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ON THE WEAK MATERIAL APPROXIMATION IN LEVEL-SET

METHODS.

MARC DAMBRINE AND DJALIL KATEB

Abstract. The level set method has become widely used in shape optimization where
it allows a popular implementation of the steepest descent method. Once coupled with a
weak material approximation [4], a single mesh is only used leading to very efficient and
cheap numerical schemes in optimization of structures. However, it has some limitations
and cannot be applied in every situation. This work aims at exploring such a limitation.
We estimate the systematic error committed by using the weak material approximation
and, on a model case, explain that they amplifies instabilities by a second order analysis
of the objective function.

1. Introduction

Shape optimization consists in finding the shape of a domain which minimizes an objec-
tive function or a criterion. Classical objectives in mechanical engineering are for example,
to maximize the torsional rigidity of a body or to minimize its compliance. Such criteria de-
pend on the computation of a state function. In such cases, it usually solves a second-order
elliptic partial differential equation that contains the physic under consideration.

Since the pioneering work of Hadamard, a shape calculus has been developed leading
to shape derivatives and to subsequent optimization methods. Among the numerous diffi-
culties one has to face during the design of such algorithms, the problem of the eventual
change of the number of connected components of the current domain found a satisfactory
answer thanks to the level set method introduced by S. Osher and J.A. Sethian ([18]). The
idea is to define a domain of Rd as the set of points where a real valued function defined
on Rd takes its non-possitive values. The geometry can then be discretized as a function
on a regular grid and not thanks to control points. The flow of the shape gradient then
formally leads to an Hamilton-Jacobi equation for the evolution of the domain coupled
with the state function. Recently, P. Cardaliaguet and O. Ley have performed a first step
in the theoretical justification of this approach on an example ([6, 7]. However, the level
set grid has no particular reason to be useful for the computation of the state function.

In the context of mechanical structure optimization, the boundary value conditions on
the part of the structure subject to optimization are usually traction free conditions. In
[4], G. Allaire, F. Jouve and A.-M. Toader suggest to take advantage of this particular
boundary condition to use the level set grid for the numerical computation of the state.
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The weak material approximation consists in filling the outside of the domain by a material
of weaker conductivity and replace the state function by the solution of the bimaterial
equation stated in the whole level set grid. The physical motivation is that the weak
material behaves almost like an insulating layer leading to a reasonable approximation of
the state that should be computed. This approximation gives very good results for all the
usual criteria used in structure optimization and is now a reference method.

However, shape optimization problems are usually unstable. Homogenization is a well
known example of unstable shape problem connected to a lack of existence of minimizers.
However, even in the case where a smooth minimizer exists, the question of stability of
such a shape is difficult. In the recent years, the analysis of order two conditions has
been studied: A positive second order shape derivative at a critical shape does not imply
stability. To sum up, two distinct behaviours of the numerical procedures of optimization
have been encountered.

The first example under analysis was the Dirichlet energy. In [11], J. Descloux showed
that the two norms discrepancy phenomenon appears in a electromagnetic shaping prob-
lem: the shape hessian at a critical shape is coercive but only in strictly weaker norm than
the norm of differentiability. In [8], M. Dambrine and M. Pierre have proved that weak
information was sufficient to insure stability at the continuous level. This first result was
extended in [13] for a numerical scheme.

The second example comes from an inverse problem in electrical impedance tomography
reformulated as a question of shape optimization. In [12, 1, 2], more situations have been
studied. The shape hessian at the global minimum is compact and the optimization pro-
cedures are severely ill-posed. Hence, appropriate strategies of regularization are required.
Since the sequence of eigenvalues of the hessian tend towards zero, there exists a strong
link between the number of degrees of freedom used to parametrize the shape and the nu-
merical precision required for the computation of the state. Indeed, the number of shape
parameters impose a threshold. Then, if the precision of the computed solution for the
state is less than the threshold, the errors committed on the approximated criterion can
destroy the well-posedness of the optimization problem.

In this paper, we present a model problem where the parameter of control is the shape of
a structure which presents the worst behaviour. We are concerned by a shape optimization
problem suggested by the design of micromechanisms introduced in [5] and studied in [3, 9].
The criterion under consideration has been observed to lead to numerical instabilities (see
the comments on the gripping mechanism in [9]). However, we remain for simplicity in the
scalar case. The first goal of the paper is to explain rigorously these instabilities by studying
the second shape derivative of the criteria in a continuous setting. In particular, in our toy
problem, the hessian at the absolute minimizer vanishes. As a consequence of this flatness
of the objective to minimize, the weak material approximation is prohibited. Indeed, the
systematic errors committed on the computation of the state generate instabilities. The
second objective of this manuscript is to convince the reader of the interest of second order
shape derivatives to understand the behaviour of numerical algorithms of minimization.

The paper is organized as follows. In Section 2, we present the model problem and state
the results of this work. Section 3 is devoted to the computation of shape derivatives while
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the instabilities are discussed in section 4. The technical results of shape calculus that we
need are postponed into an appendix.

2. Setting of the problem and main results.

The shape optimization problem. Let D be a smooth domain of Rd, d ≥ 2. We
suppose that the boundary ∂D of D has three particular disjoint parts Γc,Γd and Γo as
illustrated in Figure 1. Concerning the admissible shapes Ω ∈ Uad, smooth C2,α subdomain

Input flux
Γc

Target potential u0

Γo

Γd

Γm

D

Ω

Fixed Dirichlet boundary

Figure 1. Geometrical settings.

of D, we will suppose that

Γc ∪ Γd ∪ Γo ⊂ ∂Ω.

Since those parts of ∂Ω are fixed, the part subject to optimization is the remainder

Γm = ∂Ω \ (Γc ∪ Γd ∪ Γo).

