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Abstract

Sivashinsky’s (1977) nonlinear integro-differential equation for the shape of corrugated 1-

dimensional flames is ultimately reducible to a 2N -body problem, involving the 2N complex poles

of the flame slope. Thual, Frisch & Henon (1985) derived singular linear integral equations for the

pole density in the limit of large steady wrinkles (N ≫ 1), which they solved exactly for mono-

coalesced periodic fronts of highest amplitude of wrinkling and approximately otherwise. Here we

solve those analytically for isolated crests, next for monocoalesced then bicoalesced periodic flame

patterns, whatever the (large-) amplitudes involved. We compare the analytically predicted pole

densities and flame shapes to numerical results deduced from the pole-decomposition approach.

Good agreement is obtained, even for moderately large Ns. The results are extended to give hints

as to the dynamics of supplementary poles. Open problems are evoked.
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I. INTRODUCTION

Being able to describe the nonlinear development of the Landau-Darrieus [1, 2] (LD)

instability of premixed-flame fronts is a central topic in combustion theory. As early as 1977

Sivashinsky [3] showed, in the limit A ≪ 1 of small Attwood numbers based upon the fresh

gas (ρu) or burnt gas (ρb < ρu) densities, 0 < A ≡ (ρu − ρb)/(ρu + ρb) < 1, that the shape

φ(x, t) of a flat-on-average, spontaneously evolving wrinkled flame is governed by

φt +
1

2
φ2

x = ν φxx + I(φ) (1)

in suitable units. In (1) the subscripts denote partial derivatives with respect to time,

t, and coordinate, x, normal to the mean direction of propagation, and the “viscosity”

ν > 0 represents a reciprocal Peclet number based upon the actual flame thickness and

the wrinkle wavelength. The linear integral operator I(·) is defined by I(eikx) = |k| eikx

(whence I(φ) is the Hilbert transform, Ĥ(−φx), of −φx) and stems from the LD instability.

The growth/decay rate of infinitesimal harmonics is |k| − νk2, which identifies 1/ν and

ν as neutral wavenumber and minimum growth time, respectively. The nonlinearity is

geometrical, accounting as it does for the cosine, (1 + s2)−1/2 ≃ 1 − s2/2 + . . ., of the small

angle (arctan(s) ≃ s + . . .) that the local normal to the flame front makes to the mean

direction of propagation, where s ∼ φx × A is the unscaled front slope. Originally derived

in [3] as a leading order result for A → 0+, equation (1) happens to govern the shape of

steadily propagating fronts even when two more terms of the A-expansion are retained [4, 5];

its structure then remains valid practically up to A = 3/4, i.e., ρu = 7ρb [4].

Numerics [6] reveals that “steady” solutions of (1), corresponding to φ(x, t) = −V t+φ(x)

are often ultimately reached. When (1) is integrated with periodic boundary conditions for

“not-too-small” values of ν, ν > 1/25 say, the “steady” pattern has a single crest per x-

wise interval of 2π length, where φxx is large and negative; without loss of generality one

may assume that one is located at x = 0, in which case φx = 0 when x is an integer

multiple of π (i.e., x = 0 (mod π)) and φxx(±π) ≃ 1/π. If Neumann conditions at x = 0

and x = π are used instead, still with a moderately small ν, the final pattern obtained

from numerical (pseudo-spectral) integrations of (1) may also have an extra crest located at

x = π [7], with φxx(π) large and negative. By the very way they are obtained as final state

of an unsteady process the 2-crested patterns have a finite basin of attraction, contrary to

the case of periodic boundary conditions [7] where the only stable patterns have a single
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crest per cell; yet such “half-channel” solutions happen to coincide with the restriction to

0 ≤ x ≤ π of properly shifted 2π-periodic ones, for these are symmetric about x = 0 and

x = π. If ν is too small the widest patterns get very sensitive to noise, even when caused

by numerical rounding-off. In [8] the estimate µ ≥ O(e−1/2νκ) ≡ µc(κ) was obtained for the

noise intensity µ needed to trigger the appearance of extra-cells on top of the main ones with

periodic boundary conditions; the number κ in the above exponent is φxx(±π) ≃ 1/π; since

the most rapidly growing noise-induced disturbances (with initial wavenumbers |k| ≃ 1/ν

[8]) of a nearly parabolic trough undergo an O(e1/2νκ) amplification, they ultimately get

visible as subwrinkles of O(1) final amplitude if µ ≥ µc(κ). Having a larger φxx > 0

at their troughs (see Sec. 7), 2-crested patterns are presumably less sensitive to noise

than the single-crest ones associated with the same wavelength, because µc(κ) increases

dramatically with κ when ν is small. The numerical work of Ref. [9] also showed that sums

φ(x1, x2, t) = φ1(x1, t) + φ2(x2, t) of orthogonal, 2-crested one-dimensional patterns play a

central role in the study of (1) generalized to 2-dimensional flames (x→ (x1, x2), φ
2
x → |∇φ|2,

φxx → ∆φ, I(·) ≡ multiplication by (k · k)1/2 in the 2-D Fourier space k = (k1, k2))

and to rectangular domains in the Cartesian (x1, x2) plane. Without noise such sums are

exact stable solutions; with random additive forcing they recurrently appear as long-lived

transients when Neumann conditions are adopted.

Further analyses on the stability of solutions of Eq. (1) and their responses thus seem

warranted, and getting the “steady” patterns that correspond to wide, hence large, cells (or

small νs) is a prerequisite. The present contribution is intended to do this.

It is organised as follows. Section 2 introduces the pole-decomposition method, the

discrete equations for the pole locations, and the two integral equations that approximate

them for large front wrinkles. The latter equations are next solved analytically for isolated

crests (Sec. 3) then one-crested periodic patterns (Section 4), and the prediction compared

to numerical results from the pole-decomposition approach. Sections 5 and 6 compute the

flame speed from the density, and take up the dynamics of a few extra-poles, respectively.

Section 7 generalizes the above integral equations to a pair of coupled ones corresponding to

2-crest periodic flames (and “half-channel” ones), then solves them analytically; comparisons

with numerics are again presented. We end up with concluding remarks and open problems

(Sec. 8).
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II. POLE-DECOMPOSITION(S)

In 1985 Thual, Frisch and Henon [10] (herein referred to as “TFH”) discovered (see also

[11]) that (1) possesses solutions φ(x, t) representing 2π-periodic flame patterns with slopes

φx in the form

φx(x, t) = −ν
N
∑

α=−N

cot

(

x− zα

2

)

, (2)

in which the complex-valued poles of φx(x, t), zα(t), are involved in conjugate pairs (z−α =

z∗α, α 6= 0) for φx(x, t) to be real when x is. For this pole-decomposed expression to solve

(1), the z′αs (α = −N, . . . ,−1, 1, . . . , N) must evolve according to the 2N -body problem

dzα

dt
= ν

N
∑

β=−N

β 6=α

cot

(

zβ − zα

2

)

