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Simulations of 3D dynamics of microdroplets : a
comparison of rectangular and cylindrical

channels

Charles-Henri BRUNEAU, Thierry COLIN, Cédric GALUSINSKI, Sandra

TANCOGNE, and Paul VIGNEAUX∗

Abstract In this paper, several numerical simulations of diphasic flows in mi-

crochannels are presented. The flow in both cylindrical and rectangular channels is

considered. The aim is to compute the shape of the droplets and the velocity fields

inside and outside the droplets and to quantify the influence of the geometry. The

Level Set method is used to follow the interface between the fluids.

1 Introduction

Diphasic flows in microchannels are governed by the pressure gradient and the sur-

face tension at the interface between the fluids. In experimental configurations, jets

of one fluid into another are usually not stable. This is due to Rayleigh instability.

The jets can break off and therefore can lead to the creation of droplets. The study

of the flow inside these droplets is a difficult task that can be achieved only with a

numerical approach.

From the experimental point of view, once they are created, droplets propagate at

their own speed while the flow between two droplets is essentially a Poiseuille flow,
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as soon as the droplets are ”sufficiently” separated. This implies that some recircu-

lations occurs inside the droplets in order to ensure a non-slip boundary condition

on the boundary of the channels. These movements are not only created by the flow

itself but also by the surface tension forces that are responsible of the shape of the

droplets. From the point of view of the applications these microdroplets can be used

as micromixers and as microreactors in order to achieve reactions with very small

volumes of products. One of the characteristics of microflows is that they are con-

strained by the confinement. Typical size of a microchannel is a section of 10−8m2

with a length of a few centimeters. Typical velocity of the flows is 1cm/s. The flow

rates are around 3000µ l per hour. This confinement determines strongly the stability

of the jets or of the co-flows as well as the shape of the droplets in case of break-

up. The geometry of the channels are also very important for the dynamics of the

droplets. One can build and use cylindrical channels as well as rectangular ones. For

very thin jets, localized in the middle of the channel, the shape of the section of the

channel is not determinant and flows in cylindrical and rectangular channels have

the same behavior. The explanation is that surface tension forces are important at

these scales and the velocity field at the interface is closed to be invariant under ro-

tations. This is observed on the numerical simulations of flows without confinement

whatever the shape of the channel is. For larger structures, the flow undergoes the

effects of confinement and circular and rectangular channels give rise to different

kinds of behavior.

The aim of this note is to present a preliminary comparison of droplets and their

associate flows in both cylindrical and rectangular channels. It is organized as fol-

lows. In the second part, we recall the model and the numerical method used. In

the third part, we try to emphasize the main features of 3D flows in cylindrical and

rectangular channels.

2 Modelling and simulation of bifluid microflows

2.1 Governing equations

We want to modelize incompressible, viscous and Newtonian bifluid flows with

surface tension in microchannels. This requires to follow carefully the moving in-

terfaces. We adopt a Level Set approach to capture the interface Γ between fluid 1

and fluid 2 (see [7] and [6]). In this context, the interface is given by the zero level

set of a function φ :

Γ (t) = {x ∈ Ω / φ(x,t) = 0},∀t ≥ 0 (1)

where Ω is the 3D bounded computational domain occupied by the fluids. Moreover

φ satisfies
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∀t ≥ 0,







φ(x,t) < 0 ∀x ∈ fluid 1

φ(x,t) > 0 ∀x ∈ fluid 2

φ(x,t) = 0 ∀x ∈ Γ (t)
(2)

In the context of microfluidics, the Reynolds number is small and we can neglect

the inertial effects. The velocity is then a solution of the Stokes equation

−∇.(2ηDu)+ ∇p = σκδ (φ)n ∀(t,x) ∈ R
+×Ω , (3)

∇.u = 0 ∀(t,x) ∈ R
+×Ω , (4)

where η is the viscosity, p is the pressure and Du = (∇u + ∇T u)/2 is the deforma-

tion rate tensor, σ ∈R is the constant surface tension coefficient, n is the unit normal

to the interface, κ is the curvature of the interface and δ is the Dirac function. The

normal and the curvature are computed thanks to the Level Set function :

n =
∇φ

|∇φ |

∣

∣

∣

∣

φ=0

, (5)

κ = ∇.

(

∇φ

|∇φ |

)∣

∣

∣

∣

φ=0

. (6)

In addition, the viscosity is given by

η = η1 +(η2 −η1)H(φ), (7)

where η1 (resp. η2) is the viscosity of fluid 1 (resp. 2) and H is the Heaviside func-

tion:

H(φ) =

{

0 if φ ≤ 0,
1 if φ > 0.

(8)

The interface moves at the velocity of the fluid and the function φ is then defined

[8] as the solution of the advection equation :

∂φ

∂ t
+ u.∇φ = 0 ∀(t,x) ∈ R

+×Ω . (9)

Finally, two types of geometry are considered, namely rectangular channels and

cylindrical channels, as shown on Figure 1.

2.2 Numerical resolution procedure

The numerical algorithm is the following one :

1. Compute an initial value for the Level Set function φ and related η .

2. Compute the unit normal n and the curvature κ .
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Fluid 1

Fluid 2

Fig. 1 Geometry of rectangular (on the left) and cylindrical (on the right) channels

3. Solve the Stokes equation (3)-(4) for (u, p) with κ and n obtained by step 2.

4. Update φ by solving (9).

5. If needed, apply a redistanciation procedure on φ in order to ensure |∇φ | = 1

(see [6]).