In the sequel, we use the convention that a bold character denotes a vector. For example,
n denotes the normal vector pointing outside of Ω. If h denotes a deformation field, it
can be written as h = hτ + hnn on Γm. Note that hτ is a vector while hn is a scalar
quantity. The admissible deformation fields have to preserve the complement of Γm in ∂Ω
and therefore the space of admissible fields is

H = {h ∈ C2,α(D,D), hn = 0 on Γc ∪ Γd ∪ Γo}.
This problem recovers the following physical meaning: how should one design the structure
to find the closest potential distribution to a reference one u0 on Γo while imposing the flux
on another part of the boundary ? More precisely, the state function u solves the following
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boundary value problem:

(1)





−∆ u = f in Ω
u = 0 on Γd,

∂nu = 0 on Γm ∪ Γo,
∂nu = g on Γc.

where f and g are C∞. Both f and g do not live in the natural space but to a stronger
one since additional regularity is required in order to define the shape derivatives. Once
Γc 6= ∅, this problem admits a unique solution u ∈ H1(Ω).

Let us describe our optimization problem. We consider the criterion j defined by

(2) j(Ω) = JLS(uΩ) =
1

2

∫

Γo

|uΩ − u0|2 dσ

where u0 ∈ H
1

2 (Γ0). The function uΩ solves (1) and hence depends on Ω. For the lightness
of notations, we will omit this dependency and denote this function by u. We are interested
in the minimization of j(Ω) with respect to the shape, where the minimum is taken on
the set of admissible domains Uad. Consequently, the only optimized part of the shape
boundary is Γm. The Dirichlet boundary conditions are only here to ensure uniqueness of
solutions.

For an arbitrary data u0, existence of a minimizer to j is not clear. Nevertheless, this
question does not enter the scope of this work and we will focus on a well posed problem.
We fix an admissible domain Ω∗ and choose for data u0 exactly the trace on Γo of the
solution to the boundary value problem (1) set on Ω∗. This assumption ensures that the
optimization problem has a global minimizer in the admissible domains that is Ω∗.

Differentiability results for the state u. To compute the shape derivatives, we have
to recall some notions of shape optimization. The following result concerns the first order
derivative of the state functions u.

Theorem 1. Let Ω be an open smooth subset of Rd (d ≥ 2) with a Ck,α boundary. Let h

and h1, h2 be deformation fields in H.

(i) If k ≥ 2, the state function u is shape differentiable. Its shape derivative u′ =
Du(Ω;h) ∈ H1(Ω) solves the boundary value problem

(3)





∆u′ = 0 in Ω,
u′ = 0 on Γd,

∂nu
′ = 0 on Γc ∪ Γo,

∂nu
′ = divτ (hn∇τu) + fhn on Γm.
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(ii) If k ≥ 3, the state u has a second order shape derivative u′′ = D2u(Ω;h1,h2) in
H1(Ω) solution of the boundary value problem

(4)



∆u′′ = 0 in Ω,
u′′ = 0 on Γd,

∂nu
′′ = 0 on Γc ∪ Γm,

∂nu
′′ = divτ (h2,n∇τ (u)

′
1 + h1,n∇τ (u)

′
2 + h1τ .(Dnh2τ )∇τu)

−divτ ((h1τ .∇τh2,n + ∇τh1,n.h2τ )∇τu)
+divτ (h2,nh1,n(2Dn −HI)∇τu)
+h1,nh2,n∂nf + f (h1τDnh2τ − h1τ .∇τh2,n − h2τ∇τh1,n) , on Γm.

In (4), (u)′i denotes the first order derivative of u in the direction of hi as given in
(7), Dn stands for the second fundamental form of the manifold Γm and H stands
for its mean curvature.

Differentiability of the objective. Once the differentiability of the state function has
been established, the chain rule provides the differentiability with respect to the shape of
the criterion. As usual for Least Squares objective, this derivative can be simplified thanks
to an adjoint state that will be denoted by p.

Proposition 1. Let u′(∂Ω;V ) be the strong shape derivative of the state u. Then for all
admissible directions v ∈ H the shape derivative of the criteria J ′(∂Ω;V ) is given by

(5) J ′
LS(Ω;V ) =

∫

Γm

(−∇τu.∇τp+ fp)hn

where the adjoint state p is solution of the adjoint problem

(6)





∆ p = 0 in Ω,
p = 0 on Γd,

∂np = u− u0 on Γc,
∂np = 0 on Γm ∪ Γo.

One can also be interested by the computation of higher order derivatives and specially
by the second derivative or shape hessian. To that end, we will need the shape derivative
of the adjoint state p obtained as a consequence of Theorem 1.

Corollary 1. Let Ω be an open smooth subset of Rd (d ≥ 2). Then, the adjoint state
function p is shape differentiable. Its shape derivative p′ = Dp(Ω;h) ∈ H1(Ω) solves the
boundary value problem

(7)





∆p′ = 0 in Ω
p′ = 0 on Γd,

∂np
′ = 0 on Γc ∪ Γo,

∂np
′ = divτ (hn∇τp) on Γm.

Theorem 2. Let Ω be an open smooth subset of Rd (d ≥ 2) with a C3,α boundary. Let
h1 and h2 be two deformation fields in H. The objective JLS is twice differentiable with
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respect to the shape and its second derivative in the directions h1 and h2 is given by:

D2JLS(Ω;h1,h2) = −
∫

∂Γm

(
∇τ u̇.∇τp h1,n + ∇τ ṗ.∇τu h1,n

−∇τu.∇τp [Dh1 h2.n − h1.(D
∗h2n)τ ]

)
.