− i sign(Im (zα)), (3)

where Im (·) denotes the imaginary parts of (·) and the signum function (with sign(0) = 0)

accounts for the LD instability. Once (3) is solved for the pole locations, φ(x, t) is available

from (2) and the wrinkling-induced excess propagation speed V = −〈φt〉 > 0 follows from

(1):

V =
1

2

〈

φ2
x

〉

, (4)

where 〈·〉 stands for an average along the x-coordinate; thus, V simply measures the

wrinkling-induced fractional increase in flame arclength, since 〈(1+s2)1/2−1〉 = 〈s2/2〉+. . . ∼
A2 × V . Beside periodic φ(x, t)s, (1) also allows [10] for isolated non periodic wrinkles that

have an infinite wavelength, V = 0, cot(z) replaced by 1/z, and

dzα

dt
= ν

N
∑

β=−N

β 6=α

2

zβ − zα
− i sign(Im (zα)). (5)

In the latter situation, the precise value of ν > 0 does not matter since it could be scaled

out, and the integer N ≥ 1 is arbitrary. As for (2) (3), the maximum allowed value Nopt(ν)

of N in steady configurations increases with 1/ν > 1 [10]. As shown by TFH, steady flames

obtained from (3) or (5) correspond to poles that “coalesce” (or align) along parallels to

the imaginary axis, as a result of the pairwise pole interactions that are attractive along the

real x-axis and repulsive in the normal direction. In the case of an isolated crest located at

x = 0, the poles ultimately involved in steady solution are of the form iBα, −N ≤ α ≤ N ,
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α 6= 0, with real Bαs satisfying coupled discrete equations deduced from (5):

ν

N
∑

β=−N

β 6=α

2

Bα −Bβ
= sign(Bα). (6)

The authors of Ref. [10] also evidenced that the larger the number N of pole-pairs in

such “vertical” steady alignments, the smoother the involved poles are distributed along the

B coordinate, with Bα+1 − Bα well smaller than BN . This suggested TFH to replace the

discrete sum in (6) (or its analogue deduced from (3)) by an integral over the continuous

variable B, with such a continuous measure that P (B) dB is the number of poles located

between B and B + dB; a constructive definition of P (B) is specified in (20). In this

continuous approximation the steady versions of (2) (3) are amenable to singular Fredholm

integral equations, specifically:

−
∫

2νP (B′)

B −B′
dB′ = sign(B) (7)

in the non-periodic situations (an isolated wrinkle at x = 0), and

−
∫

νP (B′) coth

(

B −B′

2

)

dB′ = sign(B) (8)

for the monocoalesced 2π-periodic cases (one single crest per cell, at x = 0 (mod 2π)). In

(7) (8) B denotes the pole imaginary coordinate, and the Cauchy principal parts −
∫

· dB′

stem from the condition β 6= α on the sums featured in (3) (5). Consistent with their

interpretation as pole densities, the P (B)s showing up in (7) (8) both are non-negative even

functions of their argument (for φx to be real when x is) and are normalized by
∫

P (B′) dB′ = 2N. (9)

In (7)-(9) the integrals extend over the ranges (to be determined as part of the solutions)

where P (B) 6= 0. The next sections will solve (7) (8) (9) analytically, starting with the

simpler equation (7).

III. ISOLATED CREST

Because isolated crests have φx → 0 at |x| → ∞, we firstly anticipate the existence of

some finite Bmax > 0 such that P (|B| > Bmax) ≡ 0 in (7). We next recall the identity

−
∫ π/2

−π/2

cos((2M + 1)Φ′) cos Φ′

sin Φ − sin Φ′
dΦ′ = π sin((2M + 1)Φ) (10)
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that can be deduced, through the change of variable Φ → Φ + π/2, from a similar one

appearing in the Prandtl theory of lifting lines [12, 13]. Identity (10) allows one to solve

such singular integral equations as Wigner’s [14] (for the density, 2νP say, of eigenvalues of

large real random matrices in the Gaussian Orthogonal Ensemble), written here as

−
∫

2νP (B′)

B − B′
dB′ = B; (11)

its solution is the celebrated semi-circle law 2πνP (B) = max(Bmax cos Φ, 0), [14], provided

that one sets

B = Bmax sin Φ, −π
2
≤ Φ ≤ π

2
, (12)

in (11). Interestingly, the same change of independent variable in (7) produces

−
∫ π/2

−π/2

2νP (Φ′) cos Φ′

sin Φ − sin Φ′
dΦ′ = sign(Φ), (13)

since sign(B) = sign(Φ) for |Φ| < π. Over the same range (and hence over the narrower

support of P , |Φ| ≤ π/2), the right-hand side of (13) may be expanded as the Fourier series

sign(Φ) =
4

π

∞
∑

M=0

1

2M + 1
sin((2M + 1)Φ), (14)

consistent with our convention that sign(0) = 0. From (10) the solution to (13) can thus be

written as a Fourier series of cosines that all vanish at Φ = ±π/2:

2νP (Φ) =
4

π2

∞
∑

M=0

1

2M + 1
cos((2M + 1)Φ) (15)

=
1

π2
log

(

1 + cos Φ

1 − cos Φ

)

(16)

=
1

π2
log

(

1 +
√

1 −B2/B2
max

1 −
√

1 − B2/B2
max

)

, (17)

and P ≡ 0 for |B| > Bmax; to get (17) from (16), (12) was explicitly employed.

The cumulative pole distribution R(B) =
∫ B

0
P (B′) dB′ reads, after integration by parts,

as

2νR(B) =
Bmax

π2

(

sin Φ log
1 + cos Φ

1 − cos Φ
+ 2Φ

)

, (18)

whereby the renormalization condition R(Bmax) = R(Φ = π/2) = N fixes Bmax to be given

by

Bmax = 2πNν. (19)
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TFH [10] fitted the cumulative distribution they obtained from a numerical resolu-

tion of (5) for steady arrangements of aligned poles, by the expression π2νR =
∫ B

0
log(1.28Nνπ2/ |B′|) dB′ when |B| ≤ Bmax [10]. Equations (17) (19) show that 1.28

estimated from their numerical pole distribution at |B| ≪ Bmax actually was a numerical

approximation of 4/π = 1.273 . . . Figures 1 and 2 compare the analytical findings (18) (19)

to our own resolutions of (5), with N = 10, and 100, respectively. The TFH fit is also

displayed for illustration. The pole density P is defined for α ≥ 1 by

P ((Bα +Bα−1)/2) ≡ (Bα − Bα−1)
−1, (20)

in terms of the pole locations (with B0 = 0 by convention); it is shown in Fig. 3 for

N = 100, and compared with the continuous approximation (17) and the TFH fit. Once the

cumulative distribution is determined by (18) (19) in the continuous limit, approximations

B̃α to the discrete pole locations can be retrieved upon solving [10]

R(B̃α) = α− 1/2, α = 1, . . . , N (21)

numerically (e.g., by the Newton-Raphson method, with the “exact” Bαs as initial guess!).

