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Numerical simulation of BSDEs using empirical regression

methods: theory and practice∗

Emmanuel Gobet†, Jean-Philippe Lemor‡

November 4, 2005

Abstract. This article deals with the numerical resolution of backward stochastic differ-
ential equations. Firstly, we consider a rather general case where the filtration is generated
by a Brownian motion and a Poisson random measure. We provide a simulation algorithm
based on iterative regressions on function bases, which coefficients are evaluated using
Monte Carlo simulations. We state fully explicit error bounds. Secondly, restricting to
the case of a Brownian filtration, we consider reflected BSDEs and adapt the previous al-
gorithm to that situation. The complexity of the algorithm is very competitive and allows
us to treat numerical results in dimension 10.

Introduction

Since the early nineties, there has been an increasing interest for BSDEs. Due to numerous
contributions, we now have a better understanding of the features of these equations. This
is still a very active field of research as this special volume may show. BSDEs have a wide
range of applications, especially in finance, see for instance [8]. Our concern is rather
related to the simulation of BSDEs, and regarding these aspects, the contributions in the
literature are more recent and less definitive. Actually, the design of efficient algorithms
that are able to solve general BSDEs in any reasonable dimension is far to be solved.
For a review of different contributions, we refer to [9]. Here we present a new algorithm. It
is designed for rather general BSDEs which are coupled with a forward Markov process X.
The scheme that we propose has two ingredients. The first one is somewhat standard and
consists in approximating the BSDE by a discrete-time backward dynamic programming
equation. Then one needs to compute a sequence of regression functions: our choice is to
project these functions on a finite-dimensional space spanned by basis functions, which
coefficients are computed using a set of simulations of X. The details of the algorithm are
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given in Section 1, in a generalized case where the filtration is generated by a Brownian
motion and a Poisson random measure. In that case, X is a jump-diffusion process. We
state explicit error estimates, with respect to the parameters of the method which are
the time step h (used to derive the discrete-time dynamic programming equation; this
parameter may be also used as a time step to simulate X), the number of basis functions,
the number M of simulations of X, the threshold R needed to ensure a stability property
(its impact can be usually neglected).
We would like to emphasize several valuable features of our approach. Firstly, the explicit
error bound allows us to choose optimally how the above parameters should vary together
to achieve a given accuracy. Secondly, unlike the quantization approach [1], here the
driver may depend on Z. Thirdly, we use only one set of M simulations to evaluate all
the regression operators at once, while in [5] M × #{discretization times} = O(M/h)
simulations are required. Finally, our scheme makes a very little use of the model for X.
Indeed, on the one hand, for the implementation one just needs to know how to simulate
approximative paths of X. On the other hand, for the analysis of regression errors, we
use distribution-free techniques (see Györfi et al. [11]): hence a significant part of error
estimates is model-free. We guess that this is a significant advantage, which allows us to
consider general models (for instance, with the Malliavin calculus approach in [5], X is
assumed to be essentially an elliptic diffusion).
In Section 2, we consider reflected BSDEs, taking for X a diffusion process. We adapt
the previous algorithm into three different variants, depending on how we handle the
reflection. It alternatively gives lower and upper solutions.
The scheme presented in this article has been first introduced and analyzed in [15]: therein,
one deals with the framework given in Section 1. We refer the reader to the mentioned
reference for the detailed proofs. Materials of Section 2 come from the PhD thesis of the
second author [14].

1 Generalized backward stochastic differential equation

We follow the presentation of Barles et al. [4]. Let (Ω,F , (Ft)t,P) be a stochastic basis,
where the filtration satisfies the usual conditions of right-continuity and completeness.
We suppose that the filtration is generated by the two mutually independent processes:
a R

q-valued Brownian motion W and a Poisson random measure µ on R+ × E, where
E = R

l\{0} is equipped with its Borel field E , with compensator ν(dt,de) = dtλ(de), such
that {µ̃([0, t]×A) = (µ− ν)([0, t]×A)}t≥0 is a martingale for all A ∈ E with λ(A) < +∞.
λ is assumed to be a σ-finite measure on (E, E) satisfying

∫

E(1 ∧ |e|2)λ(de) < +∞. We
consider the R

d-valued jump-diffusion

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs +

∫ t

0

∫

E
β(s,Xs− , e)µ̃(ds,de), (1)

which is uniquely defined under the following assumption.

(H1) The functions b(t, x) and σ(t, x) are uniformly Lipschitz continuous with respect to
(t, x) ∈ [0, T ]×R

d. For some constant c, the function β satisfies |β(t, x, e)| ≤ c(1∧|e|)
and |β(t, x, e)−β(t′, x′, e)| ≤ c(|x−x′|+|t−t′|)(1∧|e|) for any (t, x), (t, x′) ∈ [0, T ]×R

d

and e ∈ E.
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Now consider the following generalized BSDE

−dYt =f(t,Xt, Yt, Zt)dt− ZtdWt − dLt, YT = φ(XT ), (2)

where L is càdlàg martingale orthogonal to W (with L0 = 0). Provided that the driver
f is Lipschitz continuous, there is a unique solution (Y,Z,L) (in appropriate L2-spaces,
see [4] and [7] for details). To derive explicit error estimates, we impose to the terminal
function φ to be Lipschitz continuous as well. These two regularity assumptions are stated
as follows:

(H2) For any (t1, x1, y1, z1), (t2, x2, y2, z2) ∈ [0, T ]×R
d×R×R

q, one has |f(t2, x2, y2, z2)−
f(t1, x1, y1, z1)| ≤ Cf (|t2 − t1|1/2 + |x2 − x1| + |y2 − y1| + |z2 − z1|). The terminal
condition φ is Lipschitz continuous.

