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1 Introduction {sec0} 1.1 Space-cutoff P (ϕ) 2 models with variable metric {sec0.1}

The P (ϕ) 2 model describes a self-interacting field of scalar bosons in 2 space-time dimensions with the interaction given by a bounded below polynomial P (ϕ) of degree at least 4. Its construction in the seventies by Glimm and Jaffe (see e.g. [GJ]) was one of the early successes of constructive field theory. The first step of the construction relied on the consideration of a spatially cutoff P (ϕ) 2 interaction, where the cutoff is defined with a positive coupling function g(x) of compact support. The formal expression H = dΓ(ω) + R g(x) : P (ϕ(x)) : dx, where ω = (D 2 + m 2 ) 1 2 for m > 0 and : : denotes the Wick ordering, can be given a rigorous meaning as a bounded below selfadjoint Hamiltonian on the Fock space Γ(L 2 (R)).

The spectral and scattering theory of H was studied in [DG] by adapting methods originally developped for N -particle Schrödinger operators.

Concerning spectral theory, an HVZ theorem describing the essential spectrum of H and a Mourre positive commutator estimate were proved in [DG]. As consequences of the Mourre estimate, one obtains as usual the local finiteness of point spectrum outside of the threshold set and, under additional assumptions, the limiting absorption principle.

The scattering theory of H was treated in [DG] by the standard approach consisting in constructing first the asymptotic fields, which roughly speaking are the limits lim t→±∞ e itH φ(e -itω h)e -itH =: φ ± (h), h ∈ L 2 (R), where φ(h) for h ∈ L 2 (R) are the Segal field operators. Since the model is massive, it is rather easy to see that the two CCR representations h → φ ± (h) are unitarily equivalent to a direct sum of Fock representations. The central problem of scattering theory becomes then the description of the space of vacua for these asymptotic representations. The main result of [DG] is the asymptotic completeness, which says that the asymptotic vacua coincide with the bound states of H. It implies that under time evolution any initial state eventually decays into a superposition of bound states of H and a finite number of asymptotically free bosons.

Although the Hamiltonians H do not describe any real physical system, they played an important role in the development of constructive field theory. Moreover they have the important property that the interaction is local. As far as we know, the P (ϕ) 2 models and the (nonrelativistic) Nelson model are the only models with local interactions which can be constructed on Fock space by relatively easy arguments.

Our goal in this paper is to extend the results of [DG] to the case where both the one particle kinetic energy ω and the polynomial P have variable coefficients. More precisely we consider Hamiltonians H = dΓ(ω) + R g(x) : P (x, ϕ(x)) : dx, on the bosonic Fock space L 2 (R), where the kinetic energy ω = h 1 2 is the square root of a real second order differential operator h = Da(x)D + c(x), P (x, λ) is a variable coefficients polynomial P (x, λ) = 2n p=0 a p (x)λ p , a 2n (x) ≡ a 2n > 0, and g ≥ 0 is a function decaying fast enough at infinity. We assume that a(x), c(x) > 0 and a(x) → 1 and c(x) → m 2 ∞ when x → ∞. The constant m ∞ has the meaning of the mass at infinity. Most of the time we will assume that m ∞ > 0.

As is well known, the Hamiltonian H appears when one tries to quantize the following non linear Klein-Gordon equation with variable coefficients:

∂ 2 t ϕ(t, x) + (Da(x)D + c(x))ϕ(t, x) + g(x)
∂P ∂λ (x, ϕ(x, t)) = 0.

Note that in [Di], Dimock has considered perturbations of the full (translation-invariant) ϕ 4 2 model by lower order perturbations ρ(t, x) : ϕ(t, x) : where ρ(t, x) has compact support in spacetime.

We now describe in more details the content of the paper.

Content of the paper {sec0.2}

The first difference between the P (ϕ) 2 models with a variable metric considered in this paper and the constant coefficients ones considered in [DG] is that the polynomial P (λ) is replaced by a variable coefficients polynomial P (x, λ) in the interaction. The second is that the constant coefficients one particle energy (D 2 +m 2 ) 1 2 is replaced by a variable coefficients energy (Da(x)D+ c(x)) 1 2 . Replacing P (λ) by P (x, λ) is rather easy. Actually, conditions on the function g and coefficients a p needed to make sense of the Hamiltonian can be found in [Si].

On the contrary replacing (D 2 + m 2 ) 1 2 by (Da(x)D + c(x))

1 2 leads to new difficulties. The construction of the Hamiltonian H is still rather easy, using hypercontractivity arguments.

However an essential tool to study the spectral and scattering theory of H is the so called higher order estimates, originally proved by Rosen [Ro], an example being the bound

N 2p ≤ C p (H + b) 2p , p ∈ N.
These bounds are very important to control various error terms and are a subsitute for the lack of knowledge of the domain of H.

An substantial part of this paper is devoted to the proof of the higher order estimates in the variable metric case.

Let us now describe in more details the content of the paper. In Sect. 2 we recall various well-known results, like standard Fock space notations, the notion of Wick polynomials and results on contractive and hypercontractive semigroups. We also recall some classical results on pseudodifferential calculus.

The space-cutoff P (ϕ) 2 model with a variable metric is described in Sect. 3 and its existence and basic properties are proved in Thms. 3.1 and 3.2.

In the massive case m ∞ > 0 we show using standard arguments on perturbations of hypercontractive semigroups that H is essentially selfadjoint and bounded below. The necessary properties of the interaction V = R g(x) : P (x, ϕ(x)) : dx as a multiplication operator are proved in Subsect. 6.1 using pseudodifferential calculus and the analogous results known in the constant coefficients case.

The massless case m ∞=0 leads to serious difficulties, even to obtain the existence of the model. In fact the free semigroup e -tdΓ(ω) is no more hypercontractive if m ∞ = 0 but only L p -contractive. Using a result from Klein and Landau [START_REF] Klein | Construction of a unique selfadjoint generator for a symmetric local semigroup[END_REF] we can show that H is essentially selfadjoint if for example g is compactly supported. Again the necessary properties of the interaction are proved in Subsect. 6.2. The property that H is bounded below remains an open question and massless models will not be further considered in this paper.

Sect. 4 is devoted to the spectral and scattering theory of P (ϕ) 2 Hamiltonians with variable metric. It turns out that many arguments of [DG] do not rely on the detailed properties of P (ϕ) 2 models but can be extended to an abstract framework.