The resulting crest shape

φ̃(x) = −2ν
N
∑

α=1

log

(

1 +
x2

B̃2
α

)

(22)

is compared to the exact one (numerical) in Fig. 4 and to that issued from the continuous

approximation. The latter profile has

φx = −
∫ Bmax

−Bmax

2νP (B) dB

x− iB
(23)

= −1

π
sign(x) log

(

√

x2/B2
max + 1 + 1

√

x2/B2
max + 1 − 1

)

, (24)

the second expression resulting from substitution of (17) in (23), then a lucky look at p. 591

of Ref.[15].

As suggested by the form of (23), and confirmed by (24), φx(x) is most simply deduced

from P (±ix) through contour integration in the complex B-plane. A further integration

by parts of (24) yields the continuous-approximation prediction for φ(x) (up to an additive

constant):

φ(x) = −1

π
sign(x)Bmax

(

sinh ξ log
cosh ξ + 1

cosh ξ − 1
+ 2ξ

)

, (25)
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where x = Bmax sinh ξ (compare to (12)). The integration constant was selected in Fig.

4 to achieve good agreement with the exact φ(x) for |x| → ∞. Two final remarks: (i) ν

disappeared as a factor in (24) as it should, because ν can be scaled out; (ii) φ(x) is of

the form νNF (x/νN), and this scale-invariance shows that the continuous approximation

actually amounts to describing φ(x) at large distances compared to the actual radius of

curvature (1/
∫ Bmax

B̃1

4νP (B)dB/B2 = o(ν)) of the flame tip, when N ≫ 1 ( that is, for large

wrinkles).

IV. MONO-COALESCED, PERIODIC CREST

The following simple remark will allow us to solve (8), i.e., in the case where all the

poles of φx are aligned along the imaginary x-axis (mod 2π). Because P (B′) still is an even

function of B′, only the even parts (at fixed B) of coth((B−B′)/2) will actually contribute

to the integral over B′. Equation (8) may thus be re-written as

−
∫ Bmax

−Bmax

νP (B′)(1 − tanh2(B′/2))

tanh(B/2) − tanh(B′/2)
dB′ = sign(B), (26)

upon use of the known formula for the tanh(·) of a difference, and neglect of a term propor-

tional to −
∫

P (B′) tanh(B′/2) dB′ = 0. We now set

tanh(
B

2
) = tanh(

Bmax

2
) sin Φ, −π

2
≤ Φ ≤ π

2
, (27)

converting (26) into

−
∫ π/2

−π/2

2νP (B′) cos Φ′

sin Φ − sin Φ′
dΦ′ = sign(Φ), (28)

which is nothing but (13). Therefore the sought after pole-density is still given by (16),

the only difference with the previous non periodic case being that B, Bmax, and Φ are now

related by (27) instead of (12).

The new cumulative density R(B) =
∫ B

0
P (B′) dB′ is given, after an integration by parts,

by

π2νR(B) =
1

2
log

1 + A sin Φ

1 − A sin Φ
log

1 + cos Φ

1 − cos Φ

+

∫ Φ

0

log
1 + A sin Φ′

1 − A sin Φ′

dΦ′

sin Φ′
, (29)
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A ≡ tanh(Bmax/2), whereby the normalization (9) requires

Nνπ2 =

∫ π/2

0

log
1 + A sin Φ

1 − A sin Φ

dΦ

sin Φ
. (30)

As the above integral turns out to be π arcsinA (p. 591 of [15]) the range of P (B), still

given by R(Bmax) = N , now satisfies

tanh(Bmax/2) = sin(πNν) (31)

instead of (19). The latter and (31) coincide for πNν ≪ 1, as do the associated pole densities.

The maximum Bmax allowed by (31), Bmax = +∞, has 2Nν = 1 and cos Φ ≡ 1/ cosh(B/2),

whence P (B) resumes the form

P (B) =
1

π2ν
log

(

coth
|B|
4

)

(32)

obtained by TFH via Fourier transformations. The figure 5 compares our predictions (29)

and (31) with very accurate solutions of (3) for N = 100 and 2Nν = 1. Very good agree-

ment is obtained even if N is only moderately large, and carries over to the pole densities

themselves. Again, approximate solutions B̃α can be retrieved from the analogue of (21),

and an approximate flame front shape from

φ̃(x) = −2ν

N
∑

α=1

log(1 − cosx sech B̃α) + const. (33)

Figure 6 shows of a comparison between (33), the exact flame shape obtained from the exact

(yet obtained numerically) Bαs satisfying (3), and the curve deduced from the continuous

approximation, for which the flame slope φx(x) reads

φx = −ν
∫

cot

(

x− iB

2

)

P (B) dB, (34)

again a real function because P (−B) = P (B). With P (B) given by (16) (27) (31) the above

integral can be reduced to one available in p. 591 of [15] and yields (for −π ≤ x ≤ π):

φx(x) = −1

π
sign(ξ) log

cosh ξ + 1

cosh ξ − 1
, tan

x

2
≡ A sinh ξ (35)

thereby confirming that φx(x) is accessible from P (B) by analytical continuation to ±ix. In

particular, the TFH solution, eq. (32), has πφx = −2 sign(x) log |cot x/4| and φxx(±π) =

1/π; more generally, φxx(±π) = A/π . A further integration by parts yields

− iπφ(x) = sign(x) log
1 + iA sinh ξ

1 − iA sinh ξ
log

cosh ξ + 1

cosh ξ − 1

+2 sign(x)

∫ ξ

0

log
1 + iA sinh ξ′

1 − iA sinh ξ′
dξ′

sinh ξ′
, (36)
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which cannot be evaluated in simple closed form, but may be compared to (29); of course

φ(x) is real when x is, since the complex log(·) in (36) also reads 2i arctan(A sinh ξ) = ix.

Note that φ(x) has the form F (x;Nν), in the present units where the pattern is 2π-periodic.

Adopting Λ 6= 2π as wavelength would give 2πφ = ΛF (2πx/Λ; 2πNν/Λ) with the same F .

Accordingly, if νN/Λ is kept fixed, φxx(±Λ/2) scales like 1/Λ as it should for ν → 0, whereby

halving the wavelength renders the patterns less sensitive to noise (see the Introduction).

V. FLAME SPEED FROM CONTINUOUS POLE-DENSITY

Plugging (34) into (4) allows the wrinkling-induced increase in flame speed V to be

written as

2V = ν2

∫∫

P (B)P (B′)〈cot
x− iB

2
cot

x− iB′

2
〉 dB dB′. (37)

Although the one-variable integrals involved when squaring (34) are ordinary ones, they

may be written as principal parts. We next invoke the trigonometric identity cot a cot b =

−1 + cot(a− b)(cot b− cot a) and the average

〈cot
x− iB

2
〉 = i sign(B) (38)

to transform (37) into

2
V

ν2
= −

∫∫

P (B)P (B′) dBdB′

+2

∫

−
∫

sign(B)P (B)P (B′) coth

(

B − B′

2

)

dB′dB (39)

The first double integral (= (
∫

P (B)dB)2) in (39) follows from the normalization (9),

and is (2N)2. The second one is obtained from (8) after multiplication of both sides by

P (B)sign(B)dB and subsequent integration over B: by (9), it is 2N/ν. Thus the simple

formula

V = 2Nν(1 −Nν) (40)

ensues; notice that it was obtained without having to solve (8). Actually (39) can be shown

from (3) to hold whatever N and ν [16], again without solving the pole-equations themselves.