1.1 Dynamic programming equation

We first consider a time discretization of the equation (2). We denote the time step by
h = T

N and (tk = kh)0≤k≤N stand for the discretization times. For an arbitrary process
U , set ∆Uk = Utk+1

− Utk . One needs to approximate X by a Markov chain XN which
can be simulated (take e.g. the Euler scheme [13]). Whatever the scheme we use, we only
require that it converges to X in L2:

(H3) sup0≤k≤N E|Xtk −XN
tk
|2 → 0 as N goes to infinity.

The discrete-time counterpart of (2) is given by Y N
tN

= φ(XN
tN

) and

Y N
tk

= Etk(Y N
tk+1

) + hEtkf(tk,X
N
tk
, Y N

tk+1
, ZN

tk
), h ZN

tk
= Etk(Y N

tk+1
∆W ∗

k ), (3)

where Etk stands for the conditional expectation with respect to Ftk and ∗ for the trans-
pose. This is obtained by minimizing the difference E(Y N

tk+1
+ hEtkf(tk,X

N
tk
, Y N

tk+1
, Z) −

Y − Z∆Wk)
2 over Ftk -measurable squared integrable random variables (Y,Z). Our first

result is the convergence of (Y N , ZN ) towards (Y,Z) in the BSDE-norm, as N goes to ∞.
From Y N and ZN , one could also easily define a process LN and prove its convergence to
L. The result below seems to be new in this general setting.

Theorem 1 Under (H1-H2-H3), define the error

e(N) = max
0≤k≤N

E|Y N
tk

− Ytk |2 + E

N−1
∑

k=0

∫ tk+1

tk

|ZN
tk

− Zt|2dt,

where Y N and ZN are given by (3). Then, e(N) converges to 0 as N → ∞. Furthermore,
in the case of Brownian filtration (β ≡ 0 and L ≡ 0) and when XN is the Euler scheme
of X, one has e(N) = O(N−1).

Proof. In the sequel, C denotes a constant which value changes throughout computa-
tions, but remains independent on N .
We begin by proving the result for max0≤k≤N E|Ytk − Y N

tk
|2. Firstly, we know [7] that the

solution (Y,Z,L) satisfies

E
(

sup
t∈[0,T ]

Y 2
t +

∫ T

0
|Zt|2dt+ [L]T

)

< +∞. (4)
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Then, from (2-3) we get Ytk − Y N
tk

= Etk(Ytk+1
− Y N

tk+1
) + Etk

∫ tk+1

tk
{f(s,Xs, Ys, Zs) −

f(tk,X
N
tk
, Y N

tk+1
, ZN

tk
)}ds. A combination of Young’s inequality (a+ b)2 ≤ (1+γh)a2 +(1+

1
γh)b2 (with a parameter γ > 0 to be chosen later) and of the Lipschitz property of f gives

E|Ytk − Y N
tk
|2 ≤(1 + γh)E|Etk(Ytk+1

− Y N
tk+1

)|2 + C(h+
1

γ
)E

∫ tk+1

tk

|Zs − ZN
tk
|2ds

+ C(h+
1

γ
)(h2 +

∫ tk+1

tk

E|Xs −XN
tk
|2ds+

∫ tk+1

tk

E|Ys − Y N
tk+1

|2ds). (5)

Now define Ztk by hZtk := Etk

∫ tk+1

tk
Zsds = Etk({Ytk+1

+
∫ tk+1

tk
f(s,Xs, Ys, Zs)ds}∆W ∗

k ).
Clearly

E

∫ tk+1

tk

|Zs − ZN
tk
|2ds = E

∫ tk+1

tk

|Zs − Ztk |2ds+ hE|Ztk − ZN
tk
|2. (6)

The Cauchy-Schwarz inequality yields |Etk({Ytk+1
− Y N

tk+1
}∆Wl,k)|2 ≤ h{Etk(|Ytk+1

−
Y N

tk+1
|2) − |Etk(Ytk+1

− Y N
tk+1

)|2} and consequently

hE|Ztk − ZN
tk
|2 ≤CE{Etk(|Ytk+1

− Y N
tk+1

|2) − E|Etk(Ytk+1
− Y N

tk+1
)|2}

+ ChE

∫ tk+1

tk

f(s,Xs, Ys, Zs)
2ds. (7)

Plugging (6-7) into (5), we get:

E|Ytk − Y N
tk
|2 ≤(1 + γh)E|Etk(Ytk+1

− Y N
tk+1

)|2 + C(h+
1

γ
)E

∫ tk+1

tk

|Zs − Ztk |2ds

+ C(h+
1

γ
)(h2 +

∫ tk+1

tk

E|Xs −XN
tk
|2ds+

∫ tk+1

tk

E|Ys − Y N
tk+1

|2ds)

+ C(h+
1

γ
)E{Etk(|Ytk+1

− Y N
tk+1

|2) − |Etk(Ytk+1
− Y N

tk+1
)|2}

+ Ch(h+
1

γ
)E

∫ tk+1

tk

f(s,Xs, Ys, Zs)
2ds.

Now write E|Ys−Y N
tk+1

|2 ≤ 2E|Ys−Ytk+1
|2+2E|Ytk+1

−Y N
tk+1

|2 and analogously forXs−XN
tk

,
take γ = C: for h small enough, it gives

E|Ytk − Y N
tk
|2 ≤(1 + Ch)E|Ytk+1

− Y N
tk+1

|2 + Ch2 + Ch max
0≤k≤N

E|Xtk −XN
tk
|2

+ CE

∫ tk+1

tk

|Zs − Ztk |2ds+ C

∫ tk+1

tk

E|Xs −Xtk |2ds

+ C

∫ tk+1

tk

E|Ys − Ytk+1
|2ds+ ChE

∫ tk+1

tk

f(s,Xs, Ys, Zs)
2ds

and by Gronwall’s lemma max0≤k≤N E|Ytk − Y N
tk
|2 ≤ Ch + Cmax0≤k≤N E|Xtk −

XN
tk
|2 + C

∑N−1
k=0 E

∫ tk+1

tk
{|Zs − Ztk |2 + |Xs − Xtk |2 + |Ys − Ytk+1

|2}ds. The contri-

bution
∑N−1

k=0

∫ tk+1

tk
E|Ys − Ytk+1

|2ds is a O(h): indeed it is upper bounded by
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3
∑N−1

k=0

∫ tk+1

tk
ds(tk+1 − s)