(8)

To investigate the properties of stability of this cost function, we first consider the
quadratic form associated to the shape hessian at a critical shape Ωc

(9) D2JLS(Ωc;h,h) =
∫

Γm

(∇u′.∇τp+ ∇u.∇τp
′ − fp′)hn + ∂n(fp−∇τu.∇τp)h

2
n

Then, we specify Ωc: We consider the global minimizer Ω∗.

Claim 1. If Ω∗ realizes the absolute minimum of the criterion JLS, then

(10) D2JLS(Ω∗,h,h) = 0.

Equation (10) means that the objective is very flat around the minimizer. This fact has
two main consequences.

Claim 2. On the continuous criterion, the shape hessian at the global minimizer is not
coercive. This means that this minimizer may not be a local strict minimum of the criterion.

Claim 3. The second consequence concerns any numerical scheme used to obtain this
optimal domain Ω∗. In order to capture the right behaviour of the shape gradient or hessian,
one should compute with an extreme precision the state function and its derivative. In the
case of a convex objective, the level of the threshold is naturally given by the size of the
lowest eigenvalues of the discretized hessian at the critical shape. If the approximation of
u inserted in the expression of the shape derivative is computed with a larger error, the
computed hessian may have eigenvalues with a non positive real part. In such a case, the
numerical descent schemes cannot converge since the discrete objective has no minimum
but a saddle point.

The approximation by a weak material. One of the main advantage of the level
set method in structure optimization is to avoid remeshing of the moving geometry at each
step of the evolution. In [4], this is achieved thanks to the weak material approximation. In
mathematical terms, one approximates the solution u to the boundary value problem (1)
by the solution uε of the new boundary value problem

(11)





−div (σε ∇)uε = f in D
uε = 0 on Γd,

∂nuε = 0 on ∂D \ Γc,
∂nuε = g on Γc.

where D is a domain such that

(12) Ω ⊂ D and Γd ∪ Γo ∪ Γc ⊂ ∂D.
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The right hand side f is extended by zero outside of Ω and the distribution of conductivity
σε is then such that

(13) σε = χΩ + εχD\Ω.

A very important question is then to know how good is the approximation of u by uε ? By
variational techniques, F. Murat and F. Jouve have shown ([16]) that

‖u− uε‖H1(Ω) ≤ C(Ω, D, f, g)
√
ε.

In fact, numerical simulations show a better order of approximation. We tackle this ques-
tion with asymptotic methods to recover the order ε.

Theorem 3. Let D and Ω be as in (12). Let u (resp. uε) be the solution of the boundary
value problem (1) (resp. (11)). There is a constant C(Ω, D, f, g) and a value ε0 > 0 such
that

(14) ‖u− uε‖H1(Ω) ≤ C(Ω, D, f, g)ε.

rolls for all ε ∈ (0, ε0).

The limit of this approach is then clear: in order to keep reasonable matrix to inverse,
the value of the parameter ε cannot be to small: the problem becomes more and more
badly conditioned when ε tends to 0. This means that the numerical errors committed
on the computation of the state function are small but not small enough. With the view
to our shape optimization problem with a flat objective, this lack of precision is a serious
obstacle to the use of the method. The bad situation depicted in Claim 3 appears in the
worst case: the hessian provides no possible error.

A better but still highly unstable case is the inverse problem presented in [1] where the
hessian with respect of the shape at the global minimizer is non-negative but compact. This
phenomenon explains why a parametrized model of the inclusion is used in [1]. It provides
the threshold and the mesh used to compute the state function is then appropriately
defined.

3. Justification of the shape derivatives.

The section is devoted to the proof of Theorems 1 and 2. We follow the usual strategy
to prove differentiability in shape optimization. Computations made in this section require
some classical facts in the context of shape calculus. We present them in Appendix A
where we also introduce the notations.

3.1. Derivatives of the state function. Proof of Theorem 1.

Proof of Theorem 1:

First order derivatives. Existence of derivatives is well known in that case. Hence we
only explain how to derive (7). Let H1

Γd
(Ω) the subspace of H1(Ω) made of functions that

vanishes on Γd. We write the weak formulation of (1)

∀φ ∈ H1
Γd

(Ω),
∫

Ω
∇u.∇φ+

∫

Γc

gφ =
∫

Ω
fφ.
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We then differentiate these integrals with respect to the shape in the direction of h to
obtain

∀φ ∈ H1
Γd

(Ω),
∫

Ω
∇u′.∇φ =

∫

∂Ω
(fφ−∇u.∇φ)hn.

To be able to interpret the boundary integral as a boundary condition, we need to remove
the derivative of φ in the right hand side. To that end, we use the boundary conditions
and the definition of admissible deformation fields

∫

∂Ω
∇u.∇φ hn =

∫

∂Ω
(∇τu.∇τφ+ ∂nu∂nφ)hn =

∫

∂Ω
∇τu.∇τφ hn.

Thanks to the integration by part formula (38), we get
∫

∂Ω
∇τu.∇τφ hn = −

∫

Γm

divτ (hn∇τu)φ.

We conclude by density in L2(Γm) of the traces of the test functions φ.
Second order derivatives. We compute the second derivative by considering two ad-
missible deformations h1,h2 ∈ H that will describe the small variations of ∂ω. J. Simon
shows that the second derivative F ′′(∂Ω;h1,h2) of F (∂Ω) is defined as a bounded bilinear
operator satisfying

(15) F ′′(∂Ω;h1,h2) = (F ′(∂Ω;h1))
′
h2 − F ′(∂Ω;Dh1 h2).

For more details, the reader can consult the lecture of Murat and Simon or the book of
Pierre and Henrot [14]. We split the proof into two distinct parts: in a first time, we prove
existence of the order two derivative, then, in a second time, we show that this derivative
solves the boundary value problem (4).
First step: Existence of the second derivative.