In [GP] we consider abstract bosonic QFT Hamiltonians of the form

H = dΓ(ω) + Wick(w),
acting on a bosonic Fock space Γ(h), where the one particle energy ω is a selfadjoint operator on the one particle Hilbert space h and the interaction term Wick(w) is a Wick polynomial associated to some kernel w. The spectral and scattering theory of such Hamiltonians is studied in [GP] under a rather general set of conditions. The first type of conditions requires that H is essentially selfadjoint and bounded below and satisfies higher order estimates, allowing to bound dΓ(ω) and powers of the number operator N by sufficiently high powers of H.

The second type of conditions concern the one-particle energy ω. Essentially one requires that ω is massive i.e. ω ≥ m > 0 and has a nice spectral and scattering theory.

The last type of conditions concern the kernel w of the interaction Wick(w) and requires some decay properties of w at infinity.

The core of the present paper consists in proving that our P (ϕ) 2 Hamiltonians satisfy the hypotheses of [GP], so that the results here follow from the abstract theorems in [GP].

The essential spectrum of H is described in Thm. 4.3. As a consequence one obtains that H has a ground state. The Mourre estimate is shown in Thm. 4.4. We do not prove the limiting absorption principle, but note that for example the absence of singular continuous spectrum will follow from unitarity of the wave operators and asymptotic completeness.

The scattering theory and asymptotic completeness of wave operators, formulated as explained in Subsect. 1.1 using asymptotic fields, is proved in Thm. 4.5.

Note that even in the constant coefficients case, we improve the results of [DG]. No smoothness of the coupling function g is required and we can remove an unpleasant technical assumption on the coupling function g (condition (Bm) in [START_REF] Derezinski | Spectral and scattering theory of spatially cut-off P (ϕ) 2 Hamiltonians[END_REF]Subsect. 6.2]) which excluded for example compactly supported g.

Analogous results for higher dimensional models where the interaction has also an ultraviolet cutoff are described in Sect. 5.

The properties of the interaction R g(x) : P (x, ϕ(x)) : dx needed in Sect. 3 are proved in Sect. 6. In this section the interaction is considered as a Wick polynomial.

In Sect. 7 we prove some lower bounds on perturbations of P (ϕ) 2 Hamiltonians which will be needed in Sect. 8.

Sect. 8 is devoted to the proof of the higher order estimates. It turns out that the method of Rosen [Ro] uses in an essential way the fact that D 2 + m 2 has the family {e ikx } k∈R as a basis of generalized eigenfunctions and that the functions e ikx are uniformly bounded both in x and k. In our case we have to use instead of {e ikx } k∈R a family of eigenfunctions and generalized eigenfunctions for Da(x)D + c(x). It is necessary to impose some bounds on these functions to substitute for the uniform boundedness property in the constant coefficients case. These bounds are stated in Sect. 8 as conditions (BM1), (BM2) and deal respectively with the eigenfunctions and generalized eigenfunctions of Da(x)D + c(x). Corresponding assumptions on the coupling function g and the polynomial P (x, λ) are described in condition (BM3).

Fortunately as we show in Appendices A and B, these conditions hold for a large class of second order differential operators.

Appendices A and B are devoted to conditions (BM1), (BM2). In Appendix A we discuss condition (BM1) and show that we can always reduce ourselves to the case where h is a Schrödinger operator D 2 + V (x), where V (x) → m 2 ∞ at ±∞. We also prove that it is possible to find generalized eigenfunctions such that the associated unitary operator diagonalizing h on the continuous spectral subspace is real. This property is important in connection with Sect. 8.

Appendix B is devoted to condition (BM2). It turns out that (BM2) is actually a condition on the behavior of generalized eigenfunctions ψ(x, k) for k near 0. If h = D 2 + V (x) and V (x) ∈ O( x -µ ) for some µ > 0, it is well known that the two cases µ > 2 and µ ≤ 2 lead to different behaviors of generalized eigenfunctions near k = 0.

We discuss condition (BM2) if µ > 2 using standard arguments based on Jost solutions which we recall for the reader's convenience. The case 0 < µ ≤ 2 is discussed using quasiclassical solutions by adapting results of Yafaev [START_REF] Yafaev | The low energy scattering for slowly decreasing potentials[END_REF].

Finally Appendix C contains some technical estimates.

Preparations {sec1}

In this section we collect various well-known results which will be used in the sequel.

Functional calculus

{sec1.4} If χ ∈ C ∞ 0 (R), we denote by χ ∈ C ∞ 0 (C) an almost analytic extension of χ, satisfying χ|R = χ, |∂ z χ(z)| ≤ C n |Imz| n , n ∈ N.
We use the following functional calculus formula for χ ∈ C ∞ 0 (R) and A selfadjoint:

χ(A) = i 2π C ∂ z χ(z)(z -A) -1 dz ∧ d z.
(2.1) {HS}

Fock spaces

{sec1.1}

In this subsection we recall various definitions on bosonic Fock spaces.

Bosonic Fock spaces.

If h is a Hilbert space then

Γ(h) := ∞ n=0 ⊗ n s h,
is the bosonic Fock space over h. Ω ∈ Γ(h) will denote the vacuum vector.

In all this paper the one-particle space h will be equal to L 2 (R, dx). We denote by F :

L 2 (R, dx) → L 2 (R, dk) the unitary Fourier transform Fu(k) = (2π) -1 2 e -ix.k u(x)dx.
The number operator N is defined as

N n s h = n1l.
We define the space of finite particle vectors:

Γ fin (h) = H comp (N ) := {u ∈ Γ(h) | for some n ∈ N, 1l [0,n] (N )u = u},
The creation-annihilation operators on Γ(h) are denoted by a * (h) and a(h). The field operators are φ(h)

:= 1 √ 2 (a * (h) + a(h)),
which are essentially selfadjoint on Γ fin (h), and the Weyl operators are W (h) := e iφ(h) .

dΓ operators.

If r : h 1 → h 2 is an operator one sets:

dΓ(r) : Γ(h 1 ) → Γ(h 2 ), dΓ(r) n s h := n j=1 1l ⊗(j-1) ⊗ r ⊗ 1l ⊗(n-j) ,
with domain Γ fin (D(r)). If r is closeable, so is dΓ(r).

Γ operators.

If q : h 1 → h 2 is bounded one sets:

Γ(q) : Γ(h 1 ) → Γ(h 2 ) Γ(q) n s h 1 = q ⊗ • • • ⊗ q.
Γ(q) is bounded iff q ≤ 1 and then Γ(q) = 1.