∫ tk+1

s Ef(u,Xu, Yu, Zu)2du + 3
∑N−1

k=0

∫ tk+1

tk
ds

∫ tk+1

s E|Zu|2du +

3
∑N−1

k=0

∫ tk+1

tk
dsE([L]tk+1

− [L]s), which equals a O(h) owing to the a priori estimates (4)
on (Z,L). In the same way, the contribution related to Xs −Xtk is of order O(h). Finally,
it gives

max
0≤k≤N

E|Ytk − Y N
tk
|2 ≤ Ch+ C max

0≤k≤N
E|Xtk −XN

tk
|2 + C

N−1
∑

k=0

E

∫ tk+1

tk

|Zs − Ztk |2ds.

Without extra assumptions, the above approximation’s error related to the predictable
process Z converges to 0: combining this with (H3), we conclude max0≤k≤N E|Ytk −
Y N

tk
|2 → 0.

In the Brownian filtration case (β ≡ 0) and when XN is the Euler scheme of X, clearly
E|Xtk −XN

tk
|2 = O(h) uniformly in k. Furthermore, Zhang [18] establishes that the error

on Z equals O(h). Hence, max0≤k≤N E|Ytk − Y N
tk
|2 = O(h).

Using the same techniques, it is easy to derive an estimate for E
∑N−1

k=0

∫ tk+1

tk
|ZN

tk
− Zt|2dt

from that on Y N − Y (see also the proof of Theorem 2 in [9]). We omit further details.�

1.2 Description of the algorithm

At some point in our approach, the numerical solution of (Y,Z) needs to be upper bounded,
especially to analyze the empirical regression errors. This is a theoretical reason but we
also mention that it seems to have some importance in our numerical experiments. To
get a bounded solution, we consider a threshold R = (R0, R1, . . . , Rd) ∈ (R+)d+1 (a priori
with large coordinates) and this threshold defines

[∆Wl,k]w =
(

−R0

√
h

)

∨ ∆Wl,k ∧
(

R0

√
h

)

,

fR(t, x, y, z) = f(t,−R1 ∨ x1 ∧R1, · · · ,−Rd ∨ xd ∧Rd, y, z),

φR(x) = φ(−R1 ∨ x1 ∧R1, · · · ,−Rd ∨ xd ∧Rd),

[ψ]y(x) = −Cy(R) ∨ ψ(x) ∧Cy(R), [ψ]z(x) = −Cy(R)√
h

∨ ψ(x) ∧ Cy(R)√
h

.

The constant Cy(R) is explicit and defined later (see equation (9) below).
It is easy to see that the conditional expectations in (3) are regression functions of XN

tk
;

hence, it is natural to approximate them by their projections on finite-dimensional bases.
For the scalar component of Y and the q components of Z, at each discretization time tk,
we take q+1 deterministic function bases

(

pl,k(·)
)

0≤l≤q
. For sake of convenience, the basis

pl,k of size Kl,k is considered as a Kl,k-dimensional vector of scalar functions. A function
F in the vector space spanned by the basis pl,k is given by its coefficients α and one uses
the short notation F (·) = α · pl,k(·).
We denote by (XN,m

tk
)1≤m≤M,0≤k≤N and (∆Wm

k )1≤m≤M,0≤k≤N−1 the M independent sim-

ulations of (XN
tk

)0≤k≤N and (∆Wk)0≤k≤N−1.

With these notations, we are in a position to define yN,R,M
k (XN

tk
) and zN,R,M

l,k (XN
tk

) (the

approximations of Y N
tk

and ZN
l,tk

), where the functions yN,R,M
k (·) and zN,R,M

l,k (·) are given
as follows.
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→→→ Initialization : for k = N set yN,R,M
N (·) = φR(·).

→→→ Iteration : for k = N − 1, · · · , 0, solve the q least-squares problems1:

αM
l,k = arg inf

α

1

M

M
∑

m=1

|yN,R,M
k+1 (XN,m

tk+1
)
[∆Wm

l,k]w

h
− α · pl,k(X

N,m
tk

)|2.

Put zN,R,M
l,k (·) = [αM

l,k · pl,k(·)]z . Then compute αM
0,k as the minimizer of

1

M

M
∑

m=1

|yN,R,M
k+1 (XN,m

tk+1
) + hfR(tk,X

N,m
tk

, yN,R,M
k+1 (XN,m

tk+1
), zN,R,M

l,k (XN,m
tk

))−α · p0,k(X
N,m
tk

)|2

over α. In the above definition, we write fR(tk, x, y, zl) for fR(tk, x, y, (zl)1≤l≤q).

Put yN,R,M
k (·) = [αM

0,k · p0,k(·)]y .

1.3 Convergence analysis

1.3.1 Error from the threshold R

We first compare the approximative solution (Y N , ZN ) defined by (3) with (Y N,R, ZN,R)
defined by:

Y N,R
tk

= Etk(Y N,R
tk+1

) + hEtkf
R(tk,X

N
tk
, Y N,R

tk+1
, ZN,R

tk
), hZN,R

tk
= Etk(Y N,R

tk+1
[∆Wk]

∗
w), (8)

and Y N,R
tN

= φR(XN
tN ). In [15], we prove that (Y N,R, ZN,R) converges in L2 to (Y N , ZN ) as

R goes to infinity. A rate of convergence is also available under the additional assumption
sup0≤k≤N E|XN

tk
|p ≤ Cp(1 + |x|p) for some p > 2. Namely, provided that Ri = N2/(p−2)

(i = 1, · · · , d) and R0 = c
√

log(N) (for c large enough), one has max0≤k≤N E|Y N,R
tk

−
Y N

tk
|2 + hE

∑N−1
k=0 |ZN,R

tk
− ZN

tk
|2 = O(N−1) as in Theorem 2. Hence, especially if p is not

small, reasonable values of R yield a very good approximation.
The new dynamic programming equation (8) has the main advantage to give bounded
solutions. Namely one has |Y N,R

tk
| ≤ Cy(R) and

√
h|ZN,R

tk
| ≤ Cy(R) where

Cy(R) = e(2γ∗+ 1+γ∗

q
)T

{

sup
x

|φN,R(x)|2 + 2T
1 + γ∗

γ∗
sup
t,x

|fR(t, x, 0, 0)|2
}

(9)

and γ∗ = 4qC2
f (see [15] and [14]). Note that the L∞-norms related to φN,R and fR can

be easily computed on usual examples.