In view of the accuracy of (40) one may inquire whether the solutions of (7) (8) satisfy

the “inviscid” Sivashinsky equation, i.e. (1) with ν = 0, in the steady cases. To show they
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do, for x 6= 0 at least, one may set P = Pν and N = Nν to remove ν from (7) (9), then

process the Landau-Darrieus term of (1) as follows in the case of an isolated crest:

2iI(φ) =

∫

4P(B)sign(B)

x− iB
dB

=

∫

2P(B)

x− iB
dB −
∫

2P(B′)

B −B′
dB′ + (B ↔ B′)

=

∫∫

4iP(B)P(B′)

(x− iB)(x− iB′)
dB dB′ = iφ2

x, (41)

where the notation (B′ ↔ B) represents a second copy of the integral that precedes it, with

B and B′ interchanged. The lines above successively use (7), acknowledge that (B,B′) are

dummy variables of integration that may be interchanged, then employ (23) squared. Hence

(25) satisfies (1) when ν = 0 and N is prescribed, if x 6= 0. Thanks to (39), a similar analysis

applies to (8), provided x 6= 0 (mod 2π).

Beside providing one with an exact P (B), eq. (16) shows that (8) admits a continuum

of solutions, for there exists nothing in (9) to tell one that N ought to be an integer; this

will be commented later (see Sec. 8). One finally specializes (8) to B = Bmax to show that

N is constrained by 0 ≤ 2Nν ≤ 1, since coth(Bmax − B) ≥ 1 (see also (31)).

VI. DYNAMICS OF SUPPLEMENTARY POLE-PAIRS

In 2000, Vaynblatt & Matalon [17] addressed the linear stability of pole-decomposed

monocoalesced “steady” solutions −V t + φ(x) to (1). Upon writing φ(x, t) + V t − φ(x) ∼
exp(ωt)ψω(x) ≪ 1 then analytically solving the linearised dynamics to get ω and ψω(x), the

authors of [17] identified two types of linear modes. The modes of type I describe how the 2N

poles of φx(x) evolve when displaced by infinitesimal amounts from equilibrium; all those are

stable (ω < 0), but one that has ω = 0 (see below). The modes of type II were interpreted

[17, 18] as resulting from x-periodic arrays of poles at ±i∞ that may spontaneously approach

the real axis if N is too small for the selected ν < 1. The overall conclusion was thus: when

endowed with 2π-periodic boundary conditions, all the monocoalesced solutions are linearly

unstable, except a single one that has N = Nopt(ν) ≡ ⌊(1 + 1/ν)/2⌋ ≃ 1/2ν (⌊·⌋ ≡ integer

part) and is neutrally stable (ω = 0) against shifts along the x-axis, the corresponding anti-

symmetric eigenmode being ψ0(x) = φx(x). For N < Nopt, modes of type II can manifest

themselves, two particularly dangerous ones corresponding to incipient secondary wrinkles
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centred on the main crests (x = 0, mod 2π) or troughs (x = π, mod 2π).

When Neumann conditions are employed instead, the aforementioned shifts are not al-

lowed any longer because ψ0x 6= 0 at x = 0 and x = π. Numerical integrations [7] of (1) and

(3) evidence that there may then exist stable bi-coalesced patterns comprising an extra crest

located at x = π. Even though the steady 2π-periodic patterns also satisfy (1) with Neumann

conditions when properly shifted to have φx(0) = 0 = φx(π) no stability analysis similar to

[17] is yet available in this case; yet instabilities then necessarily require N < Nopt(ν). Here

we address a restricted aspect of the problem, namely: we study how the previously deter-

mined monocoalesced “steady” solutions (25) (36) interact with extra pairs of poles. Since

the free dynamics (3) conserves the total number of pole pairs at its t = 0 value, it makes

sense to consider φ(x, 0)s that involve them in a larger number (N+n) than the N = O(1/ν)

ones retained in a steady profile φ(x). Each of the n supplementary pairs at xm(t) ± iym(t)

contributes a perturbation φm(x, t) = 〈φm〉 − 4ν
∑

j≥1 exp(−j |ym|) cos(j(x− xm))/j to the

flame shapes (this follows from (2) via a term-by-term Fourier expansion [10]) and, as shown

in [18], superposing φms can reproduce virtually any disturbance φ(x, 0) − φ(x). In the

present formulation the only difference between Neumann and 2π-periodic boundary condi-

tions deals with the initial phases xm(0): whereas the former require the xms to be compatible

with the x↔ −x and π − x ↔ π + x symmetries, the latter do not.

Contrary to the more conventional normal-mode method (to which it is equivalent if

|ym(0)| ≫ 1 [18]), the pole approach can follow the disturbances when significant nonlinear

effects set in. . . if one is able to solve the 2N +2n coupled equations for the pole trajectories

in the complex plane. The next remark somewhat simplifies the task. In the limits N ≫ 1,

ν → 0+ and νN = O(1) that led to (8), accounting for n = O(1) extra pole pairs – as

is assumed here – exerts only a small O(ν) perturbation on the 2N poles already aligned.

Accordingly the distribution P (B) of poles along the main alignments at x = 0 (mod 2π)

may be kept unchanged, and given by (16) (27) (31), when computing the motion of 2n

supplementary ones.

In the illustrative examples that follow only two extra poles (n = 1) located at

±i y(t) (mod 2π), y > 0, then at π ± iy(t) are considered, to begin with.

12



A. Extra-poles at x ≃ 0 (mod 2π)

When the two supplementary poles are located at ±iy(t) (mod 2π), their altitude y(t) is

determined from (3) – within O(ν, 1/N) fractional errors in the limits N ≫ 1, ν → 0+ and

νN = O(1) – by the ODE

dy

dt
= −
∫

νP (B′) coth

(

y −B′

2

)

dB′ − 1, (42)

=
2

π
arcsin(sin(πNν) coth(y/2)) − 1, |y| ≥ Bmax, (43)

where P (B) is the same as given by (16) (27) and (31), to leading order, and leads to

the closed form (43) on integration [15]; for |y| ≤ Bmax, dy/dt = 0 by (8). Therefore,

whenever 0 < 1 − 2νN = O(1) and ν → 0+, any initial y(0) > Bmax will ultimately lead

to y(+∞) = B+
max, thereby adding one new incomer to the already present continuum. Put

in words: if 2νN < 1 initially, the main pattern is unstable to disturbances with poles at

±i y(t), and the latter process tends to make 2Nν approach 1 from below.