Wick polynomials

We now recall the definition of Wick polynomials We set

B fin (Γ(h)) := {B ∈ B(Γ(h)) | for some n ∈ N 1l [0,n] (N )B1l [0,n] (N ) = B}.
Let w ∈ B(⊗ p s h, ⊗ q s h). The Wick monomial associated to the symbol w is:

Wick(w) : Γ fin (h) → Γ fin (h) defined as Wick(w) n s h := n!(n + q -p)! (n -p)! w ⊗ s 1l ⊗(n-p) . (2.2) {sec.wick.e1
This definition extends to w ∈ B fin (Γ(h)) by linearity. The operator Wick(w) is called a Wick polynomial and the operator w is called the symbol of Wick(w).

For example if h 1 , . . . , h p , g 1 , . . . , g q ∈ h then:

Wick (| g 1 ⊗ s • • • ⊗ s g q )(h p ⊗ s • • • ⊗ s h 1 )|) = a * (q 1 ) • • • a * (g q )a(h p ) • • • a(h 1 ). If h = L 2 (R, dk) then any w ∈ B(⊗ p s h, ⊗ q s h) is a bounded operator from S(R p ) to S ′ (R q )
, where S(R n ), S ′ (R n ) denote the Schwartz spaces of functions and temperate distributions. It has hence a distribution kernel w(k 1 , . . . , k q , k ′ p , . . . , k ′ 1 ) ∈ S ′ (R p+q ), which is separately symmetric in the variables k and k ′ . It is then customary to denote the Wick monomial Wick(w) by:

w(k 1 , . . . , k q , k ′ p , . . . , k ′ 1 )a * (k 1 ) • • • a * (k q )a(k ′ p ) • • • a(k ′ 1 )dk 1 • • • dk q dk ′ p • • • dk ′ 1 .
If h = L 2 (R, dx), we will use the same notation, tacitly identifying L 2 (R, dx) and L 2 (R, dk) by Fourier transform.

Q-space representation of Fock space

Let h be a Hilbert space and c : h → h a conjugation on h, i.e., an anti-unitary involution. If h = L 2 (R, dx), we will take the standard conjugation c : u → u.

We denote by h c ⊂ h the real subspace of real vectors for c and M c ⊂ B(Γ(h)) be the abelian Von Neumann algebra generated by the Weyl operators W (h) for h ∈ h c . The following result follows from the fact that Ω is a cyclic vector for M c (see e.g. [S-H.K]).

Theorem 2.1 There exists a compact Hausdorff space Q, a probability measure µ on Q and a unitary map U such that

U : Γ(h) → L 2 (Q, dµ), U Ω = 1, U M c U * = L ∞ (Q, dµ).
where 1 ∈ L 2 (Q, dµ) is the constant function equal to 1 on Q. Moreover:

U Γ(c)u = U u, u ∈ Γ(h). {p.3}
The space L 2 (Q, dµ) is called the Q-space representation of the Fock space Γ(h) associated to the conjugation c.

Contractive and hypercontractive semigroups {subsecp1}

We collect now some standard results on contractive and hypercontractive semigroups. We fix a probability space (Q, µ).

Definition 2.2 Let H 0 ≥ 0 be a selfadjoint operator on H = L 2 (Q, dµ).

The semigroup e -tH 0 is L p -contractive if e -tH 0 extends as a contraction in L p (Q, dµ) for all 1 ≤ p ≤ ∞ and t ≥ 0.

The semigroup e -tH 0 is hypercontractive

if i) e -tH 0 is a contraction on L 1 (Q, dµ) for all t > 0, ii) ∃ T, C such that e -T H 0 ψ L 4 (Q,dµ) ≤ C ψ L 2 (Q,dµ) .
{p.1}

If e -tH 0 is positivity preserving (i.e. f ≥ 0 a.e. implies e -tH 0 f ≥ 0 a.e.) and e -tH 0 1 ≤ 1 then e -tH 0 is L p -contractive (see e.g. [KL1, Prop. 1.2])

Perturbations of hypercontractive semigroups

The abstract result used to construct the P (ϕ) 2 Hamiltonian is the following theorem, due to Segal ([Se]).

Theorem 2.3 Let e -tH 0 be a hypercontractive semigroup. Let V be a real measurable function on Q such that V ∈ L p (Q, dµ) for some p > 2 and e -tV ∈ L 1 (Q, dµ) for all t > 0. Let

V n = 1l {|V |≤n} V and H n = H 0 + V n .
Then the semigroups e -tHn converge strongly on H when n → ∞ to a strongly continuous semigroup on H denoted by e -tH . Its infinitesimal generator H has the following properties: i) H is the closure of

H 0 + V defined on D(H 0 ) ∩ D(V ), ii) H is bounded below: H ≥ -c -ln e -δV L 1 (Q,dµ)
, where c and δ depend only on the constants C and T in Def. 2.2.

{p.2}

We will also need the following result [S-H.K, Thm. 2.21]. {shk} Proposition 2.4 Let e -tH 0 be a hypercontractive semigroup. Let V, V n be real measurable functions on Q such that V n → V in L p (Q, dµ) for some p > 2, e -tV , e -tVn ∈ L 1 (Q, dµ) for each t > 0 and e -tVn L 1 is uniformly bounded in n for each t > 0. Then for b large enough

(H 0 + V n + b) -1 → (H 0 + V + b) -1 in norm.
The following lemma (see [START_REF] Simon | The P (φ) 2 Euclidean (Quantum) Field Theory[END_REF]Lemma V.5] for a proof) will be used later to show that a given function V on Q verifies e -tV ∈ L 1 (Q, dµ).

Lemma 2.5 Let for κ ≥ 1, V κ , V be functions on Q such that for some n ∈ N:

V -V κ L p (Q,dµ) ≤ C 1 (p -1) n κ -ǫ , ∀ p ≥ 2, V κ ≥ -C 2 -C 3 (ln κ) n . (2.3) {ep.4}
Then there exists constants κ 0 , C 4 and α > 0 such that µ{q ∈ Q|V (q) ≤ -C 4 (ln κ) n } ≤ e -κ α , ∀κ ≥ κ 0 .

Consequently e -tV ∈ L 1 (Q, dµ), ∀t > 0 with a norm depending only on t and the constants C i in (2.3).

{p.6}

The following theorem of Nelson (see [START_REF] Simon | The P (φ) 2 Euclidean (Quantum) Field Theory[END_REF]Thm. 1.17]) establishes a connection between contractions on h and hypercontractive semigroups on the Q-space representation L 2 (Q, dµ) associated to a conjugation c.

Theorem 2.6 Let r ∈ B(h) be a selfadjoint contraction commuting with c. Then i) U Γ(r)U * is a positivity preserving contraction on L p (Q, dµ), 1 ≤ p ≤ ∞. ii) if r ≤ (p -1) 1 2 (q -1) -1 2 for 1 < p ≤ q < ∞ then U Γ(r)U * is a contraction from L p (Q, dµ) to L q (Q, dµ). {p.4}
Combining Thm. 2.6 with Thm. 2.3, we obtain the following result.