1.3.2 Error from the projections on bases and the simulations

The following extra assumption (H4) is sufficient to prove that the functions yN,R
k (·)

and
√
hzN,R

k (·) (defined by yN,R
k (XN

tk
) = Y N,R

tk
and zN,R

k (XN
tk

) = ZN,R
tk

) are Lipschitz
continuous, uniformly in h and R (see [15]).

1For the numerical resolution of least-squares problems, see [10].
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(H4) Denote by XN,k0,x
tk

the Markov chain XN
tk

starting at x at time tk0. There is a
constant C > 0 such that

a) E|XN,k0,x
tN

−XN,k0,x′

tN
|2 + E|XN,k0,x

tk0+1
−XN,k0,x′

tk0+1
|2 ≤ C|x− x′|2 for any x and x′,

uniformly in k0 and N .

b) E|XN,k0,x
tk0+1

− x|2 ≤ Ch(1 + |x|2) for any x, uniformly in k0 and N .

This assumption on XN is not restrictive since this property holds for X under (H1) (and
usually, for the Euler scheme as well). The next result states a general upper bound for the
error between (Y N,R

tk
, ZN,R

tk
) and the solutions (yN,R,M

k (XN
tk

), zN,R,M
k (XN

tk
)) computed with

our scheme, in terms of the basis functions and the number of simulations. Specifications
of the upper bounds are given later, according to the choice of bases.

Theorem 2 (see [15]) Assume (H1-H2-H3-H4) and denote by KM
l,k the random variable

given by the rank of the matrix of size Kl,k ×M which columns are (pl,k(X
N,m
tk

))m (note

that KM
l,k ≤ Kl,k). By convention, we set K0,N = 0.

Then, there exists a constant C such that for any β ∈]0, 1] one has

max
0≤k≤N

E|yN,R
k (XN

tk
) − yN,R,M

k (XN
tk

)|2 + hE

N−1
∑

k=0

|zN,R
k (XN

tk
) − zN,R,M

k (XN
tk

)|2

≤CCy(R)2 log(M)

M

N−1
∑

k=0

q
∑

l=0

Kl,k + Chβ

+ C
N−1
∑

k=0

{inf
α

E|yN,R
k (XN

tk
) − α · p0,k(X

N
tk

)|2 +

q
∑

l=1

inf
α

E|
√
hzN,R

l,k (XN
tk

) − α · pl,k(X
N
tk

)|2}

+ C
Cy(R)2

h

N−1
∑

k=0

{

E
(

KM
0,k exp(− Mhβ+2

72Cy(R)2KM
0,k

) exp(CK0,k+1 log
C Cy(R)(KM

0,k)
1
2

h
β+2

2

)
)

+ hE
(

KM
l,k exp(− Mhβ+1

72Cy(R)2R2
0K

M
l,k

) exp(CK0,k+1 log
C Cy(R)R0(K

M
l,k)

1
2

h
β+1

2

)
)

+ exp(CK0,k log
C Cy(R)

h
β+2

2

) exp(− Mhβ+2

72Cy(R)2
)

}

.

The parameter β should be chosen optimally to get the sharpest upper bound, see Para-
graph 1.4. Theorem 2 improves our previous results [9], where the statistical errors are
estimated in terms of the fourth moments of the L2-orthonormalized basis functions. These
quantities are generally unknown, which makes the adjustment of the bases, h and M dif-
ficult. In order to interpret terms of the upper bound above, we first recall a well-known
result in non-parametric regressions.

Theorem 3 (see [11] Theorem 11.1 p. 184). Let (U, V ) be two random variables taking
values in ℜd × ℜ and let F be a K-dimensional linear space of functions. Consider the
problem of estimating the regression function v(u) = E(V |U = u), using M independent
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realizations (Um, Vm)1≤m≤M of (U, V ). Approximate v(·) by its best approximation in F
using an empirical L2-norm related to the M observations:

v̂M (·) = arg inf
f∈F

1

M

M
∑

m=1

|Vm − f(Um)|2.

Under the assumption σ2 = supu Var(V |U = u) <∞, one has

E

(

1

M

M
∑

m=1

|v(Um) − v̂M (Um)|2
)

≤ σ2 K

M
+ min

f∈F
E|f(U) − v(U)|2. (10)

This is the prototype of model-free results since one only requires the conditional variance
to be uniformly bounded.
In our case, at each tk one solves a regression problem, which yields errors of type (10)
(compare with the first and second lines of the r.h.s. of Theorem 2). The boundedness
of (Y N,R,

√
hZN,R) ensures that the relative conditional variances are uniformly bounded.