Let us begin the proof. Let h1,h2 ∈ H be two vector fields. The direction h1 being
fixed, we consider u̇1,h2

the variation of u̇1 with respect to the direction h2. We recall that
the material derivative u̇1 of u in the direction h1 satisfies

(16) ∀v ∈ H1
0 (Ω),

∫

Ω
∇u̇1.∇v =

∫

Ω
∇u.Ah1

∇v +
∫

Ω
div (fh1) v.

Let φ2 : Ω 7→ Ω be the diffeomorphism defined by φ2(x) = x+ h2(x) and we set ψ2 = φ−1
2 .

Setting ωh2
= {x+ h2(x), x ∈ ω}, Ωh2

= {x+ h2(x), x ∈ Ω} = Ω we get

(17)
∫

Ωh2

∇u̇1,h2
.∇v =

∫

Ωh2

∇uh2
.Ah1

∇v +
∫

Ωh2

div (fh1) v

where uh2
is the solution of the original problem with ωh2

instead of ω. Making the change
of variables x = φ2(X), we write the integral identity (17) on the fixed domain Ω

∫

Ω
σ∇˜̇u1,h2

.
(
Dψ2(Dψ2)

Tdet(Dφ2)
)
∇v

=
∫

Ω
∇ũh2

.
(
Dψ2Ãh1

(Dψ2)
T det(Dφ2)

)
∇v +

∫

Ω
det(Dφ2) ˜div (fh1)v.

(18)
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with the notations ũ = u ◦ φ2 and Ãh1
= Ah1

◦ φ2. Since the material derivative u̇1 of u
with respect to the direction h1 satisfies

∫

Ω
∇u̇1.∇v =

∫

Ω
∇u.Ah1

∇v +
∫

Ω
div (fh1) v.

The difference of (16) and (18) gives
∫

Ω
∇

(
˜̇u1,h2

− u̇1

)
.∇v =

∫

Ω
∇˜̇u1,h2

.
(
I −Dψ2(Dψ2)

T det(Dφ2)
)
∇v

+
∫

Ω
σ∇ũh2

.
(
Dψ2Ãh1

(Dψ2)
T det(Dφ2) − Ah1

)
∇v

+
∫

Ω
(∇ũh2

−∇u).Ah1
∇v +

∫

Ω

(
det(Dφ2) ˜div (fh1) − div (fh1)

)
v.

We quote from [17] and [15] the following general asymptotic formulae that contains infor-
mation on the deformations fields.

‖ det(Dφi) − 1 − div (hi) ‖∞ = O(‖hi‖2
C2),

‖Dψi(Dψi)
T det(Dφi) − I + Ahi

‖∞ = O(‖hi‖2
C2),

‖d̃iv (h1) det(Dφ2) − div (h1) − div (h1) div (h2) −∇div (h1).h2‖∞ = O(‖h2‖2
C2),

‖Dψ2Ãh1
(Dψ2)

T det(Dφ2) − Ah1
+Dh2Ah1

+Ah1
(Dh2)

T − div (h2)Ah1
− (Ah1

)′(h2)‖∞ = O(‖h2‖2
C2).

Making the adequate substitutions, we easily check that the material derivative of u̇1 with
respect to h2 exists. This derivative, denoted by ü1, satisfies

(19)
∫

Ω
∇ü1.∇v dx =

∫

Ω
∇u̇1.Ah2

∇v + ∇u̇2.Ah1
∇v −∇u.A∇v +

∫

Ω
div (h2div (fh1)) v.

where A is defined in (43).
Second step: Derivation of (4) by formal differentiation of the boundary conditions.

The aim of this section is to retrieve the expression of the flux ∂nu
′′ by computing the

normal derivatives of each of the expressions ˙∇u′.n and ˙divτ (h1,n∇τu). Since

∇u′.n = divτ (h1,n∇τu) + fh1,n = h1,n∆τu+ ∇τh1,n.∇τu+ fh1,n

then, after taking the material derivative of the two sides of the above identity we obtain

˙∇u′.n = ˙divτ (h1,n∇τu) + ˙fh1,n

= ˙h1,n∆τu+ h1,n
˙∆τu+ ˙∇τh1,n.∇τu+ ∇τh1,n.

˙∇τu+ ḟh1,n + f ˙h1,n.
(20)

In order to avoid lengthy computations, we shall concentrate on each normal derivative
appearing in the above formula. Some results are straightforward and their proof will be
then left to the reader. Thanks to Proposition 4 , we conclude that

˙∇τh1,n = −∇τ (h1.∇τh2,n) + (D2h1,n.h2)τ −∇h1,n.ṅ n −∇h1,n.n ṅ.

In the same manner, we also get

˙∇τu = ∇τu
′
2 + (σD2u.h2)τ −∇τu.ṅ n −∇τun ṅ.
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Hence, we can write

˙h1.n = h2.∇h,n −∇τh2,n.h1τ ;

˙divτ (h1,n∇τu) = ˙h1,n∆τu+ h1,n
˙∆τu+ ˙∇τh1,n.∇τu+ ∇τh1,n.

˙∇τu,

=
(
−∇τ (h1.∇τh2,n) + (D2h1,n.h2)τ −∇h1,n.n ṅ

)
∇τu+ h1,n

˙∆τu

+∇τh1,n

(
∇τu

′
2 + (D2u.h2)τ

)
+ (h2.∇h1,n −∇τh2,n.h1τ ) .∆τu.

It remains to simplify the terms A = (D2u.h2)τ .∇τh1,n and B = ∇τu.(D
2h1,n.h2)τ . We

obtain:

A = −[σ∇τu].(Dn∇τh1,n)h2,n + [σD2u]h2τ .∇τh1,n

B = ∇τ (∂nh1,n).[σ∇τu]h2,n − [σ∇τu].(Dn∇τh1,n)h2,n + (D2h1,n.h2τ ).[σ∇τu].