Periodic boundary conditions would allow the supplementary pair to be initially off the

x-axis, say at x(0) ± iy(0) with 0 < x(0) < π (mod 2π). The “horizontal” attraction by

the main pole condensation at x = 0 (O(ν), actually) [10] will make x(t) decrease, while

y(t) still does if 2Nν < 1. Ultimately, the extra pole pair will join the main pole alignment

(in finite time), and the previous conclusion is qualitatively unchanged: the process makes

N increase by one. When Neumann conditions are adopted, however, at least two pairs

±x(t)± iy(t) are needed if x(t) 6= 0, to meet the requirement of symmetry about x = 0, and

two possibilities are encountered as to their fate. In the first instance, corresponding to not-

too-small x(0)s and moderate values of y(0), the process is qualitatively the same as above,

except that 2 pairs simultaneously join the main condensation at |y| < Bmax, thereby making

N increase by 2. If x(0) is small and y(0) well above Bmax, the horizontal mutual attraction

between the pair members may make them hit the x = 0 axis at such a finite time tc that

y(tc) > Bmax; this is best shown from (3) specialized to x(t) ≪ 1, whereby dx/dt ≃ −ν/x
then x2(t) + 2ν(t− tc) ≃ 0 for t . tc. The double pole thus formed at iy(tc) then instantly

splits into two simple ones lying on the x = 0 axis at y(t) − y(tc) ∼ ±(t − tc)
1/2, leading

to a subsequent dynamics that ultimately ends like at the beginning of this subsection if

2Nν < 1.
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B. Extra-poles at x ≃ π (mod 2π)

In case the supplementary poles are located at π ± iy(t) eq. (42) is replaced by

dy

dt
=

2

π
arcsin(sin(πNν) tanh(y/2)) − 1 + ν coth y, (44)

since coth(u + i π/2) = tanhu. Even though ν ≪ 1 the last term in (44), stemming from

the interaction of the extra-pole with its complex conjugate, cannot be simply discarded, for

otherwise (44) would not be uniformly valid if y gets small. According to (44), any initial

y(0) indeed ultimately leads to y(+∞) = ν + o(ν) and to a small (O(ν)) stable disturbance

centred at x = π (mod 2π) whenever 2Nν < 1. Although the main pattern’s curvature

φxx(π) > 0 is O(1), and the O(ν) contribution to φ(x, t) of the extra pole-pair is small, it

is nevertheless enough [7] to render the flame shape φ(x, t) concave downward at x = π; as

shown in [7], this occurs as soon as the extra poles enter a thin strip about the real axis,

|y| .
√

4πν. Incorporating O(N) extra pairs will also do, but the process of dynamical

trough splitting is not within reach of such ODEs as (44) when n = O(N). The structure

of 2-crested steady patterns with n = O(N) will be studied in Sec.VII.

Like in VIA one might begin generalizing the present discussion by envisaging a single

pair of extra poles off the x = π axis, but this is already covered in the preceding paragraphs:

if 0 < x(0) < π the pair ultimately joins the poles at x = 0 ( mod 2π). It is more revealing to

consider two such pairs at π±x(t)±iy(t) with x(t) “small enough”, in a way compatible with

Neumann conditions, because something new appears. Comparatively large x(0)s will clearly

lead to pairs that ultimately stick at x = 0 (mod 2π), because their mutual horizontal

attraction could not oppose that of the main alignments. The other extreme of very small

x(0)s again leads to the formation of double poles at some π ± iy(tc), then a subsequent

evolution of the two pairs π ± iy1,2 along the line x = π (mod 2π) until they settle at

O(ν) distances to the real axis if 2Nν < 1. The important conclusion is that stable 2-crest

patterns exist when Neumann conditions are used and 2Nν < 1.

By continuity there exist separating trajectories S±, such that none of the above be-

haviours is observed if the pole pairs initially sit on them. The lines S± lead the two supple-

mentary pairs towards an unstable equilibrium, a result of a competition between attraction

by the main pole population at x = 0 (mod 2π), and the mutual attractions/repulsions

among the pair members. For ν ≪ 1, and Nν = O(1), using the steady version of (3)
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and the pole-density given by (16) (27) (31), one can show that such equilibriums corre-

spond to x(+∞) = ±(2πν/A)1/2 + · · · and y(+∞) = ±ν + · · · to leading order, again with

A = tanh(Bmax/2) = sin(πNν). This shows that there exist even more general steady so-

lutions than considered elsewhere in the paper and in the literature (except in [7] where a

similar conjecture was made on a numerical basis). One could have included other pairs as

well, some of which along the x = π (mod 2π) axis.

Our last remark is to again stress that the free dynamics (3) conserves the total number

of poles (if finite). By the same token, allowing this number to vary with time is a means to

study a forced version of the Sivashinsky equation: adding a pair of poles xm ± iym at t = tm

amounts to accounting for a term φm(x) δ(t−tm) in the right-hand side of (1), and combining

many φms with various phases (as to vary their signs), amplitudes (≃ −4ν exp(− |ym|) if

|ym| ≫ 1) and times of implantation (tm) could help one investigate the response of flames

to a rich class of weak random noises. We understand that a similar proposal was developed

about the “kicked” Burgers equation [19], i.e., (1) without the integral term in the one-

dimensional case.

VII. BI-COALESCED PERIODIC PATTERNS

We now take up the structure of “steady” 2π-periodic solutions of (1) that would have

N pairs of poles i Bα (mod 2π), α = ±1,±2, . . . ,±N , and n = O(N) other pairs at π+ i bγ

(mod 2π), γ = ±1,±2, . . . ,±n. For brevity, we will say that the pole-alignments reside

“at” x = 0 or x = π, respectively, like the two crests per-cell they correspond to. Because

coth(u + i π/2) ≡ tanh(u), the steady versions of (3) corresponding to such bi-coalesced

flame patterns read as

ν
N
∑

β=−N

β 6=α

coth

(

Bα − Bβ

2

)

+ν

n
∑

δ=−n

tanh

(

Bα − bδ
2

)

= sign(Bα), (45)

ν
n
∑

δ=−n
δ 6=γ

coth

(

bγ − bδ
2

)
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+ν

N
∑

β=−N

tanh

(

bγ −Bβ

2

)

= sign(bγ). (46)

In the distinguished limits ν → 0+, Nν = O(1), nν = O(1), the poles at x = 0 and

x = π get densely packed (at the scale of the wavelength), with densities P (B) and p(b),

respectively. Both P and p will be nonnegative and, in general, compactly supported:

P (|B| ≥ Bmax) = 0 = p(|b| ≥ bmax). The ranges Bmax and bmax are to be found as part of

the solutions to the continuous versions of (45) and (46):

−
∫

νP (B′) coth

(

B − B′

2

)

dB′

+

∫

νp(b′) tanh

(

B − b′

2

)

db′ = sign(B), (47)