The additional factor log(M) in the first line occurs because one estimates E|yN,R
k (XN

tk
)−

yN,R,M
k (XN

tk
)|2 instead of E

1
M

∑M
m=1 |y

N,R
k (XN,m

tk
) − yN,R,M

k (XN,m
tk

)|2 as in (10).
However, the scheme to currently analyze is much more delicate than in Theorem 3,
because the regression problems are all correlated: indeed, Vm should be given by
yN,R,M

k+1 (XN,m
tk+1

) which is not independent of Vm′ (m 6= m′) because of the random function

yN,R,M
k+1 (·). The trick consists in covering the class of functions where yN,R,M

k+1 (·) is, by a
finite number of balls centered at deterministic functions. The radius of the above balls
depends on h and on an extra parameter β. The covering number is estimated using the
Vapnik-Chervonenkis dimension. All these extra contributions are the other terms in the
r.h.s. of Theorem 2.
The analysis of the algorithm’s error turns out to be quite intricate and actually, we guess
that our estimates of Theorem 2 are not optimal. However, we do not have good ideas
to improve them. Before performing an analysis of complexity in Paragraph 1.4, we give
a modified algorithm which complexity is the same and which theoretical upper bound is
better (paradoxically, both schemes behave similarly on numerical tests).

1.3.3 A modified algorithm

As mentioned before, some terms in the upper bound of Theorem 2 come from the lack of
independence between least-squares problems at different discretization times tk. These
terms are those from the third and fourth lines in the r.h.s. of the upper bound. We
present below a variant of the algorithm of Paragraph 1.2, which removes these two terms
(for details, see [14]).

→→→ Initialization : for k = N set yN,R,M
N (·) = φR(·).

→ Let k < N−1. For each path m, simulate (X̃N,m
tk+1

,∆W̃m
k ) which are, conditionally to

XN,m
tk

, an independent copy of (XN,m
tk+1

,∆Wm
k ) (and independent of everything else).
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The coefficients αM
l,k and αM

0,k are now computed as

αM
l,k = arg inf

α

1

M

M
∑

m=1

|yN,R,M
k+1 (X̃N,m

tk+1
)
[∆W̃m

l,k]w

h
− α · pl,k(X

N,m
tk

)|2,

αM
0,k = arg inf

α

1

M

M
∑

m=1

|yN,R,M
k+1 (X̃N,m

tk+1
)

+ hfR(tk,X
N,m
tk

, yN,R,M
k+1 (X̃N,m

tk+1
), zN,R,M

l,k (XN,m
tk

)) − α · p0,k(X
N,m
tk

)|2.

As before, the functions yN,R,M
k (·) and zN,R,M

l,k (·) are given by [αM
0,k · p0,k(·)]y and

[αM
l,k · pl,k(·)]z .

Note that this algorithm requires to draw only twice more simulations.

1.4 Accuracy and complexity

Now we focus on the error between the discrete-time dynamic programming equation
(3) and the solutions computed by our initial algorithm, its modified version and also
the Bouchard-Touzi’s algorithm [5]. Our aim is at discussing the trade-off between the
accuracy and the complexity (i.e. computational time).

1.4.1 Initial algorithm (see Paragraph 1.2)

From Theorem 2, we can derive how to make N , M and the number of basis functions
vary together. In this discussion, we neglect the influence of the localization parameter
R, which is supposed to be large enough from the beginning (see paragraph 1.3.1). As
already observed in [9], local basis functions take advantage of the Lipschitz property
of functions yN,R

k (·) and
√
hzN,R

l,k (·) (see Paragraph 1.3.2). Let us consider the simplest
example of a local function basis, i.e. the hypercubes basis, already used in [9] and
still denoted HC here. To simplify, pl,k does not depend on l or k and its size equals

K. Choose a domain D ⊂ R
d centered on x, that is D =

∏d
i=1 ]xi − a, xi + a], and

partition it into small hypercubes of edge δ. Thus, D = ∪i1,··· ,idDi1,··· ,id where Di1,··· ,id =
]x1−a+ i1δ, x1−a+(i1 +1)δ]×· · · ×]xd−a+ idδ, xd−a+(id +1)δ]. Then we define pl,k as
the indicator functions associated to this set of hypercubes: pl,k(·) =

(

1Di1,··· ,id
(·)

)

i1,··· ,id
.

With this particular choice of function bases, we can make the projection error of Theorem
2 explicit and refer to [9] for details:

inf
α

E
(

|yN,R
k (XN

tk
) − α · p0,k(X

N
tk

)|2
)

≤ C{δ2 + Cy(R)2P(XN
tk

∈ Dc)}.

As for the impact of the threshold R, P(XN
tk

∈ Dc) becomes negligible with respect to
the other errors if we choose D big enough (a feature which is confirmed by the numer-
ical experiments). Thus and as far the projection errors are concerned, to get a global

(squared) error of order hβ we have to choose δ ≈ h
β+1

2 , or equivalently a number of

basis functions K ≈ h−
d(β+1)

2 (considering a fixed domain D). Regarding now the num-
ber of simulations M , to avoid an explosive upper bound in Theorem 2, one should take

M ≈ Ch−d(β+1)−(β+2) log(h−
d(β+1)

4
−β+1

2 ) for a constant C large enough (here, the ranks
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KM
l,k have simply been upper bounded by K).

The dominant term of the algorithm’s complexity C associated to this choice of function
basis is C = NMd log(K), which corresponds to determine in which cells the simulation
fall (this is the cost of a nearest neighbor algorithm in a tensored grid, i.e. O(d log(K))
for one path at a given time). Hence, up to logarithmic factors, the complexity equals
C = O(h−1−d(β+1)−(β+2)), while the squared error is of order hβ = O(C−β/(2+(β+1)(d+1))).
The optimal value of β ∈]0, 1] is β = 1, for which the squared error is of order
h = O(C−1/(2d+4)), while δ ≈ h and M ≈ Ch−2d−3 log(1/h).

1.4.2 Modified algorithm (see Paragraph 1.3.3)

The complexity is unchanged. But the error bounds are better since the terms from the
third and fourth lines in the r.h.s. of Theorem 2 have disappeared. Hence the asymptotics
on M is less stringent: indeed, we get M ≈ Ch−d−3 log(1/h), δ ≈ h in order to achieve a
squared error of order h = O(C−1/(d+4)).