6. Iterate step 2-5 for each time step.

The Stokes system (3)-(4) is discretized on a staggered mesh using a finite vol-

ume scheme. The divergence free condition is ensured by an augmented Lagrangian

algorithm. The transport equation (9) is discretized by a fifth order WENO scheme

[5].

Note that in microfluidics, surface tension is preponderant and a specific stability

condition derived in [2] is used :

∆ t = min

(

c1
∆x

‖u‖∞
,c2

η

σ
∆x

)

(10)

where ∆ t is the time step and ∆x is the space step. The constant c1 is linked to

the classical CFL condition and depends only on the scheme used to discretize the

advection equation. The constant c2 is associated to the constraint induced by the

surface tension term that is discretized explicitly. In our microfluidics applications,

c2 = 4 leads to stable computations (see [3]).

We use a penalization method [1] to take into account the spatial structure of the

coaxial cylindrical channels shown on the right of Figure 1. Numerical approach for

this axisymmetric framework is presented in [9].
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3 Numerical results

3.1 Results in 3D axisymmetric channels

The first test case (Fig. 2) concerns the simulation of droplets creation by injecting

a fluid into another, thanks to the “injector” geometry of figure 1 (right) where the

radius of the external capillary is R = 300µm. The internal capillary of length R,

thickness 50µm and centered at r = 75µm is modelled by a penalization term. Two

fluids have a surface tension σ = 33.10−3 N/m. In the internal jet, the viscosity is

η2 = 30.10−2 Pa.s and in the external capillary, the viscosity is η1 = 55.10−3 Pa.s.

Parabolic profiles are used for the injection velocity at the inlet, with a maximum of

u2 = 0.07 m/s in the internal tube and u1 = 0.01 m/s in external tube. The section R

of the computational domain is discretized with 30 cells. The jet breaks up because

of Rayleigh instability.

Fig. 2 Droplet creation with an axisymmetric jet. Time increases from left to right.

In the second case (Fig. 3), we then present two examples of flows that exist

inside a microdroplet by showing the velocity field in the droplet frame of refer-

ence. We use an external capillary which is of radius R = 60µm. The fluid inside the

droplet has a viscosity η2 = 2.10−2 Pa.s and the viscosity of the continuous phase

is η1 = 4.10−2 Pa.s. The injection speed considered is 0.2 m/s and 0.1 m/s respec-

tively for the two numerical simulations. It can be observed that when the velocity

is small, the droplet shape is more spherical and a central recirculation region de-

velops towards the front of the droplet. This is due to the increasing influence of the

surface tension compared to the driving flow.
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Fig. 3 Hydrodynamics in a cylindrical channel : the droplet is propelled with an injection speed of

0.2 m/s on the left and 0.1 m/s on the right.

3.2 Results in 3D rectangular channels

We now present comparative simulations in the 3D cartesian geometry of the left

of Figure 1 with Lx = Ly = 150µm. Again, the viscosity is η2 = 2.10−2 Pa.s in the

droplet and η1 = 4.10−2 Pa.s elsewhere and the surface tension between them is

σ = 33.10−3 N/m. Figures 4 and 5 show a droplet with an injection speed of 0.2
m/s and 0.1 m/s, respectively. A bigger droplet is also shown on Figure 6. The

influence of the injection speed is the same as in the axisymmetric case if the global

evolution of the shape and the recirculation zones are taken into account (see Fig.

3 and 4, 5). But differences definitely appear when it comes to compare droplets

shapes and induced streamlines. First, when looking at a cross section (with respect

to the direction of the flow), droplets in a square channel are not spherical – contrary

to the cylindrical case – as it can be seen on the back of droplets of Figures 4 and

5 and even more clearly on the slices numbered 3 and 4 on Figure 7 which are at

the back of the droplet of Figure 6. On the right of Figure 6, the velocity field in a

(x,y) section shows a typical fully 3D behaviour, which is only seen in rectangular

configuration : eight vortexes are present inside the droplet near its boundary that

correspond to the fluid that focuses at the center. It is clearly not an axisymmetric

phenomenon. At the boundary of the channel, the flow is deviated in the direction of

the corners. The conservation of the flow rates implies that the liquid has to escape

in the longitudinal direction through the four corners. This fully 3D effect is due to

the rectangular confinement.
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Fig. 4 Droplet hydrodynamics in a 3D cartesian configuration with an injection speed of 0.2 m/s.

Fig. 5 Droplet hydrodynamics in a 3D cartesian configuration with an injection speed of 0.1 m/s.

Fig. 6 A bigger droplet with an injection speed of 0.2 m/s : velocity field respectively in the

droplet’s frame of reference (slice in plane (x,z) on the left) and in the global one (slice in (x,y) on

the right).

4 Conclusions

In this note, we present various 3D dynamics in microdroplets thanks to a numeri-

cal method designed to handle flows driven by surface tension and pressure gradient
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Fig. 7 Slices numbered from 1 to 4 (from the nose of the droplet to the back) in plane (x,y).

in a microfluidic framework. It appears that cylindrical and rectangular microchan-

nels used in practical applications induced clearly different hydrodynamics mainly

due to effect of rectangular confinement. This will be further studied by comparing

jet stabilities in these two kinds of geometries, as well as mixing in droplets, and

compared with equivalent physical experiments in microchannels [4].
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