−
∫

νp(b′) coth

(

b− b′

2

)

db′

+

∫

νP (B′) tanh

(

b− B′

2

)

dB′ = sign(b), (48)

that are valid for |B| ≤ Bmax and |b| ≤ bmax, respectively. To restore some symmetry we set

tanh(B/2) = A sin Φ, A ≡ tanh(Bmax/2) ≤ 1, (49)

tanh(b/2) = a sinϕ, a ≡ tanh(bmax/2) ≤ 1, (50)

in (47) (48), then acknowledge that both P (·) and p(·) are even functions, which allows one

to suppress some odd parts of the integrands, viewed as functions of Φ′ (or ϕ′) at fixed Φ

(or ϕ). Some cumbersome algebra ultimately transforms (47) and (48) into

−
∫

2νP (Φ′) cosΦ′

sin Φ − sin Φ′
dΦ′ + Aa sin Φ

×
∫

2νp(ϕ′) cosϕ′

1 −A2a2 sin2 ϕ′ sin2 Φ
dϕ′ = sign(Φ) (51)

−
∫

2νp(ϕ′) cosϕ′

sinϕ− sinϕ′
dϕ′ + Aa sinϕ

×
∫

2νP (Φ′) cos Φ′

1 −A2a2 sin2 Φ′ sin2 ϕ
dΦ′ = sign(ϕ) (52)
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where all the variables (Φ,Φ′), (ϕ, ϕ′) are now taken in the common [−π/2, π/2] range.

One may thus adopt a common notation for them, (σ, σ′) say, in both (51) and (52) and

subtract the results to eliminate the sign(·) functions in the right-hand sides. This produces

an homogeneous equation for the difference P (·) − p(·), of which one obvious solution is

P − p ≡ 0. Hence the important result: if P = p is indeed a viable solution, then

P (B) = J

(

σ = arcsin

(

tanhB/2

A

))

, (53)

p(b) = J

(

σ = arcsin

(

tanh b/2

a

))

, (54)

where J(σ) is the same function for both. The even J(·) function itself is then found from

(51) or (52) to satisfy

−
∫ π/2

−π/2

2νJ(σ′) cosσ′

sin σ − sin σ′
dσ′ + Aa

×
∫ π/2

−π/2

2νJ(σ′) sin σ cos σ′

1 − A2a2 sin2 σ′ sin2 σ
dσ′ = sign(σ). (55)

Further changing the independent variable to θ, with

sin θ =
(1 + Aa) sin σ

1 + Aa sin2 σ
, (56)

fortunately converts the seemingly hopeless (55) into a form equivalent to the already solved

Eq. (28), θ playing the part that the former Φ did there (most easily shown by starting

from (28)). Accordingly, the solution to (55) is available in terms of the already found pole-

density pertaining to the isolated crests, then the monocoalesced ones: from (16) one indeed

has

2νJ(σ) =
1

π2
log

1 + cos θ

1 − cos θ
, (57)

with θ defined in (56). As said earlier, eqs. (53) (54), P (B) is immediately retrieved upon

setting sin σ = tanh(B/2) coth(Bmax/2) in (56) (57); same operation to get p(b) from J(σ),

upon setting sin σ = tanh(b/2) coth(bmax/2) in (57) (56).

The first step to get Bmax and bmax again is to compute the cumulative pole-densities.

For example R(B) =
∫ B

0
P (B′) dB′ is computed as follows from (57) (56):

2π2νR(B)=

∫ Φ

0

log

(

1 + cos θ′

1 − cos θ′

)

2A cosΦ′dΦ′

1 −A2 sin2 Φ′
, (58)

= log
1 + A sin Φ

1 − A sin Φ
log

1 + cos θ

1 − cos θ

+ 2

∫ θ(Φ)

0

dθ′

sin θ′
log

1 + A sin Φ′

1 −A sin Φ′
, (59)
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again with the understanding that Φ (or Φ′) is viewed as a function of θ (or θ′) via (56), and

conversely; (58) is obtained from the definition of R(B) upon setting tanh(B/2) = A sin Φ,

and (59) results from an integration by parts. The cumulative density pertaining to p(b) is

obtained in the same way from (57) (56), now thanks to tanh(b/2) = a sinϕ: the result is like

(59), except for the substitutions A→ a, Φ → ϕ, B → b, R(B) → r(b). The normalisations

R(Bmax) = N and r(bmax) = n thus impose the two conditions

Nνπ2 =

∫ π/2

0

dθ

sin θ
log

1 + A sin Φ

1 − A sin Φ
, (60)

nνπ2 =

∫ π/2

0

dθ

sin θ
log

1 + a sinϕ

1 − a sinϕ
, (61)

that may be compared to the former equation (30), and reduce to it when Aa = 0. Although

we could not compute the above normalization integrals in closed forms, this can be done

numerically without difficulty to get A and a as function of Nν and nν (or conversely). Note

that N ≥ n is equivalent to A ≥ a. N > n also implies that R(·) > r(·) when both are

evaluated at the same argument, Fig. 8.

Before closing this section, it remains to compare the above predictions to direct numerical

resolutions of (45) (46), by the Newton-Raphson method. This is done in Figs 7 and 8.

Figure 7 will hopefully convince the reader that both P (B) and p(b) can be expressed in

terms of the single function J(σ) given by (57).

Now that the pole densities are available, one may try to compute the corresponding

increase in flame speed, V , from (47) (48) without solving them (like in Sec. 5), to produce

V = 2ν(N + n)(1 − (N + n)ν); (62)

this simple formula reduce to (40) if n = 0, and could have been deduced directly from the

discrete pole-equations, without solving them. The sum N + n plays the part N did for

monocoalesced patterns and, as is shown upon specializing (47) to B = Bmax, has to satisfy

2(N + n)ν ≤ 1.

As mentioned earlier, the flame slope φx(x) pertaining to the continuous approxima-

tion(s) can be obtained directly from the corresponding pole-density(ies) via an analytical

continuation from the real B (or b) axis to ±i x. Using the same procedure here gives, for
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0 ≤ x ≤ π:

φx = −1

π
sign(x̄− x) log

coshψ + 1

coshψ − 1
(63)

sinhψ =
(1 + Aa) tanx/2

A− a tan2 x/2
(64)

for bicoalesced flames, x̄ being the point where sinh2 ψ → ∞ in (64) and, therefore, φx(x̄) =

0:

x̄ = 2 arctan

√

tanhBmax/2

tanh bmax/2
. (65)

At the flame front trough, κ = φxx(x̄) = 2(A + a)/π(1 + Aa) > A/π: the corresponding

critical noise amplitude µc(κ) needed to trigger the appearance of subwrinkles markedly

exceeds that pertaining to monocoalesced fronts (see Sec. 1). Two extra pole-pairs initially

placed at the points ±x̄± iν (mod 2π) would stay there in unstable equilibrium. There exist

separating trajectories S± passing through them, which delineates the basins of attraction

of the main pole condensations at x = 0 or x = π. Only the trajectories of initially remote

extra-poles that are close enough to S± will enter the O(
√
ν) strip adjacent to the B = 0

axis where their direct influence on the main pattern becomes visible [7]. As seen from the

real axis, the process then manifests itself as extra sharp sub-wrinkles seemingly “emitted”

suddenly at x ≃ ±x̄ (mod 2π) before travelling to one of the main cusps where they even-

tually join a main condensation. The N/n-dependent shape of such separating trajectories

thus controls the fate of “supplementary” poles of whatever origin, initial conditions or forc-

ing; this will be exploited elsewhere, though one can already confirm that stable 2-crest

steady patterns with n = O(N) ∼ 1/ν exist if Neumann conditions are employed. With

2π-periodic conditions these are unstable even if 2ν(N + n) = 1, as is seen by considering

initial conditions where the 2n poles are slightly shifted to the left of x = π (mod 2π): both

crests will ultimately merge.