We tackle the computation of (∂nu
′)′. We first expand ˙divτ (h1,n∇τu).

˙divτ (h1,n∇τu) = ˙h1,n∆τu+ ˙∇τh1,n.∇τu = ˙h1,n∆τu+h1,n
˙∆τu+ ˙∇τh1,n.∇τu+∇τh1,n.

˙∇τu.

After substitution, one gets

˙divτ (h1,n∇τu) =divτ (h1,n∇τu
′
2) + div ((h2,n∂nh1,n −∇τh2,n.h1τ )∇τu) + ∇τu.(D

2h1,n.h2τ )

− ∂nh1,n∇τu.(Dnh2τ ) − 2h2,n∇τu.(Dn ∇τh1,n) +D2uh2τ .∇τh1,n

+ ∆τu∇τh1,n.h2τ + h1,n

(
˙∆τu− ∆τu

′
2

)
.

(21)

We then compute ˙∂nu′1. From the expression of ṅ, we get after some straightforward
computations:

(22) ˙∂nu′1 = ∂n(u′1)
′
2 + (D2u′1 h2).n + ∇τu

′
1.(Dnh2τ −∇τh2,n).

Finally, we compute ∂n(u′1)
′
2. We deduce from (21), (22) and formula

˙∇τh1,n = ˙divτ (h1,n∇τu) + ḟh1,n + f ˙h1,n

a first expression of the normal derivative of the second order shape derivative

∂n(u′1)
′
2 = ˙divτ (h1,n∇τu) − (D2u′1 h2).n −∇τu

′
1.(Dnh2τ −∇τh2,n)

= divτ (h1,n∇τu
′
2 + (h2,n∂nh1,n −∇τh2,n.h1τ )∇τu) − ∂nh1,n∇τu.(Dn h2τ )

+ ∇τu
′
1. (∇τh2,n −Dnh2τ ) + (D2h1,n h2τ ).∇τu+D2uh2τ .∇τh1,n + ḟh1,n + f ˙h1,n

− 2h2,n(Dn∇τu).∇τh1,n + ∇τh1,n.h2τ∆τu+ h1,n

(
˙∆τu− ∆τu

′
2

)
− (D2u′1 h2).n.

We have

ḟh1,n + f ˙h1,n = ∇f.h2 + f (h2.∇h1,n −∇τh2,n.h1τ ) .
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Taking account of the following calculation,

−(D2u′1 h2).n + ∇τu
′
1.∇τh2, n = −

(
h2,nD

2u′1 n +D2u′1 h2τ

)
.n + ∇τu

′
1.∇τh2, n,

= h2,n (∆τu
′
1 +H∂nu

′
1) + ∇τu

′
1.∇τh2,n − (D2u′1h2τ ).n,

= divτ (h2,n∇τu
′
1) +Hh2,n∂nu

′
1 − (D2u′1 h2τ ).n;

we rewrite ∂n(u′1)
′
2 as

∂n(u′1)
′
2 = divτ (h1,n∇τu

′
2 + h2,n∇τu

′
1 + (h2,n∂nh1,n −∇τh2,n.h1τ )∇τu)

− (∇τu
′
1 + ∂nh1,n∇τu) .(Dnh2τ ) +Hh2,n∂nu

′
1 − (D2u′1 h2τ ).n

+ (D2h1,n h2τ ).∇τu+D2uh2τ .∇τh1,n − 2h2,n∇τh1,n.(Dn∇τu) + ∇f.h2

+ ∆τu∇τh1,n.h2τ + h1,n

(
˙∆τu− ∆τu

′
2

)
+ f (h2.∇h1,n −∇τh2,n.h1τ ) .

(23)

This formula remains hard to handle. To get a more convenient one, we have to work a
bit more. First, we derive tangentially to the direction h2 the boundary identity

∂nu
′
1 = h1,n∆τu+ ∇τh1,n.σ∇τu+ fh1,n

This leads to:

(D2u′1 h2τ ).n+(Dnh2τ ).∇τu
′
1 = ∇τh1,n.h2τ∆τu+ h1,n∇τ∆τu.h2τ

+ (D2h1,n h2τ ).∇τu− ∂nh1,n∇τu.(Dnh2τ ) +D2uh2τ .∇τh1,n

+ ∇τf.h2τh1,n + f∇τh1,n.h2τ .

(24)

From (42) and subtracting (24) from (23), we can write

∂n(u′1)
′
2 = divτ (h1,n∇τu

′
2 + h2,n∇τu

′
1 + (h2,n∂nh1,n −∇τh2,n.h1τ )∇τu)

+ divτ (h1,nh2,n(HI − 2Dn).∇τu) − h1,n (∇τ∆τu.h2τ + ∆τ∇τu.h2τ )

+ h1,n

(
∇τdivτ (h2τ ) .∇τu− divτ

(((
Dh2 + (Dh2)

T
)
∇τu

)
τ

))

+ ∂nfh2,nh1,n + f (h2,n∂nh1,n −∇τh2,n.h1τ ) .

(25)

From (42), we obtain

(26) ˙∆τu = ∆τ u̇+∇τdivτ (h2τ ) .∇τu+∇τ (Hh2,n).∇τu−divτ

(((
Dh2 + (Dh2)

T
)
∇τu

)
τ

)
,

and using the relation between the material and shape derivative, we get

˙∆τu = ∆τu
′ + ∇ (∆τu) .h2 and ∆τ u̇ = ∆τu

′ + ∆τ (∇u.h2) .

Injecting these relations in (26) and applying them for h2τ , we get

∆τ (∇τu.h2τ ) + ∇τdivτ (h2τ ) .∇τu = ∇τ∆τu.h2τ + divτ

(((
Dh2 + (Dh2)

T
)
∇τu

)
τ

)
.