1.4.3 Bouchard-Touzi’s algorithm [5]

We compute the complexity of their algorithm in the most favorable case where X is
a geometric Brownian motion. Otherwise in a more general diffusion framework, the
algorithm is heavy to implement and its complexity more difficult to evaluate because of
the necessary calculation of Skorohod’s integrals.
In this algorithm, one needs N independent sets (Mk)1≤k≤N of M simulated paths of XN

(one set for each discretization time). At each discretization time tk and for each path
in the set Mk, a calculation involving the M paths of the set Mk+1 is performed. This
leads to a complexity C = O(NM2). The squared error associated to this complexity is

given by Theorem 6.2 in [5] and is of order 1
N + N2+ d

4√
M

. Expressing the squared error as a

function of the complexity, we find C− 1
13+d .

1.4.4 Summary

Initial Algorithm Modified Algorithm Bouchard-Touzi’s Algorithm
(Paragraph 1.2) (Paragraph 1.3.3) [5]

C− 1
13+d

C− 1
4+2d C− 1

4+d (if X=Brownian motion
or geometric BM)

Table 1: Squared error with respect to the complexity C.

It turns out that in the geometric Brownian case, our algorithm is more efficient than
Bouchard-Touzi’s Algorithm for d ≤ 9 and less efficient otherwise. But the geometric
Brownian framework is very favorable for a Malliavin calculus approach, since the integra-
tion by parts formulas are especially simple and this is no more true for general diffusion
models. With our approach, the complexity is independent of the model.
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Furthermore, the modified algorithm is very competitive in any case, although it is less
natural (because of the extra simulations). We have observed in practice that the initial
and modified algorithm differ very little from each other. This suggests that the upper
bound in Theorem 2 may be not optimal (and the resulting complexity as well). We hope
that we could address these issues in future works.

2 Reflected backward stochastic differential equation

In this section, we restrict to a Brownian BSDE reflected on one barrier. We show that
the results presented in the non-reflected case can apply to the reflected case. Actually
we present three approximation methods, which we call in short max method, penalization
method and regularization method.
The framework is analogous to Section 1, without the Poisson random measure process.
Namely, we suppose that the forward process is a diffusion SDE Xt = x+

∫ t
0 b(s,Xs)ds+

∫ t
0 σ(s,Xs)dWs under the following assumption

(H1’) The functions b and σ are continuously differentiable with uniformly bounded deriva-
tives w.r.t. x. The matrix σσ∗ satisfies the ellipticity condition σσ∗ ≥ ǫId with ǫ > 0.

Regarding the reflected BSDE (RBSDE in short), we consider a continuous function φ
which defines a continuous adapted obstacle φ(t,Xt). The RSBDE (Y,Z,K) is solution of











Yt = φ(T,XT ) +
∫ T
t f(s,Xs, Ys, Zs)ds+KT −Kt −

∫ T
t ZsdWs,

Yt ≥ φ(t,Xt),

K is continuous, increasing, K0 = 0 and
∫ T
0 (Yt − φ(t,Xt))dKt = 0.

(11)

To ensure existence/uniqueness of the process above [6] and further approximation results,
we impose stronger conditions on the driver and the obstacle:

(H2’) For any (t1, x1, y1, z1), (t2, x2, y2, z2) ∈ [0, T ]×R
d×R×R

q, one has |f(t2, x2, y2, z2)−
f(t1, x1, y1, z1)| ≤ Cf (|t2 − t1|1/2 + |x2 − x1| + |y2 − y1| + |z2 − z1|) and |φ(t2, x2) −
φ(t1, x1)| ≤ Cφ(|t2 − t1|1/2 + |x2 − x1|).

When the driver f is linear, i.e. f(t, x, y, z) = −rty − z θt where θ is the market risk-
premium in finance, it is well known that Yt equals the price of the American option with
payoff Pt = φ(t,Xt): Yt = ess supstopping times τ∈[t,T ]EQ(e−

∫ τ
t

rsdsPτ |Ft).

2.1 Approximation procedures

We denote by XN the Euler scheme of X, based on the time net (tk = kh)0≤k≤N where
h = T

N . As before, one needs M independent simulations of (XN ,∆W ). We propose three
procedures to approximate (Y,Z), solution of the reflected BSDE above.

2.1.1 Max method

This method is standard and simply consists in taking at each time tk the maximum
between the obstacle and the expected value of the non reflected BSDE. The resulting
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approximation (Y N , ZN ) is defined by:










Y N
tN = φ(tN ,X

N
tN ),

Y N
tk

= max
(

φ(tk,X
N
tk

),Etk(Y N
tk+1

+ hf(tk,X
N
tk
, Y N

tk+1
, ZN

tk
))

)

, 0 ≤ k ≤ N − 1,

ZN
tk

= 1
hEtk(Y N

tk+1
∆W ∗

k ), 0 ≤ k ≤ N − 1.

Ma and Zhang [16] prove that the rate of convergence of such approximation is N−1/4

when the obstacle function is smooth (i.e. of class C1,2). In [14] we extend this analysis
to less smooth obstacles in order to handle for instance the case of American put contract
(i.e. φ(t, x) = (K − ex)+ if X is the log-price process). The relevant assumption of φ is
the following one:

(H3’) The function φ is of class C1 w.r.t. the time variable and uniformly Lipschitz contin-
uous w.r.t. the space variable. Moreover, φ(t,Xt) and φ(t,XN

t ) satisfy the following
Itô expansions:

φ(t,Xt) =φ(0, x) +

∫ t

0
Usds+

∫ t

0
VsdWs +At,

φ(t,XN
t ) =φ(0, x) +

∫ t

0
UN

s ds+

∫ t

0
V N

s dWs +AN
t ,

where A, AN are increasing, continuous, integrable and such that the measures dAt

and dAN
t are singular w.r.t. dt and where U , UN , V and V N satisfy the follow-

ing integrability condition supt≤T E(|Ut|p) + supt≤T,N E(|UN
t |p) + supt≤T E(|Vt|p) +

supt≤T,N E(|V N
t |p) <∞ for p ≥ 2.