Comparisons with accurate numerical resolutions of the pole equations (45) (46) are

again good, Fig.9. For ν = 1/199.5, N = 80, n = 20 they yield x̄ = 2.053973 whereas our

prediction (65), with A and a iteratively obtained from the normalization conditions (60)

(61), gives x̄ = 2.053888. Like R(B) and r(b), φ(x) cannot be obtained in closed form, yet

is readily accessible numerically. Also, if A = a, elementary trigonometry shows that the

predicted flame slope (63) resumes the result (35), up to a two-fold reduction in x- and

Bmax-scales.
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VIII. CONCLUDING REMARKS & OPEN PROBLEMS

The above analyses may convey the feeling that the pole densities obtained so far have a

family likeness, which is true because they were all deduced from the solution (16) pertaining

to isolated crests via adequate changes of independent variable. Whereas (16) itself basically

follows from standard Fourier analysis combined with a lucky re-summation of the series thus

obtained (15), it would be interesting to understand why the changes of variable (27) then

(56) work so well. Admittedly the integral equation (26) bears some formal resemblance

with (7), which guided us to propose the new variable (27); but that introduced in (56)

looks more strange to us, and was actually discovered by trial-and-error after the ’resolvent’

integral equation (55) is obtained. Yet (56) unlikely solely comes “out of the blue”. In

effect, one may note that (56) is equivalent to tanh(β) = tanh(βmax) sin θ if one defines

tanh2(βmax) ≡ tanh(Bmax/2) tanh(bmax/2) and sets tanh(β/2) = tanh(βmax/2) sinσ, which

clearly mirrors what was employed to map the monocoalesced periodic case onto the isolated-

crest problem. Hence (56) rests on the celebrated composition law for hyperbolic tangents

(τ1, τ2): τ1 ∗ τ2 = (τ1 + τ2)/(1+ τ1τ2). It would be interesting to know whether the associated

group properties give access to still more general solutions to the Sivashinsky equation

(1). That the scale-invariant signum function featured in (7) (8) is left unchanged by the

successive changes of variables also is a key property that traces back to the presence of

the Hilbert transform Ĥ(−φx) in (1): in fine, it expresses that the complex velocity about

the flame is a sectionally-analytic function in the complex x-plane, which is indeed a robust

statement for it is little affected by conformal changes of variables that would leave the real

axis globally invariant.

Normalizing P (B) to 2N brings about the grouping Nν and, as long as the integral

equations (7) (8) of the continuous approximation are concerned, there is no reason why N

should be an integer. Thus, (7) (8) effectively admit a 1-parameter continuum of solutions.

The situation is – in a sense, analogous to the Saffman-Taylor problem of viscous fingering

and related ones (see [20] and the references therein): when surface effects (here curvature)

are omitted, a continuum of steady patterns is found. The equation (1) for flames is peculiar,

however, because one knows from the very beginning that only a discrete set of steady

monocoalesced solutions exist, corresponding to Ns that are integers less than a well-defined

ν-dependent value, Nopt(ν). The Sivashinsky equation (1) thus offers the opportunity to see
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how the WKB approaches to finger-width selection developed [20] for the Saffman-Taylor

problem, or kin, can be transposed to the present system to obtain a quantization condition

on Nν; for here “inviscid” solutions are now available and one knows the answer in advance.

This analysis likely is a key step to study flame response to noise, but has not yet been

completed. Because WKB approaches essentially look for solutions of a linearised equation

in the form exp(i
∫ x

k(x′) dx′), where k(x) = O(1/ν) depends on the “inviscid” solution,

it is seen that obtaining the latter to leading (O(1)) order in ν is not enough. Hence the

question: how to compute the leading (O(ν)?) correction to the flame profiles obtained

above? Obviously this would require to better understand the nature of the continuous

approximation leading to the integral equations (7)-(9) or (47) (48) for pole densities. In

this context one may perhaps adopt the – rather unusual – view point that the exact pole

equations (5), once specialized to zα = iBα and steady patterns, constitute Gauss-like

quadrature formulae to evaluate (7) numerically. How to define a “best” way of choosing

the pivotal values, i.e. the Bαs, naturally leads [21] to the notion of orthogonal polynomials

associated with the Sivashinsky equation (1). In the case of Wigner’s equation (11) the

Hermite polynomials are invoked [14], but we are not aware of such mathematical analyses

about (1) and (7) (8).

Next, we recall that 2-crested patterns studied in Sec.VII also belong to a continuous

family of solution profiles, now indexed by two independent parameters Nν, nν. Even if

N + n is assumed to be given by the optimum value Nopt(ν) ≃ 1/2ν, there still remains the

question of how N/n is selected in numerical resolutions of (1) with Neumann conditions at

x = 0, π. The ratio N/n can undoubtedly be chosen by the initial flame shape φ(x, 0). In

the case of forced propagations, the noise intensity (µ) might well play also a role, for one

can imagine situations where exp(−π/2ν) ≪ µ ≪ exp(−π/4ν): the noise is then intense

enough to break monocoalesced patterns (see Introduction), yet too weak to noticeably affect

the more curved 2-crested patterns with N = n.

To tailor a global criterion as to compare the 2-crest patterns and their response to noise,

the following remarks could be of some use. Let us collectively denote the Bαs and bγs as B

and b, respectively. The unsteady versions of (45) (46) – the pole equations for bicoalesced

patterns – may be re-written as

dB

dt′
= −∇BU,

db

dt′
= −∇bU, (66)
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in terms of U(B, b) = V (B) + v(b) + w(B, b), with

V (B) = ν
∑

α

|Bα| − 2ν2
∑

α, β<α

log

∣

∣

∣

∣

sinh
Bα −Bβ

2

∣

∣

∣

∣

, (67)

w(B, b) = −2ν2
∑

γ, β

log

(

cosh
bγ − Bβ

2

)

, (68)

and an expression similar to (67) for v(b); t′ = t/ν is time scaled by the shortest growth time

of small-scale wrinkles (see Introduction). Accordingly, when the right-hand sides of (66)

are supplemented with statistically identical, independent random (e.g., Gaussian) additive

forcings, the joint probability density of (B, b) will tend to a quantity ∼ exp(−U(B, b)/µ2),

where µ ≪ 1 characterizes the noise intensities. Because U ∼ 1 in the small-ν limit (since

P (B) and p(b) are O(1/ν)) the above exponential is strongly peaked about the steady

solutions. One can thus think of employing the N/n-dependent scalar U(B, b), evaluated

at steady state, as an objective means to discriminate the various 2-crested patterns in the

presence of forcing. The task of evaluating U in the continuous approximation has not yet

been completed. Neither is the analysis required to handle situations where the poles are

slightly misaligned... yet still symmetric about x = 0 and x = π for compatibility with

Neumann boundary conditions.