Thanks to this last fact, expression (25) gives:

∂n(u′1)
′
2 = divτ (h1,n∇τu

′
2 + h2,n∇τu

′
1 + (h2,n∂nh1,n −∇τh2,n.h1τ )∇τu)

+divτ (h1,nh2,n(HI − 2Dn).∇τu) + ∂nfh2,nh1,n + f (h2,n∂nh1,n −∇τh2,n.h1τ ) .



12 M. DAMBRINE AND D. KATEB

To conclude, we use the following formula

∂nu
′′
1,2 = ∂n(u′1)

′
2 − ∂nu

′
Dh1 h2

.

where

∂nu
′
Dh1 h2

=divτ ((h2,nn.∇h1,n + ∇τh1,n.h2τ − h1τ .Dnh2τ )∇τu)

+ f (h2,n∂nh1,n + ∇τh1,n.h2τ − h1τ .Dnh2τ ) .

Finally, we obtain:

∂nu
′′
1,2 =divτ (h2,n∇τu

′
1 + h1,n∇τu

′
2) − divτ ((h1τ .∇τh2,n + ∇τh1,n.h2τ )∇τu)

− divτ (h2,nh1,n(2Dn −HI)∇τu) + divτ (h1τ .Dnh2τ )∇τu)

+ ∂nfh2,nh1,n − f (∇τh2,n.h1τ + ∇τh1,n.h2τ − h2τ .Dnh1τ )

�

Proof of Corollary 1: It is completely similar to the proof of Theorem 1 without
the volume right hand side f . Since Γc remains fixed, no derivative of u appears in that
boundary condition. �

3.2. Derivatives of the criterion. Proof of Theorem 2.

Proof of Proposition 1: We differentiate the definition of the criterion on the fixed
domain Γc and get

DJLS(Ω;h) =
∫

Γc

u′(u− u0).

We introduce the adjoint state p defined in (6) to write

DJLS(Ω;h) =
∫

Γc

u′∂np =
∫

∂Ω
u′∂np.

Since both u′ and p are harmonic, a double integration by parts makes possible to permute
the normal derivation and leads to

DJLS(Ω;h) =
∫

∂Ω
∂nu

′p.

We insert the boundary conditions of (7) and use integration by part formula (37) to
compute the gradient given in (5). �

Proof of Theorem 2: To compute the second derivative of DJLS, we follow the
classical scheme for computing the derivative for a boundary integral of a function ψ. The
integral on Γt

m can be brought back from the moving boundary Γt
m to Γm thanks to the

change of variables

1

t

(
I(Γt

m, h) − I(Γm)
)

=
1

t

∫

Γm

ψ ◦ Ttω(t) − ψ,

where ω(t) = |det(DTt)| ‖(DT−1
t )∗n‖. The useful formula ω′(0) = divτ (h) is stated in

[10, 14].
In the case of JLS, we apply this approach to ψ = fp hn −∇τu.∇τp hn to get

d

dt

(
DJLS(Ω;h)

)
|t=0

=
d

dt

(∫

Γm

[
B(t)∇ut.∇pt + fp

]
h ◦ Tt.n

t
)

|t=0

.



ON THE WEAK MATERIAL APPROXIMATION IN LEVEL-SET METHODS. 13

where we set ut = u(Γt
m)◦Tt , pt = p(Γt

m)◦Tt, n
t = n(Γt

m)◦Tt andB(t) = ω(t)DT−1
t (DT−1

t )∗.
Taking account ṅ = −(Dh∗)τ and

B′(0) = divτ (h) I −Dh + (Dh)∗,

we split the derivative of the shape derivative into three terms

d

dt

(
DJLS(Ω;h)

)
|t=0 = A1(Ω;h) + A2(Ω;h) + A3(Ω;h)

where

A1(Ω;h) = −
∫

Γm

[∇τ u̇.∇τp+ ∇τ ṗ.∇τu+B′(0)∇p.∇u] hn,

A2(Ω;h) =
∫

Γm

(fp−∇u.∇p) (Dhh.n − h.(Dh∗n)τ ) ,

A3(Ω;h) =
∫

Γm

(fp divτ (h) + fṗ+ p h.∇f) hn =
∫

Γm

(fp divτ (h) + fp′ + h.∇(pf)) hn.

At the optimum, we know that A2(Ω
∗;h) = 0. Hence

D2JLS(Ω∗;h,h) =
d

dt
DJLS(Ω;h)|t=0 = A1(Ω

∗,h) + A3(Ω
∗,h),

= −
∫

Γm

(∇τ u̇.∇τp+ ∇τ ṗ.∇τu+B′(0)∇p.∇u) hn + (fp divτ (h) + fṗ+ ph.∇f) hn.

Let us show how to simplify the expression. First of all, we write

∇τ u̇.∇τp =
(
∇u′ +D2u h + (Dh)∗ ∇u

)
.∇τp,

and we then gather all the terms so that

∇τ u̇.∇τp+ ∇τ ṗ.∇τu = ∇u′.∇τp+ ∇u′.∇τp+ h.∇ (∇τu.∇τp) + (Dh + (Dh)∗)∇p.∇u,
and then that

A1(Ω;h) = −∇u′.∇τp−∇u′.∇τp− h,∇ (∇τu.∇τp) − divτ (h)∇τu.∇τp.

We then obtain (8) by gathering the terms. �

4. Analysis of stability.

4.1. Shape hessian at a critical shape. When Ωc is a critical shape, Euler’s equation
holds and the shape hessian can be written under the simplified form

D2JLS(Ωc;h,h) =
∫

Γm

(∇u′.∇τp+ ∇u.∇τp
′ − fp′)hn + h.∇ (fp−∇u.∇p)hn

=
∫

Γm

(∇u′.∇τp+ ∇u.∇τp
′ − fp′)hn + ∂n(fp−∇τu.∇τp)h

2
n

This expression is valid for any critical shape. Let us consider the particular case Ωc = Ω∗.