Theorem 2.7 Let h be a Hilbert space with a conjugation c. Let a be a selfadjoint operator on h with

[a, c] = 0, a ≥ m > 0. (2.4) {ep.3} Let L 2 (Q, dµ) be the Q-space representation of Γ(h) and let V be a real function on Q with V ∈ L p (Q, dµ) for some p > 2 and e -tV ∈ L 1 (Q, dµ) for all t > 0. Then: i) the operator sum H = dΓ(a) + V is essentially selfadjoint on D(dΓ(a)) ∩ D(V ).
ii) H ≥ -C, where C depends only on m and e -V L p (Q,dµ) , for some p depending only on m.

{XII}

Note that by applying Thm. 2.6 to a = (q -1) -1 2 1l h for q > 2, we obtain the following lemma about the L p properties of finite vectors in Γ(h) (see [START_REF] Simon | The P (φ) 2 Euclidean (Quantum) Field Theory[END_REF]Thm. 1.22]).

Lemma 2.8 Let ψ ∈ ⊗ n s h and q ≥ 2. Then

U ψ L q (Q,dµ) ≤ (q -1) n/2 ψ . {p.5}

Perturbations of L p -contractive semigroups

The following theorem is shown in [KL2, Sect. II.2].

{contract} Theorem 2.9 Let e -tH 0 be an L p -contractive semigroup and V a real measurable function on

Q such that V ∈ L p 0 (Q, dµ) for some p 0 > 2 and e -δV ∈ L 1 (Q, dµ) for some δ > 0. Then H 0 + V is essentially selfadjoint on A(H 0 ) ∩ L q (Q, dµ) for any ( 1 2 -1 p 0 ) -1 ≤ q < ∞ where A(H 0 )
is the space of analytic vectors for H 0 .

Pseudodifferential calculus on

L 2 (R d ) {sec1.10}
We denote by S(R d ) the Schwartz class of functions on R d and by S ′ (R d ) the Schwartz class of tempered distributions on R d . We denote by H s (R d ) for s ∈ R the Sobolev spaces on R d .

We set as usual D = i -1 ∂ x and s = (s 2 + 1)

1 2 . For p, m ∈ R and 0 ≤ ǫ < 1 2 ,we denote by S p,m ǫ the class of symbols a ∈ C ∞ (R 2d ) such that |∂ α x ∂ β k a(x, k)| ≤ C α,β k p-|β| x m-(1-ǫ)|α|+ǫ||β| , α, β ∈ N d .
The symbol class S p,m 0 will be simply denoted by S p,m . The symbol classes above are equipped with the toplogy given by the seminorms equal to the best constants in the estimates above.

For a ∈ S p,m ǫ , we denote by Op 1,0 (a) (resp. Op 0,1 (a)) the Kohn-Nirenberg (resp anti Kohn-Nirenberg) quantization of a defined by:

Op 1,0 (a)(x, D)u(x) := (2π) -d e i(x-y)k a(x, k)u(y)dydk, Op 0,1 (a)(x, D)u(x) := (2π) -d e i(x-y)k a(y, k)u(y)dydk,
which are well defined as continous maps from S(R d ) to S ′ (R d ). We denote by Op w (a) the Weyl quantization of a defined by:

Op w (a)(x, D)u(x) := (2π) -1 e i(x-y)k a( x + y 2 , k)u(y)dydk.
We recall that as operators from S(R d ) to S ′ (R d ):

Op 0,1 (m) * = Op 1,0 (m), Op w (m) * = Op w (m).

We will also need the following facts (see [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]Thm. 18.5.4]):

[Op w (b 1 ), iOp w (b 2 )] = Op w ({b 1 , b 2 }) + Op w (S p 1 +p 2 -3,m 1 +m 2 -3(1-2ǫ) ǫ ), (2.5) {calc} Op w (b 1 )Op w (b 2 ) + Op w (b 2 )Op w (b 1 ) = 2Op w (b 1 b 2 ) + Op w (S p 1 +p 2 -2,m 1 +m 2 -2(1-2ǫ) ǫ ), (2.6) {calc-bis} if b i ∈ S p i ,m i ǫ
and { , } denotes the Poisson bracket. The following two propositions will be proved in Appendix C.

{1.1} Proposition 2.10 Let b ∈ S 2,0 a real symbol such that for some C 1 , C 2 > 0 b(x, k) ≥ C 1 k 2 -C 2 . Then: i) Op w (b)(x, D) is selfadjoint and bounded below on H 2 (R d ). ii) Let C such that Op w (b)(x, D) + C > 0 and s ∈ R. Then there exist m i ∈ S 2s,0 for i = 1, 2, 3 such that (Op w (b)(x, D) + C) s = Op w (m 1 )(x, D) = Op 1,0 (m 2 )(x, D) = Op 0,1 (m 3 )(x, D). {exemple1} Proposition 2.11 Let a ij , c are real such that: [a ij ](x) ≥ c 0 1l, c(x) ≥ c 0 for some c 0 > 0, [a ij ] -1l, c(x) -m 2 ∞ ∈ S 0,-µ for some m ∞ , µ > 0. (2.7) {hippopo} Set: b(x, k) := 1≤i,j≤d k i a ij (x)k j + c(x),
and

h := 1≤i,j≤d D i a ij (x)D j + c(x) = Op w (b)
.

Then: i) ω := h 1 2 = Op w (b 1 2 ) + Op w (S 0,-1-µ ).
ii) there exists 0 < ǫ < 1 2 such that:

[ω, i[ω, i x ]] = Op w (γ) 2 + Op w (r -1-ǫ ), for γ ∈ S 0,-1 2 ǫ , r -1-ǫ ∈ S 0,-1-ǫ ǫ .
3 The space-cutoff P (ϕ) 2 model with variable metric {sec2}

In this section we define the space-cutoff P (ϕ) 2 Hamiltonians with variable metric and we prove some of their basic properties.

3.1 The P (ϕ) 2 model with variable metric {sec2.1}

For µ ∈ R we denote by S µ the class of symbols a ∈ C ∞ (R) such that

|∂ α x a(x)| ≤ C α x µ-α , α ∈ N.
Let a, c two real symbols such that for some µ > 0:

a -1 ∈ S -µ , a(x) > 0, c -m 2 ∞ ∈ S -µ , c(x) > 0, (3.1) {e1.1}
where the constant m ∞ ≥ 0 has the meaning of the mass at infinity. For most of the paper we will assume that the model is massive i.e. m ∞ > 0. The existence of the Hamiltonian in the massless case m ∞ = 0 will be proved in Thm. 3.2. We consider the second order differential operator

h = Da(x)D + c(x), which is selfadjoint on H 2 (R). Clearly h ≥ m for some m > 0 if m ∞ > 0 and for m = 0 if m ∞ = 0. Note that h is a real operator i.e. [h, c] = 0, if c is the standard conjugation. The one particle space is h = L 2 (R, dx),
and the one particle energy is

ω := (Da(x)D + c(x)) 1 2 , acting on h.
The kinetic energy of the field is

H 0 := dΓ(ω),

acting on Γ(h).

