamental network frequency. 

It can be noted that the positive-sequence component 
PX  has a positive frequency 0f+ , while ( )*N

X , 

the complex conjugated negative-sequence component, clearly appears at a negative frequency 0f− . 

Therefore the space vector is a mono-frequency complex-valued signal similar to Eq. (6), and power and 

pseudo spectra previously defined can be used to precisely estimate 
PX , 

NX  and 
N PX X∠ − ∠  even 

in a noisy case. Once these quantities correctly estimated, the magnitude and phase angle of the complex 

unbalance u defined by (12) can be easily determined. 

In the next paragraph, this method is directly applied to the line currents of a three-phase induction 

machine in order to monitor its electrical unbalance. 

III.3. Experimental results 
This experiment was carried out on a 5 kW induction machine supplied with a balanced three-phase 

voltage system. This machine was unbalanced during its operation (between seconds 10 and 19) by 

introducing a small additional resistance in one of its phases. The three line currents were acquired 

synchronously, their shape is shown during a short time duration in Fig. 4.a (without unbalance) and 4.b 

(with unbalance). The corresponding space vector was obtained by applying Eq. (13) to these currents, 

and the power and pseudo spectra of this complex-valued signal were estimated through a real-time 

implementation (sliding FFTs + average). Finally, Fig. 4.c shows the time evolution of the magnitude 



 8 

unbalance u  (%) obtained during this experiment from the previous quantities. The phase angle of u 

were not estimated in this example. 

a) balanced line currents (A)  b) unbalanced line currents (A)  c) estimated unbalance u  (%) 

Figure 4: Monitoring of induction machine electrical unbalance through the space vector method 

These curves clearly show that u  correctly represents the quantity of electrical unbalance of the 

machine as a function of time (about 0.1 % for a balanced machine, and 1.8 % for an unbalanced one). 

Moreover, this quantity has a low variance when the monitored machine is in a steady-state, while being 

able to quickly detect a change of unbalance. This performance makes the estimated magnitude 

unbalance u  a very suitable quantity to monitor the electrical unbalance of a three-phase load when 

applied to its three-phase line currents. Moreover, the second-order spectral analysis quantities presented 

in this paper are simple and powerful tools to estimate this quantity, even in real-time. 

 

IV. CASE 2: VOLTAGE DIPS MONITORING IN POWER NETWORKS 

IV.1. Problem statement 
In power networks, voltage dips are defined as short duration reductions in voltage magnitude at the 

fundamental frequency, and are the most common disturbances. They are generated by phase to ground 

or phase to phase faults that occur at one point of the network. Voltage dips propagate through the 

network, and can be observed at different locations thanks to voltage sensors. The aim of the present 

application is to correctly detect, quantify and classify potential voltage dips by analyzing the three line 

voltages measured at one point of a network, and is based on the work developed in [7]. 

An observed voltage dip is characterized by its duration, magnitude and phase angle shift on each phase 

of the network. The last two parameters completely determine the dip type, also called “dip signature”. 

Obviously, a dip signature depends on power network parameters (system grounding, presence of 

transformers in the propagation path, …), on the measurement location, and on fault characteristics (fault 

type and location in the power network). The most usual voltage dip signatures encountered in power 

networks has been classified in the literature, leading to the so-called “ABC classification” [10]. A brief 

description of these different dip types (from type A to G) is given in [7]. In the voltage dips monitoring 

process, the classification task of the dip type is essential in order to be able to precisely localize, in a 

further step, the original fault in the monitored network. 

IV.2. Proposed method 
The space vector transformation defined by Eq. (13) and applied to the three measured line voltages has 

been successfully used in [7] to monitor voltage dips. In this application, the obtained space vector ( )Pv t  

is a mono-frequency complex-valued signal of frequency 0f  (the fundamental network frequency) 

which behaves as follows: 

− In the flawless case, ( ) 0j2e f tP Pv t V π=  follows a circle shape in the complex plane. 

− In the dip case, ( ) 0 0j2 -j2
e e

f t f tP P Nv t V V
π π= +  follows an ellipse shape, which parameters minr , majr  and 

ϕ  depend on the dip type and characteristics. 