Proof of Claim 1: Since at Ω∗, u = u0 by definition, the adjoint state p cancels
identically in Ω∗ and from Corollary 1 so does its derivative p′. Inserting these facts in (9),
we get the claim. �
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4.2. On the weak material approximation. Our proof of Theorem 3 is inspired by
Schwarz’s method in domain decomposition. To that end, we introduce the operators

P : H1/2(Γm) → H1(D \ Ω),
φ 7→ v;

and
Q : H−1/2(Γm) → H1(Ω),

ψ 7→ w;

where v and w solves the boundary value problems

(27)





∆ v = 0 in D \ Ω,
v = 0 on ∂Γd,

∂nv = 0 on Γc ∪ ∂D,
v = φ on Γm.

and





∆ w = 0 in Ω,
w = 0 on ∂Γd,

∂nw = 0 on Γc,
∂nw = ψ on Γm.

The classic theory of elliptic PDE learns us that both P and Q are bounded. Let TΓm is
the usual trace operator from H1(Ω) into H1/2(Γm). We then define the operators

P̃ : H1(Ω) → H1(D \ Ω),
u 7→ P (TΓm (u)) ;

and
Q̃ : H1(D \ Ω) → H1(Ω),

v 7→ Q(∂nv).

Note that Q̃ is not defined on the whole H1(D \Ω) since the normal derivative ∂nv should
have a sense. We will only apply the operator Q̃ to harmonic functions. In that case, the
normal derivative is defined in the weak sense by duality. Moreover, if v is harmonic in
D \ Ω, then there is a constant C(D \ Ω) such that ‖∂nv‖H−1/2(∂Ω) ≤ C(D \ Ω) ‖v‖H1(D\Ω)

and then

(28) ‖Q̃(v)‖H1(Ω) ≤ C(D \ Ω) ‖Q‖ ‖v‖H1(D\Ω).

Proof of Theorem 3: In fact, we will prove that uε writes as an power series in the
parameter ε. The idea is to split uε into its values Uε on Ω and its values Vε on D \Ω and
then to use an double ansatz as follows

(29) Uε =
∞∑

i=0

εiUε,i and Vε =
∞∑

i=0

εiVε,i.

The error estimate (14) is then easily deduced from the convergence of the series defined
in (29). Let us prove that these series really converge.

We first determine the coefficients. Plugging these ansätze in the jump relations through
the interface Γm for the solution of the boundary value problem (11)

[uε] = 0 and [σε∂nuε] = 0,

we get

Uε = Vε ⇒
∞∑

i=0

εiUε,i =
∞∑

i=0

εiVε,i,

∂nUε = ε∂nVε ⇒
∞∑

i=0

εi∂nUε,i =
∞∑

i=1

εi∂nVε,i−1.
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By a term by term identification, we obtain ∂nUε,0 = 0 and the relationships

Uε,i = Vε,i,(30)

∂nVε,i = ∂nUε,i+1.(31)

hold on Γm for all i ≥ 1.
As fist consequence, Uε,0 solves the boundary value problem (1): it then holds Uε,0 = u.

The term of order zero of Vε is then completely characterized thanks to (30) as solution of
the boundary value problem (27) with φ = TΓmUε,0 where TΓm is the trace operator from

H1(Ω) into H1/2(Γm). We conclude that Vε,0 = P̃ (Uε,0).
In fact, we obtain an iterative construction of the coefficients Vε,i and Uε,i in a Schwarz

method’s way. For all i ≥ 0, (30) implies that Vε,i = P̃ (Uε,i) and (31) that Uε,i+1 = Q̃(Vε,i).
The coefficients in (29) are then completely defined by

{
Uε,0 = u,

Uε,i+1 = Q̃P̃ (Uε,i) for i ≥ 0;
and

{
Vε,0 = P̃ (u),

Vε,i+1 = P̃ Q̃(Vε,i) for i ≥ 0.

Since the operator P̃ is bounded and thanks to (28), the expansions converge in the spaces

H1(Ω) and H1(D\Ω) for ε small enough, for example such that ε < 1/
(
C(D \ Ω) ‖P̃‖ ‖Q‖

)
.

�

Appendix A. Elements of shape calculus

For the reader’s convenience, we recall some basic facts from shape optimization without
proof. We refer to [10, 14] for references and full proofs. Let h be a deformation field in
C2(Ω,Rd) with ‖h‖C2 < 1. We set Tt(h, .) = Id + th and denote by Ωt the transported
domain Ωt = Tt(Ω). It is well known that, for sufficiently small values of t, Tt(h, .) is a
diffeomorphism in Rd. To avoid heavy notations, we will misuse the notation Tt instead of
Tt(h, .).

The key concepts we need are material and shape derivatives. For any vector field h ∈ H,
we define the material derivative of the domain functional y = y(Ω) at Ω in an admissible
direction h as the limit

(32) ẏ(Ω;h) = lim
t→0

y(Ωt) ◦ Tt − y(Ω)

t
,

Similarly, one can define the material derivative ẏ(∂Ω;h) for any domain functional y =
y(∂Ω) which depends on ∂Ω. Another kind of derivative, called the shape derivative of
y(Ω) in the direction h, occurs. It is viewed as a first local variation. Its definition is given
by the following

Definition 1. The shape derivative y′ = y′(Ω;h) of a functional y(Ω) at Ω in the direction
of a vector field h is given by

(33) y′ = ẏ − h.∇y.
We will need in the sequel to manipulate the tangential differential operators on a manifold.
For the reader’s convenience, we recall from [10, 14] some definitions and also some useful
rules of calculus.
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Definition 2. The tangential divergence of a vector field h ∈ C1(Rd,Rd) is given by

(34) divτ (h) = div (h) −Dh.n.n,

where the notation Dh denotes the Jacobian matrix of h. When the vector h ∈ C1(∂Ω,Rd)
is defined on ∂Ω, then the following notation is used to define the tangential divergence

(35) divτ (h) = div
(
h̃

)
− (Dh̃.n).n,

where h̃ stands for an arbitrary C1 extension of h on an open neighbourhood of ∂Ω.