To define the interaction we fix a real polynomial with x-dependent coefficients:

P (x, λ) = 2n p=0 a p (x)λ p , a 2n (x) ≡ a 2n > 0, (3.2) {defdeP}
and a measurable function g with:

g(x) ≥ 0, ∀ x ∈ R.
and set for 1 ≤ κ < ∞ an UV-cutoff parameter:

V κ := g(x) : P (x, ϕ κ (x)) : dx,
where : : denotes the Wick ordering and ϕ κ (x) are the UV-cutoff fields.

In the massive case, they are defined as:

ϕ κ (x) := φ(f κ,x ), (3.3) {e2.1} for f κ,x = √ 2ω -1 2 χ( ω ∞ κ )δ x , x ∈ R. (3.4) {defde} Here χ ∈ C ∞ 0 (R) is a cutoff function equal to 1 near 0, ω ∞ = (D 2 + m 2 ∞ ) 1 2
, and δ x is the δ distribution centered at x.

In the massless case we take:

f κ,x = √ 2ω -1 2 χ( ω κ )δ x , x ∈ R.
Note that one can also use the above definition in the massive case (see Lemma 6.4). Note also that since ω is a real operator, f κ,x are real vectors, which implies that V κ is affiliated to M c . Therefore in the Q-space representation associated to c, V κ becomes a measurable function on (Q, µ).

We will see later that under appropriate conditions on the functions ga p (see Thms. 3.1 and 3.2) the functions V κ converge in L 2 (Q, dµ) when κ → ∞ to a function V which will be denoted by

V := R g(x) : P (x, ϕ(x)) : dx.

Existence and basic properties

We consider first the massive case m ∞ > 0.

{basic} Theorem 3.1 Let ω = (Da(x)D + c(x)) 1 2 where a, c > 0 and a -1, c -m 2 ∞ ∈ S -µ for some µ > 0. Assume that m ∞ > 0.
Let:

P (x, λ) = 2n p=0 a p (x)λ p , a 2n (x) ≡ a 2n > 0.
Assume:

ga p ∈ L 2 (R), for 0 ≤ p ≤ 2n, g ∈ L 1 (R), g ≥ 0, g(a p ) 2n/(2n-p) ∈ L 1 (R) for 0 ≤ p ≤ 2n -1. (3.5) {ut1} Then H = dΓ(ω) + R g(x) : P (x, ϕ(x)) : dx = H 0 + V is essentially selfadjoint and bounded below on D(H 0 ) ∩ D(V ).
Proof. We apply Thm. 2.7 to a = ω. We need to show that V ∈ L p (Q) for some p > 2 and e -tV ∈ L 1 (Q) for all t > 0. The first fact follows from Lemma 6.2 and Lemma 2.8. To prove that e -tV ∈ L 1 (Q) we use Lemma 2.5: we know from Lemma 6.

2 i) that V -V κ L 2 (Q) ∈ O(κ -ǫ )
for some ǫ > 0. Since V Ω and V κ Ω are finite particle vectors, we deduce from Lemma 2.8 that for all p ≥ 2 one has

V -V κ L p (Q) ≤ C(p -1) n κ -ǫ .
Hence the first estimate of (2.3) is satisfied. The second follows from Lemma 7.1. 2

We now consider the massless case m ∞ = 0. For simplicity we assume that a(x) ≡ 1.

{basic-massl Theorem 3.2 Let ω = (D 2 + c(x))
1 2 where c > 0 and c ∈ S -µ for some µ > 0. Let:

P (x, λ) = 2n p=0 a p (x)λ p , a 2n (x) ≡ a 2n > 0.
Assume:

g is compactly supported, (3.6) {ut2} ga p ∈ L 2 (R), for 0 ≤ p ≤ 2n, g ≥ 0, g(a p ) 2n/(2n-p) ∈ L 1 (R) for 0 ≤ p ≤ 2n -1. (3.7) {ut3} Then H = dΓ(ω) + R g(x) : P (x, ϕ(x)) : dx = H 0 + V is essentially selfadjoint on A(H 0 ) ∩ L q (Q, dµ
) for q large enough, where A(H 0 ) is the space of analytic vectors for H 0 .

Remark 3.3 It is not necessary to assume that g is compactly supported. In fact if we replace the cutoff function χ in the proof of Lemma 6.5 by the function x -µ/2 we see that Lemma 6.5 still holds if: c(x) ≥ C x -µ , for some C > 0.

(3.8) {mini}

Similarly Lemma 6.6 ii) still holds if we replace the conditions

ga p ∈ L 2 (R), g compactly supported, by ga p x pµ/2 ∈ L 2 (R).
The estimate iii) in Lemma 6.6 is replaced by:

x -µ/2 ω -1 2 F ( h k 2 )δ x ∈ O((lnκ) 1 2 ), uniformly in x ∈ R.
Following the proof of Lemma 7.1, we see that Thm. 3.2 still holds if we assume (3.8), g ∈ L 1 (R) and if conditions (3.7) hold with a p replaced by a p x pµ/2 .

Remark 3.4 We believe that H is still bounded below in the massless case. For example using arguments similar to those in Lemma 6.5, one can check that the second order term in formal perturbation theory of the ground state energy E(λ) of H 0 + λV is finite.