8 8.05 8.1
-20

0

20
Courants aux bornes de la machine

Temps [sec]

A
m
p
li
tu
d
e 
[A

]

time (s) 
15 15.05 15.1

-20

0

20
Courants aux bornes de la machine

Temps [sec]

A
m
p
li
tu
d
e 
[A

]

time (s) 

6 8 10 12 14 16 18 20 22 24
0

1

2
Facteur de desequilibre global

Temps [sec]

k
d
 [
%

]

time (s) 



 9 

This complex-valued signal can be analyzed thanks to power and pseudo spectra as in section II.3 to 

obtain precise estimates of the ellipse parameters, even in the noisy case. Once these parameters 

obtained, they are used to realize voltage dips monitoring as follows (see [7] for details): 

− minr  is used to detect a potential dip and quantify its depth. 

− Once a dip has been detected, its type is determined thanks to minr , majr  and ϕ . 

IV.3. Experimental results 
The performance of the previous method is illustrated in this section through results obtained with data 

measured on a medium voltage network. Only dips with duration over one cycle are analyzed. Line 

voltages and space vector characteristics are given in p.u. with respect to the nominal voltage V. 

The proposed method is applied to the recorded voltage waveforms presented in Fig. 5.a. The space 

vector is first calculated from the voltage measurements, and a sliding FFT over one cycle is applied to 

this complex signal. From these short time spectra, the time evolution of minr , majr  and ϕ  are 

determined and represented in Fig. 5 ( minr  and majr  in Fig. 5.b, ϕ  in Fig. 5.c). 

Next, a segmentation algorithm detects a voltage dip between 0.04 and 0.15 seconds by analysing the 

evolution of minr , which decreases below a threshold of 0.9 p.u. (see Fig. 5.b). All curves of Fig. 5 are 

bold during this period. During the dip, the ellipse inclination angle ϕ  stays near 180° (red bold markers 

in Fig. 5.c), which indicates a double phase voltage dip. The ellipse major axis majr = 0.85 is clearly 

lower than 1, and finalizes the classification step with a dip type set to G. Finally, the ellipse minor axis 

being minr = 0.5 p.u., the characterization step evaluates the dip depth at approximately 0.41 p.u.. 

These results are coherent with voltage waveforms of Fig. 5, where it can be seen that two phases are 

mainly in drop (double phase dip), and their drop is around 0.4 p.u.. 

0 .05 0 .1 0 .15 0 .2
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a) line voltages (pu) during a double phase voltage dip 
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b) corresponding ellipse axes minr  and majr  (pu) 

30

210

60

240

90

270

120

300

150

330

180 0

Ellipse inc lination angle (°)
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Figure 5: Monitoring of three-phase voltage dips through the space vector method 

 

VI. CONCLUSION 
This paper is devoted to the analysis of stationary complex-valued signals, and its application to 

condition monitoring. First, the theoretical definition of second-order time and spectral domain 

quantities has been given. Usual tools such as correlation function or power spectrum are insufficient to 
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entirely describe the statistical and geometrical properties of complex-valued signals. Indeed, important 

information is contained in unusual quantities called the pseudo correlation function or the pseudo 

spectrum. For example, it has been shown that the pseudo spectrum contains important phase 

information about periodic complex-valued signal not given by the power spectrum alone. Another 

interesting property of this quantity is that it is not affected by additive proper noise and can be used to 

eliminate its influence. Simple estimators of these spectral quantities have been proposed. They are 

based on the Welch method, and easily lead to off-line (windowed FFT+average) or real-time (sliding 

windowed FFT+average) implementation. Second, two different applications of these concepts has been 

developed in the field of condition monitoring. The first one concerns electrical unbalance monitoring of 

three-phase loads, and the second one deals with voltage dips monitoring in three-phase power networks. 

In these two cases, a complex-valued signal is constructed from three-phase measurements, and analyzed 

thanks to power and pseudo spectra. These tools extract all the information needed to realize the 

monitoring task (fault detection, quantification and localization), and finally reach good performance. 

Several direct applications of this method can be envisaged for condition monitoring. Indeed, 2D 

quantities are often encountered in this field (movement, magnetic field, …) and are completely 

equivalent to complex-valued signals which have to be analyzed thanks to the previous tools. The 

analysis of rotating machine orbits, or the analysis of electrical systems magnetic stray field measured by 

2D sensors constitute first examples. 

Two main directions can be further explored in future works. First, these tools can be easily extended to 

multi-sensor analysis, leading to pseudo cross-spectrum and pseudo coherence function for complex-

valued signals. These quantities should contain useful and complementary information with respect to 

classical cross-spectrum and coherence function. Second, physical quantities encountered in condition 

monitoring problems are most often three dimensional quantities. In that case, complex signals are not 

sufficient to completely characterize them, but a quaternionic signal could do the job. It should also be 

noted that in that case, signal processing tools used to analyze this quantity must be adapted. 
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