We introduce the notion of tangential gradient ∇τ of a smooth scalar function f in
C1(∂Ω,Rd).

Definition 3. Let an element f ∈ C1(∂Ω,Rd) be given and let f̃ be an extension of f in

the sense that f̃ ∈ C1(U) and f̃ |∂Ω = f and where U is an open neighbourhood of ∂Ω. Then
the following notation is used to defined the tangential gradient

(36) ∇τf = ∇f̃ |∂Ω −∇f̃ .n n on ∂Ω.

The details for the existence of such an extension can be found in [10]. Let us remark that
these definitions do not depend on the choice of the extension. Furthermore, one can show
the important relation

(37)
∫

∂Ω
∇τf.F = −

∫

∂Ω
f divτ (F) ,

for all elements f ∈ C1(∂Ω) and all vector fields F ∈ C1(∂Ω,Rd) satisfying Fn = 〈F, n〉 = 0.
In general, the condition above Fn = 0 is not always satisfied. The extension of this in-
tegration by parts formula to fields with a normal vector component involves curvature.
First, we point out that the curvature is connected to the normal vector via the tangential
divergence operator. Recall that the mean curvature of ∂Ω is defined asH = divτ (n). Mak-
ing use of the form of divτ (n) on the boundary, one shows straightforwardly the following
statement.

Proposition 2. Let Ω be an open subset of R3 with a C2 boundary. For any unitary
extension N of n on a neighbourhood of ∂Ω, one has

div (N ) = H on ∂Ω.

Assume that the manifold ∂Ω has no borders. If F ∈ H2(∂Ω)3 and f ∈ H2(∂Ω), then we
have

(38)
∫

∂Ω
∇f.F + fdivτ (F) =

∫

∂Ω
(∇f.n +Hf)F.n.

We assume now that the domain Ω has a C3 boundary. The simplest second-order derivative
is the Laplace Beltrami operator; it is defined as follows thanks to the following usual chain
rule.

Definition 4. Let f ∈ H2(∂Ω). The Laplace-Beltrami ∆τ of f is defined as follows

(39) ∆τf = divτ (∇τf) .
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There is a relation connecting the Laplace operator and the Laplace-Beltrami operator.
Let us denote by ∂2

nnf = (D2f.n).n where D2f stands for the hessian of f .

Proposition 3. Let Ω be a domain with a boundary ∂Ω of class C3. For all functions
f ∈ H3(Ω), it holds

(40) ∆f = ∆τf +H∂nf + ∂2
nnf, on ∂Ω.

We need to compute shape and material derivative of special vector fields: the outer
unit normal vector n, the tangential gradient and the Laplace-Beltrami operator applied
to a function. While the derivative of the normal vector is obtained by a straightforward
calculus, we have to transport from ∂Ωt to ∂Ω the Laplace-Beltrami operator and the
tangential gradient in order to compute the other derivatives. We recall here facts proved
in [2]

We denote by n the gradient of the signed distance to ∂Ω. This is an unitary extension
of the unitary normal vector n at ∂Ω which is smooth in the vicinity of ∂Ω. This extension
furnishes a symmetric Jacobian Dn that satisfies Dnn = 0 on ∂Ω. The direction h will
be supposed to be in C2(Rd,Rd) or in C2(∂Ω,Rd). We recall

Proposition 4. • The material derivative ṅ of the normal vector n at Ω in the di-
rection of a vector field h ∈ C1(Rd,Rd) is given by

ṅ = −∇τ (h.n) +Dnhτ ,

where hτ = h − h.n n.
• The shape boundary n′ in the direction of h is given by

n′ = −∇τ (h.n).

• For all functions f ∈ C2(R3) and directions h ∈ C2(∂Ω,R3), one has

(41) ˙∇τf = ∇ḟ + (D2fh)τ −∇f.n ṅ−∇f.ṅ n

• Let f ∈ D(Rd). The material derivative of ∆τf in the direction h is given by

˙∆τf = ∆τ ḟ+∇τf.∇τ [divτ (hτ )] + ∇τ (Hhn).∇τf − divτ

(((
Dh + (Dh)T

)
∇τf

)
τ

)
(42)

In the sequel, we will use some technical formulae given in [2]. Given a smooth vector
field h, we denote

Ah = Dh +DhT − div (h) I

Given two smooth vector fields h1 and h2, we set

(43) A = Dh2Ah1
+ Ah1

Dh2
T − Ah1

div (h2) − (Ah1
)′(h2),

and

b = (h2.∇u)Ah1
∇v + (h2.∇v)Ah1

∇u− ((Ah1
∇u).∇v)h2.

Here, the notation (Ah1
)′(h2) stands for the matrix defined by its elements

((Ah1
)′(h2))k,l = ∇(((Ah1

)′)k,l).h2
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Proposition 5. It holds:

(44) ∇u.Ah∇v = ∇(h.∇u).∇v + ∇(h.∇v)∇u− div ((∇u.∇v)h) .

(45) ∇u.A∇v = div (b) − (h2.∇u)div ((Ah1
∇v)) − (h2.∇v)div ((Ah1

∇u)) .

For any function u solution of (1) in Ω and for every test function φ ∈ D(Ω), we have

(46) div (Ah1
∇u) = ∆(h1.∇u) + div (fh1) .
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