Theorem 4 (see [14]) Under Assumption (H1’-H2’-H3’), one has

max
0≤k≤N

E|Y N
tk

− Ytk |2 +
N−1
∑

k=0

∫ tk+1

tk

E|ZN
tk

− Zt|2dt ≤ C(1 + |x|4)N−1/2.

Note that the convergence rate is lower than in the non-reflected case (N− 1
4 instead of

N− 1
2 ). The algorithm to approximate (Y N , ZN ) is very similar to the one of Paragraph

1.2 (with analogous threshold functions).

1. yN,R,M
N (·) = φR(tN , ·)

2. At a given discretization time tk (0 ≤ k ≤ N − 1), the coefficients αM
l,k (1 ≤ l ≤ q)

are defined as the minimizers over αl of
1

M

M
∑

m=1

|yN,R,M
k+1 (XN,m

tk+1
)
[∆Wm

l,k]w

h
− αl.p

m
l,k|2.

Then put zN,R,M
l,k (·) = [αM

l,k.pl,k]z(·).

3. αM
0,k is finally defined as the minimizer over α0 of

1

M

M
∑

m=1

|yN,R,M
k+1 (XN,m

tk+1
) + hfR(tk,X

N,m
tk

, yN,R,M
k+1 (XN,m

tk+1
), zN,R,M

k (XN,m
tk

)) − α0.p
m
0,k|2.

Then put yN,R,M
k (·) = max(φR(tk, ·), [αM

0,k.p0,k]y(·)).

The error between (Y N,R
tk

, ZN,R
tk

) and (yN,R,M
k (XN

tk
), zN,R,M

k (XN
tk

)) can be analyzed exactly
as in Theorem 2 and actually, we get the same estimates.
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2.1.2 Penalization method

This method is based on the ideas developed in [6] to show the existence and uniqueness
of the solution to (11): the reflection is handled via a penalization term which is very large
only when Y is below to the obstacle. Namely, the solution (Y,Z,K) is approximated by
(Y n, Zn,Kn) where (Y n, Zn) is the solution of the standard BSDE

Y n
t = φ(T,XT ) +

∫ T

t
f(s,Xs, Y

n
s , Z

n
s )ds+ n

∫ T

t
(Y n

s − φ(s,Xs))−ds−
∫ T

t
Zn

s dWs,

and Kn is defined by Kn
t = n

∫ t
0 (Y n

s − φ(s,Xs))−ds. It is thus shown in [6] that
(Y n, Zn,Kn) tends to (Y,Z,K) as n tends to infinity with the property Y n ↑ Y . In
general, one does not know the convergence rate (some results are available when f does
not depend on Z, see [12]). At a fixed n, (Y n, Zn) is the solution of a standard BSDE and
can thus be approximated by the algorithm proposed in the first section:

1. yn,N,R,M
N (·) = φR(tN , ·)

2. At a given discretization time tk (0 ≤ k ≤ N − 1), the coefficients (αM
l,k) are de-

fined as the minimizers of inf
αl

1

M

M
∑

m=1

|yn,N,R,M
k+1 (XN,m

tk+1
)
[∆Wm

l,k]w

h
− αl.p

m
l,k|2. Then put

zn,N,R,M
l,k (·) = [αM

l,k.pl,k]z(·).

3. αM
0,k is finally defined as the minimizer of:

inf
α0

1

M

M
∑

m=1

|yn,N,R,M
k+1 (XN,m

tk+1
) + hfR(tk,X

N,m
tk

, yn,N,R,M
k+1 (XN,m

tk+1
), zn,N,R,M

l,k (XN,m
tk

))

+ nh(yn,N,R,M
k+1 (XN,m

tk+1
) − φR(tk,X

N,m
tk

))− − α0.p
m
0,k|2.

Then put yn,N,R,M
k (·) = [αM

0,k.p0,k]y(·).

2.1.3 Regularization method

The last idea is based on the results of [2], which exploit the specific form of the in-
creasing process K. The authors consider the case where the obstacle φ(t,Xt) is a
càdlàg semimartingale satisfying φ(t,Xt) = φ(0, x) +

∫ t
0 Usds +

∫ t
0 VsdWs + At where

E
∫ T
0 {|Vt|2 + |Ut|2}dt < ∞ and where A is a càdlàg adapted increasing process with

E|AT | <∞. In this case, a solution (Y,Z,K) to (11) is also a solution to











Yt = φ(t,Xt) +
∫ T
t {f(s,Xs, Ys, Zs) + αs1Ys=φ(s,Xs)[f(s,Xs, φ(s,Xs), Vs) + Us]−}ds

−
∫ T
t ZsdWs,

Yt ≥ φ(t,Xt)

with E
∫ T
0 {|Yt|2 + |Zt|2 + |αt|2}dt < ∞. To show the existence and uniqueness of the

solution to the equation above, the authors use a regularization method based on C∞

functions ϕn (with 0 ≤ ϕn ≤ 1) satisfying ϕn(x) = 1 if |x| ≤ 1
2n and ϕn(x) = 0 if |x| ≥ 2

2n ,
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which are mollifiers of ϕ(x) = 1x=0. It turns out that the solution (Y n, Zn) to the following
BSDE converges to (Y,Z) as n goes to infinity with the property that Y n ↓ Y :

Y n
t =φ(t,Xt) +

∫ T

t
f(s,Xs, Y

n
s , Z

n
s ) + ϕn(Y n

s − φ(s,Xs))[f(s,Xs, φ(s,Xs), Vs) + Us]−ds

−
∫ T

t
Zn

s dWs.