Proof. Since ω ≥ 0 is a real operator, we see from Thm. 2.6 that e -tH 0 is an L p -contractive semigroup. Applying Thm. 2.9, it suffices to show that V ∈ L p (Q) for some p > 2 and e -δV ∈ L 1 (Q) for some δ > 0. The first fact follows from Lemma 6.6 and Lemma 2.8. To prove that e -tV ∈ L 1 (Q) we use again Lemma 2.5: the fact that for all p ≥ 2

V -V κ L p (Q) ≤ C(p -1) n κ -ǫ ,
follows as before from Lemma 6.6. The second condition in (2.3) follows from Lemma 6.6 iii), arguing as in the proof of Lemma 7.1. 2

4 Spectral and scattering theory of P (ϕ) 2 Hamiltonians {spect-scatt

In this section, we state the main results of this paper. We consider a P (ϕ) 2 Hamiltonian as in Thm. 3.1. We need first to state some conditions on the eigenfunctions and generalized eigenfunctions of h = ω 2 . These conditions will be needed to obtain higher order estimates in Sect. 8, an important ingredient in the proof of Thms. 4.3, 4.4 and 4.5. We will say that the families {ψ l (x)} l∈I and {ψ(x, k)} k∈R form a basis of (generalized) eigenfunctions of h if:

ψ l (•) ∈ L 2 (R), ψ(•, k) ∈ S ′ (R), hψ l = ǫ l ψ l , ǫ l ≤ m 2 ∞ , l ∈ I, hψ(•, k) = (k 2 + m 2 ∞ )ψ(•, k), k ∈ R, l∈I |ψ l )(ψ l | + 1 2π R |ψ(•, k))(ψ(•, k)|dk = 1l.
Here I is equal either to N or to a finite subset of N. The existence of such bases follows easily from the spectral theory and scattering theory of the second order differential operator h, using hypotheses (3.1). Let M : R → [1 + ∞[ a locally bounded Borel function. We introduce the following assumption on such a basis:

(BM 1) l∈I M -1 (•)ψ l (•) 2 ∞ < ∞, (BM 2) M -1 (•)ψ(•, k) ∞ ≤ C, ∀ k ∈ R.
For a given weight function M , we introduce the following hypotheses on the coefficients of P (x, λ):

(BM 3) ga p M s ∈ L 2 (R), g(a p M s ) 2n 2n-p+s ∈ L 1 (R), ∀ 0 ≤ s ≤ p ≤ 2n -1. {infin} Remark 4.1 Hypotheses (BMi) for 1 ≤ i ≤ 3 have still a meaning if M takes values in [1, +∞],
if we use the convention that (+∞) -1 = 0. Of course in order for (BM3) to hold M must take finite values on supp g. {remi} Remark 4.2 The results below still hold if we replace (BM2) by

(BM 2 ′ ) M -1 (•)ψ(•, k) ∞ ≤ C sup(1, |k| -α ), k ∈ R. for some 0 ≤ α < 1 2 .
The results of the paper are summarized in the following three theorems. Let H be as in Thm. 3.1 and assume in addition to the hypotheses of Thm. 4.3 that

x s ga p ∈ L 2 (R), 0 ≤ p ≤ 2n, s > 1. let a = 1 2 ( D -1 D.x + h.c.) and A = dΓ(a). Let τ = σ pp (H) + m ∞ N *
be the set of thresholds of H. Then: i) the quadratic form [H, iA] defined on D(H) ∩ D(A) uniquely extend to a bounded quadratic form [H, iA] 0 on D(H m ) for some m large enough.

ii) if λ ∈ R\τ there exists ǫ > 0, c 0 > 0 and a compact operator K such that

1l [λ-ǫ,λ+ǫ] (H)[H, iA] 0 1l [λ-ǫ,λ+ǫ] (H) ≥ c 0 1l [λ-ǫ,λ+ǫ] (H) + K. iii) for all λ 1 ≤ λ 2 such that [λ 1 , λ 2 ] ∩ τ = ∅ one has: dim1l [λ 1 ,λ 2 ] (H) < ∞.
Consequently σ pp (H) can accumulate only at τ , which is a closed countable set. iv) if λ ∈ R\(τ ∪ σ pp (H)) there exists ǫ > 0 and c 0 > 0 such that 2. There exist unitary operators Ω ± , called the wave operators:

1l [λ-ǫ,λ+ǫ] (H)[H, iA] 0 1l [λ-ǫ,λ+ǫ] (H) ≥ c 0 1l [λ-ǫ,λ+ǫ] (H).
Ω ± : H pp (H) ⊗ Γ(h c (ω)) → Γ(h) such that W ± (h) = Ω ± 1l ⊗ W (h)Ω ± * , h ∈ h c (ω), H = Ω ± (H |Hpp(H) ⊗ 1l + 1l ⊗ dΓ(ω))Ω ± * .
Remark 4.6 Appendices A and B are devoted to conditions (BM1), (BM2). For example condition (BM1) is always satisfied for M (x) = x α if α > 1 2 and is satisfied for M (x) = 1 if h has a finite number of eigenvalues (see Prop. A.1).

Concerning condition (BM2), we show in Lemma A.3 that it suffices to consider the case where a(x) ≡ 1. Remark 4.7 A typical situation in which all the assumptions are satisfied is when a(x) -1, c(x)m 2 ∞ and g, a p are all in the Schwartz class S(R).

For example if c(x) -m 2 ∞ ∈ O( x -µ ) for µ > 2 and h has no zero energy resonances, then (BM2) is satisfied for M (x) = 1 (see Prop. B.3). If c(x) -m 2 ∞ ∈ O( x -µ ) for 0 < µ < 2,
Proofs of Thms. 4.3, 4.4 and 4.5.

It suffices to check that H belongs to the class of abstract QFT Hamiltonians considered in [GP]. We check that H satisfies all the conditions in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Thm. 4.1], introduced in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Sect. 3].

Since ω ≥ m > 0, condition (H1) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.1] is satisfied. The interaction term V is clearly a Wick polynomial. By Thm. 3.1, H is essentially selfadjoint and bounded below on D(H 0 ) ∩ D(V ), i.e. condition (H2) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.1] holds. Next by Thm. 8.1 the higher order estimates hold for H, i.e. condition (H3) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.1] is satisfied.

The second set of conditions concern the one-particle energy ω. Conditions (G1) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.2] are satisfied for S = S(R) and x = (x 2 + 1) 1 2 . This follows immediately from the fact that ω ∈ Op(S 1,0 ) shown in Prop. 2.10 and pseudodifferential calculus. Condition (G2) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.2] has been checked in Prop. 2.11.

Let us now consider the conjugate operator a. To define a without ambiguity, we set e -ita := F -1 u t F, where u t is the unitary group on L 2 (R, dk) generated by the vector field -k k • ∂ k . We see that u t preserves the spaces S(R) and FD(ω) = D( k ). This implies first that a is essentially selfadjoint on S(R), by Nelson's invariant subspace theorem. Moreover e ita preserves D(ω) and [ω, a] is bounded on L 2 (R). By [START_REF] Amrein | C 0 -Groups, Commutator Methods and Spectral Theory of N -Body Hamiltonians[END_REF]Prop. 5.1.2], ω ∈ C 1 (a) and condition(M1 i) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.2] holds.