One must finally stress that the present analyses did not exhaust all the possibilities of

“steady” solutions of (1), even with 2π as minimal periodicity. The interpolating solutions

discovered in [7, 22] constitute another class, comprising (possibly many-) extra poles, nearly

evenly distributed [17, 18] along sinuous curves at a distance from the real axis. In our

opinion such unstable equilibriums are also worth analyzing in detail for ν → 0, as are those

mentioned in Sec.VI and generalizations of (1) itself [23].

As an end to a numerical work on (1), with noise included in the right hand side [7], one

of us concluded that “. . . it is likely that new analytical studies of the Sivashinsky equation

should be possible: even if the equation is now almost 30 years old, many things remain to

be explained”. The words still hold true.
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[20] P. Pelcé, Théorie des formes de croissance (EDP Sciences - CNRS Edition, Paris, 2000).

[21] G. E. Andrews, R. Askey, and R. Roy, Special Functions (Cambridge University Press, Cam-

bridge, 2000).

[22] L. F. Guidi and D. H. U. Marchetti, Phys. Lett. A 308, 162 (2003).

23



[23] G. Joulin, Zh. Eksp. Teor. Fiz. 100, 428 (1991).

24



List of figures

Fig. 1: Numerical vs analytical cumulative pole densities, for an isolated crest with

1/ν = 19.5, N = 10. If exact, the theoretical curve (dot-dashed line, eq. (18)) would pass

through the middle of the risers of the numerical staircase (solid line, eq. (5)). The dashed

line is the TFH fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Fig. 2: Same as in Fig. 1, for 1/ν = 199.5, N = 100. Only the upper hull (solid

line) of the exact staircase is shown, for readability. The dashed line is the TFH fit. . . . . 24

Fig. 3: Numerical ((20), solid line) vs analytical ((17), dot-dashed line) pole densi-

ties P (B) for an isolated crest with 1/ν = 199.5, N = 100. The dashed line is the TFH

fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Fig. 4: Shapes of an isolated crest with 1/ν = 19.5, N = 10: continuous approxi-

mation ((25), dot-dashed line), exact (solid line), and smooth approximation from eq. (22)

(dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Fig. 5: Numerical (solid line) vs analytical (eq. (29), dot-dashed line) cumulative

pole densities for a monocoalesced periodic crest, for 1/ν = 199.5, and N = 100

(= Nopt(ν)). Only the upper hull of the numerical staircase is shown. . . . . . . . . . . . . . . . . . . . 27

Fig. 6: Shapes of a monocoalesced periodic flame with 1/ν = 19.5, N = 10 (= Nopt(ν)):

continuous approximation ((36), dot-dashed curve) vs exact result (solid line) and smooth

approximation ((33), dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Fig. 7: Cumulative pole densities R(B) (upper curves) and r(b) for a bicoalesced

periodic pattern with 1/ν = 600.5, N = 200, n = 100: the solid and the dotted lines are

from eqs. (53) (54) and (57) (56); the dashed and the dot-dashed ones are the upper hulls

of the exact staircases (see Fig. 1). As (N + n) = Nopt(ν), B200 = ∞. . . . . . . . . . . . . . . . . . . .29

Fig. 8: Theoretical pole densities P (B) (resp. p(b)) plotted as dot-dashed or dashed

25



lines vs θ, eq. (57), with sin σ replaced by (tanhB/2)/A (resp. (tanh b/2)/a). The solid

and the dotted lines are the numerical pole densities. All are for a bicoalesced periodic

flame with N = 200, n = 100, 1/ν = 600.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Fig. 9: Shapes of a bicoalesced flame with 1/ν = 199.5, N = 80, n = 20: exact

(solid line) vs continuous approximation (from integration of (63), dot-dashed). . . . . . . . . . 31

26



0 1 2 3
pole vertical position

0

5

10

po
le

 c
um

ul
at

iv
e 

di
st

ri
bu

tio
n

numerical cumulative distribution
theoretical cumulative distribution (formula 18)
TFH cumulative distribution

FIG. 1: Numerical vs analytical cumulative pole densities, for an isolated crest with 1/ν = 19.5,

N = 10. If exact, the theoretical curve (dot-dashed line, eq. (18)) would pass through the middle

of the risers of the numerical staircase (solid line, eq. (5)). The dashed line is the TFH fit.
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FIG. 2: Same as in Fig. 1, for 1/ν = 199.5, N = 100. Only the upper hull (solid line) of the exact

staircase is shown, for readability. The dashed line is the TFH fit.
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FIG. 3: Numerical ((20), solid line) vs analytical ((17), dot-dashed line) pole densities P (B) for

an isolated crest with 1/ν = 199.5, N = 100. The dashed line is the TFH fit.
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FIG. 4: Shapes of an isolated crest with 1/ν = 19.5, N = 10: continuous approximation ((25),

dot-dashed line), exact (solid line), and smooth approximation from eq. (22) (dotted).
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FIG. 5: Numerical (solid line) vs analytical (eq. (29), dot-dashed line) cumulative pole densities

for a monocoalesced periodic crest, for 1/ν = 199.5, and N = 100 (= Nopt(ν)). Only the upper

hull of the numerical staircase is shown.
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FIG. 6: Shapes of a monocoalesced periodic flame with 1/ν = 19.5, N = 10 (= Nopt(ν)): continuous

approximation ((36), dot-dashed curve) vs exact result (solid line) and smooth approximation ((33),

dotted).
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FIG. 7: Cumulative pole densities R(B) (upper curves) and r(b) for a bicoalesced periodic pattern

with 1/ν = 600.5, N = 200, n = 100: the solid and the dotted lines are from eqs. (53) (54) and

(57) (56); the dashed and the dot-dashed ones are the upper hulls of the exact staircases (see Fig.

1). As (N + n) = Nopt(ν), B200 = ∞.
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FIG. 8: Theoretical pole densities P (B) (resp. p(b)) plotted as dot-dashed or dashed lines vs θ,

eq. (57), with sinσ replaced by (tanh B/2)/A (resp. (tanh b/2)/a). The solid and the dotted lines

are the numerical pole densities. All are for a bicoalesced periodic flame with N = 200, n = 100,

1/ν = 600.5.
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FIG. 9: Shapes of a bicoalesced flame with 1/ν = 199.5, N = 80, n = 20: exact (solid line) vs

continuous approximation (from integration of (63), dot-dashed).
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