Note that it gives an upper approximation for Y while the two previous methods give lower
approximations. We can thus hope to define an approximation procedure which gives an
upper estimation for the Y (or equivalently for the prices of American options). To keep
this property, the time-discretization (Y N , ZN ) is performed in the following way:











































Y N
tN = φ(tN ,X

N
tN ),

Y N
tk

= Etk

(

Y N
tk+1

+ hf(tk,X
N
tk
, Y N

tk+1
, ZN

tk
) + hϕn(Y N

tk+1
− φ(tk+1,X

N
tk+1

))

[f(tk,X
N
tk
, φ(tk+1,X

N
tk+1

), V N
tk

) +
φ(tk+1,XN

tk+1
)−φ(tk ,XN

tk
)

h ]−

)

,

hZN
tk

= Etk(Y N
tk+1

∆W ∗
k ),

hV N
tk

= Etk

(

φ(tk+1,X
N
tk+1

)∆W ∗
k

)

.

Then, the scheme of Paragraph 1.2 becomes

1. yn,N,R,M
N (·) = φR(tN , ·)

2. At a given discretization time tk (0 ≤ k ≤ N − 1), the coefficients (αM
l,k) are defined

as the minimizers over αl of
1

M

M
∑

m=1

|yn,N,R,M
k+1 (XN,m

tk+1
)
[∆Wm

l,k]w

h
− αl.p

m
l,k|2. Then put

zn,N,R,M
l,k (·) = [αM

l,k.pl,k]z(·).

3. Define βM
l,k = arginfβl

1

M

M
∑

m=1

|φR(tk+1,X
N,m
tk+1

)
[∆Wm

l,k]w

h
− βl.p

m
l,k|2.

4. Finally αM
0,k minimize over α0

1

M

M
∑

m=1

∣

∣yn,N,R,M
k+1 (XN,m

tk+1
) + hfR(tk,X

N,m
tk

, yn,N,R,M
k+1 (XN,m

tk+1
), zn,N,R,M

l,k (XN,m
tk

))

+ hϕn(yn,N,R,M
k+1 (XN,m

tk+1
) − φR(tk+1,X

N,m
tk+1

))[fR(tk,X
N,m
tk

, φR(tk+1,X
N,m
tk+1

), [βM
l,k.p

m
l,k]v)

+
φR(tk+1,X

N,m
tk+1

) − φR(tk,X
N,m
tk

)

h
]− − α0.p

m
0,k

∣

∣

2
.

Then put yn,N,R,M
k (·) = [αM

0,k.p0,k]y(·).

In practice, ϕn is a piecewise linear function with ϕn(x) = 1 if |x| ≤ 1
n , ϕn(x) = 0 if

|x| ≥ 2
n .
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2.2 Numerical results

We present here numerical results for American options written on one, three and ten-
dimensional assets.

2.2.1 Dimension d = 1

First, we take the same examples than in [5] where the authors consider the case of a usual

Black-Scholes model in dimension d and the payoff φ(x) = (K − (
∏d

i=1 xi)
1
d )+.

We first take d = 1, the maturity T of the option is one year, the interest rate r = 0.05,
the volatility σ = 0.15, the strike K = 100 and S0 = 100. The reference price obtained
by a PDE method is 4.23 according to [5] while the price obtained in [5] by a Malliavin
calculus approach to solve the RBSDE is 4.21. For our algorithm, we use the basis HC
of hypercubes with size δ (see Paragraph 1.4.1). We test the max method, for different
values of N and δ and we let M increase. On Figure 1, we observe that the bias decreases
when N and δ increase, as predicted in Theorem 2.

M

P
ri

ce

0 51. 10 52. 10 53. 10 54. 10 55. 10
4

5

4.5

5.5

N=10,delta=10
N=20,delta=5 
N=20,delta=1 
N=50,delta=1 
Real Price   

M

P
ri

ce

0 51. 10 52. 10 53. 10 54. 10 55. 10

4.2

4.15

N=20,delta=1
N=50,delta=1
Real Price  

Figure 1: American put with d = 1

2.2.2 Dimension d = 3

We deal with the same example with d = 3. We test the regularization method with
N = 32, δ = 9 and n = 2, the max method with N = 44, δ = 7 and the penalization
method with N = 60, δ = 2 and n = 2. For all of them, we use the basis HC. On Figure
2, we observe that the three algorithms give good approximations of the American prices.
Nevertheless, we mention that when parameters (N, δ,M) simultaneously change with the
regularization or penalization parameter n, the methods may behave very differently and
we refer to [14] for a more complete numerical study.

2.2.3 Dimension d = 10

Finally, we give an example with d = 10 = 2p taken from [3]. The model is still a Black-

Scholes one :
dSl

t

Sl
t

= (r − µl)dt + σldW
l
t for 1 ≤ l ≤ 10. The pay-off (or obstacle) is

max(x1 · · · xp − xp+1 · · · x2p, 0). The interest rate is r = 0, the dividend rates µ1 = −0.05
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Max            
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Figure 2: American Put with d = 3

and µl = 0 for l ≥ 2, the volatility σl = 0.2√
d
, the maturity is T = 0.5 and the initial values

are Si
0 = 40

2
d , 1 ≤ i ≤ p and Si

0 = 36
2
d for p + 1 ≤ i ≤ 2p. The reference price used in [3]

is the one derived by [17], using a PDE method, and is equal to 4.896.
We use the max method with a slightly different function basis : instead of just using
indicator functions to approximate Y , we define also on each hypercube polynomials of
degree 1. With this new function basis, we obtain a price of 4.876 for N = 60, δ = 0.6 and
M = 216 = 65536, within a computational time of 15 seconds. We note that this algorithm
can be quite efficient in high dimension, even with the simplest choice of functions basis.

Conclusion

We have proposed a numerical scheme using empirical regressions on function bases. Re-
garding the model, it is remarkably flexible and allows us to solve generalized BSDEs.
Here the stochastic integral in the BSDE is driven by a Brownian motion, but we are
preparing an extension of our scheme to deal with general martingales including jumps.
Note that the terminal condition of the BSDE is here of the form φ(XT ) but actually for
certain path-dependences, our algorithm may still work after a slight modification (see
[9]). Our approach is also suitable for reflected BSDEs. However, the robust choice of the
penalization and regularization parameter as a function of the time step h is a delicate
issue, which should deserve a special attention in future works.
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