We see also that a ∈ Op(S 0,1 ), so conditions (G3) and (G4) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.2] 

hold. For ω ∞ = (D 2 + m 2 ∞ )
1 2 , we deduce as above from pseudodifferential calculus that

[ω, ia] 0 = ω -1 ∞ D -1 D 2 + Op(S 0,-µ ).
Since χ(ω)χ(ω ∞ ) is compact, we obtain that

χ(ω)[ω, ia] 0 χ(ω) = χ 2 (ω ∞ )ω -1 ∞ D -1 D 2 + K, where K is compact.
This implies that ρ a ω ≥ 0 and τ a (ω) = {m ∞ }, hence (M1 ii) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.2] holds. Property (C) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.2] follows from the fact that ωω ∞ ∈ Op(S 1,-µ ) and pseudodifferential calculus. Finally property (S) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.2] can be proved as explained in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.2].

The last set of conditions concern the decay properties of the Wick kernel of V . We see that condition (D) in [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Subsect. 3.2] is satisfied, using Lemma 6.2 and the fact that x s ga p ∈ L 2 (R) for all 0 ≤ p ≤ 2n.

Applying then [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Thm. 4.1] we obtain Thms. 4.3, 4.4 and 4.5. 2

Higher dimensional models {higher}

In this section we briefly discuss similar models in higher space dimension, when the interaction term has an ultraviolet cutoff.

We work now on L 2 (R d , dx) for d ≥ 2 and consider

h = 1≤i,j≤d D i a ij (x)D j + c(x), ω = h 1 2 .
where a ij , c satisfy (2.7). The free Hamiltonian is as above

H 0 = dΓ(ω),
acting on the Fock space Γ(L 2 (R d )).

Since d ≥ 2 it is necessary to add an ultraviolet cutoff to make sense out of the formal expression

R d g(x)P (x, ϕ(x))dx. We set ϕ κ (x) := φ(ω -1 2 χ( ω κ )δ x ), where χ ∈ C ∞ 0 ([-1, 1]) is a cutoff function equal to 1 on [-1 2 , 1 2 ] and κ ≫ 1 is an ultraviolet cutoff parameter. Since ω -1 2 χ( ω κ )δ x ∈ L 2 (R d ), ϕ κ (x) is a well defined selfadjoint operator on Γ(L 2 (R d )). If P (x, λ) is as in (3.2) and g ∈ L 1 (R d ), then V := R d g(x)P (x, ϕ κ (x))dx, is a well defined selfadjoint operator on Γ(L 2 (R d )). {exemple5} Lemma 5.1 Assume that g ≥ 0, g ∈ L 1 (R d ) ∩ L 2 (R d ) and ga p ∈ L 2 (R d ), ga 2n(2n-p) p ∈ L 1 (R d ) for 0 ≤ p ≤ 2n -1. Then V ∈ 1≤p<∞ L p (Q, dµ), V is bounded below. Proof. It is easy to see that Ω ∈ D(V ) hence V ∈ L 2 (Q, dµ).
Using that V Ω is a finite particle vector we obtain by Lemma 2.8 that V ∈ 1≤p<∞ L p (Q, dµ).

To prove that V is bounded below, we use the inequality:

a p b n-p ≤ ǫb n + C ǫ a n , a, b ≥ 0,
and obtain as an inequality between functions on Q: 2n-p) .

|a p (x)ϕ κ (x) p | ≤ ǫϕ κ (x) 2n + C ǫ |a p (x)| 2n/(
Integrating this bound for ǫ small enough we obtain that V is bounded below. 2 Applying then Thm. 2.7, we obtain that:

H = dΓ(ω) + R d g(x)P (x, ϕ κ (x))dx
is essentially selfadjoint and bounded below.

We have then the following theorem. As before we consider a generalized basis {ψ l (x)} l∈I and {ψ(x, k)} k∈R d of eigenfunctions of h. {exemple3} Theorem 5.2 Assume that:

ga p ∈ L 2 (R d ), 0 ≤ p ≤ 2n, g ∈ L 1 (R d ), g ≥ 0, g(a p ) 2n/(2n-p) ∈ L 1 (R d ), 0 ≤ p ≤ 2n -1, x s ga p ∈ L 2 (R d ) ∀ 0 ≤ p ≤ 2n, for some s > 1.
Assume moreover that for a measurable function M : R d → R + with M (x) ≥ 1 there exists a generalized basis of eigenfunctions of h such that:

l∈I M -1 (•)ψ l (•) 2 ∞ < ∞, M -1 (•)ψ(•, k) ∞ ≤ C, k ∈ R, ga p M s ∈ L 2 (R d ), g(a p M s ) 2n/(2n-p+s) ∈ L 1 (R d ), ∀ 0 ≤ s ≤ p ≤ 2n -1.
Then the analogs of Thms. 4.3, 4.4 and 4.5 hold for the Hamiltonian:

H = dΓ(ω) + R d g(x)P (x, ϕ κ (x))dx.
Remark 5.3 As in the one-dimensional case, the hypotheses concerning generalized eigenfunctions can be checked in some cases. An example is if

d = 3, [a ij ](x) = 1l c(x)-m 2 ∞ ∈ O( x -3-ǫ )) and h -m 2
∞ has no zero resonance or eigenvalue, where we can take M (x) ≡ 1. ( See eg [TDM, Prop. 2.5 iv)]).

We will sketch the proof of Thm. 5.2, which again consists in showing that the conditions of [START_REF] Gérard | Spectral and scattering theory for some abstract QFT Hamiltonians[END_REF]Thm. 4.1] are satisfied.

The condition on the one-particle operators can be checked exactly as in the one-dimensional case, as can the decay of the interaction kernel. To prove the higher order estimates, , we can argue as in Sect. 8 working now with the family {ψ(x) l } l∈I ∪{ψ(x, k)} k∈R d . The various integrals in k occurring in the proof of the higher order estimates are convergent because the domain of integration is included in {|k| 2 ≤ κm 2 ∞ } due to the energy cutoff χ(κ -1 ω) in the definition of ϕ κ (x).

6 Properties of the interaction kernel {kernel} In this section prove some properties of the interaction V = R g(x) : P (x, ϕ(x)) : dx, considering V as a Wick polynomial.

Massive case {sec2.2}

In this subsection we consider the massive case m ∞ > 0.

{2.1}

Lemma 6.1 Let g ∈ S(R). Then for κ < ∞:

g(x) : ϕ κ (x) p : dx = p r=0 p r w p,κ (k 1 , . . . , k r , k r+1 , . . . , k p )a * (k 1 ) • • • a * (k r )a(-k r+1 ) • • • a(-k p )dk 1 • • • dk p ,
where:

w p,κ (k 1 , . . . , k p ) = (2π) -p/2 g(x)
p j=1 e -ik j •x m κ (x, k j )dx (6.1) {e2.2}

and m κ (x, k) is the anti Kohn-Nirenberg symbol of ω -1 2 χ( ω∞ κ ).

Proof. If m κ (x, k) is the anti Kohn-Nirenberg symbol of ω -1 2 χ( ω∞ κ ) we have:

F(ω -1 2 χ( ω ∞ κ )δ x )(k) = (2π) -1 2 e -ix•k m κ (x, k).
Note that it follows from Prop. 2.10 that m κ ∈ S -r,0 for each r ∈ N. We observe moreover that ω -1 2 χ( ω∞ κ ) is a real operator which implies that m κ (x, k) = m κ (x, -k) and hence

ϕ κ (x) = (2π) -1 2 e -ik•x m κ (x, k)(a * (k) + a(-k))dk,
from which the lemma follows. 2

We extend the above notation to κ = ∞ by denoting by m ∞ (x, k) the anti Kohn-Nirenberg symbol of ω -1 2 and by w p,∞ the function in (6.1) with m κ replaced by m ∞ . Note that by Prop. 2.10 m ∞ ∈ S -1 2 ,0 so w p,∞ is a well defined function on R d if g ∈ S(R). To study the properties of w κ,p it is convenient to introduce the following maps:

T κ : S(R) → S ′ (R p ), 1 ≤ κ ≤ ∞, g → w κ,p . {2.2} Lemma 6.2 i) T κ is bounded from L 2 (R) to L 2 (R p ) for each 1 ≤ κ ≤ ∞ and there exists ǫ > 0 such that T κ -T ∞ B(L 2 (R),L 2 (R p )) ∈ O(κ -ǫ ).
ii) the map

D x i s T ∞ x -s is bounded from L 2 (R) to L 2 (R p ) for each s ≥ 0 and 1 ≤ i ≤ p. iii) one has f κ,x ∈ 0((ln κ) 1 
2 ), uniformly for x ∈ R.

Proof. The operator T κ has the distribution kernel (2π) -p/2 p j=1 e -ik j .x m κ (x, k j ), hence for f ∈ S(R p ) we have:

T * κ f (x) = (2π) -p/2 p j=1 e ik j .x m κ (x, k j )f (k 1 , . . . , k p )dk 1 • • • dk p . If R : C ∞ (R p ) → C ∞ (R)
is the operator of restriction to the diagonal

Rf (x) = f (x, . . . , x),
we see that

T * κ f = RM κ F -1 p f, where M κ = p j=1
Op 1,0 (m κ )(x j , D x j ), and we have denoted by F p the unitary Fourier transform on L 2 (R p ). Since Fis the unitary Fourier transform on L 2 (R), so we have with obvious identificaction Γ(F) = F p . Since Op 1,0 (m) = Op 0,1 (m) * , we see that

M κ = Γ(χ( ω ∞ κ )ω -1 2 ) |⊗ p s L 2 (R) ,
where we have used the Fock space notation. This yields

T * κ = RΓ(χ( ω ∞ κ )ω -1 2 ∞ F -1 )Γ(Fω 1 2 ∞ ω -1 2 F -1 ) =: T 0 * κ Γ(Fω 1 2 ∞ ω -1 2 F -1 ),
where T 0 κ is the analog of T κ with ω replaced by ω ∞ . This yields:

T κ = Γ(Fω -1 2 ω 1 2 ∞ F -1 )T 0 κ . (6.2) {e2.3}
By pseudodifferential calculus, we know that ω -1 2 ω 1 2

∞ ∈ Op(S 0,0 ) and hence is bounded on D( x s ) for all s. Therefore it suffices to prove i) and ii) for T 0 κ , T 0 ∞ . i) for T 0 κ is shown in [START_REF] Derezinski | Spectral and scattering theory of spatially cut-off P (ϕ) 2 Hamiltonians[END_REF]Lemma 6.1]. To check ii) for T 0 κ for integer s we use that

T 0 ∞ (g)(k 1 , . . . , k p ) = ĝ(k 1 • • • + k p ) p i=1 ω -1 2 ∞ (k i ). Then ∂ s k 1 T 0 ∞ (k 1 , . . . , k p ) is a sum of terms ∂ s 1 k 1 ĝ(k 1 • • • + k p )∂ s 2 k 1 ω -1 2 ∞ (k 1 ) p i=2 ω -1 2 ∞ (k i ) for s 1 +s 2 = s. We note that ∂ s k ω -1 2 ∞ ∈ O( k -1 2 -s ) for all s ∈ N. This implies that if ∂ s k ĝ ∈ L 2 (R) then ∂ s k 1 T 0 ∞ (g) ∈ L 2 (R p
). This proves ii) for integer s. We extend it to all s ≥ 0 by interpolation. Finally a direct computation shows that ω

-1 2 ∞ χ( ω∞ κ )δ x = O((ln κ) 1 2 ), which implies iii) since ω -1 2 ω 1 2 ∞ is bounded on L 2 (R). 2
The following proposition follows easily from Lemmas 6.1 and 6.2.

Proposition 6.3 i) Assume that ga p ∈ L 2 (R) for 0 ≤ p ≤ 2n. Then lim κ→∞ V κ =: V exists in 1≤p<∞ L p (Q, dµ).
ii) V is a Wick polynomial with a Hilbert-Schmidt symbol.

Proof. From Lemma 6.2 i) it follows that V κ Ω → V Ω in L 2 (Q, dµ).
The convergence in all L p spaces for p < ∞ follows from the fact that V, V κ are finite particle vectors, using Lemma 2.8. Part ii) follows also from Lemmas 6.1 and 6.2. 2

It will be useful later to define the interaction term using an alternative definition of the UV-cutoff fields, namely: (6.3) {defdede} leading to the UV-cutoff interaction

ϕ mod κ (x) := φ(f mod κ,x ), for f mod κ,x = √ 2ω -1 2 χ( ω κ )δ x ,
V mod κ = R g(x) : P (x, ϕ mod κ (x)) : dx.
Clearly V mod κ is also affiliated to M c . We will use later the following lemma.

{troud} Lemma 6.4 i) V mod κ converges to V in L 2 (Q, dµ) when κ → ∞. ii) f mod κ,x = O((ln κ) 1 2 ),
uniformly for x ∈ R.

Proof. Let us denote by T mod κ the analog of T κ for the alternative definition of UV-cutoff fields. We claim that s-lim

κ→∞ T mod κ = T ∞ . (6.4) {e2.4}
which implies i). In fact arguing as in the proof of Lemma 6.2 we have

T mod k = Γ(Fχ( ω κ )ω -1 2 ω 1 2 ∞ F -1 )T 0 ∞ , which implies (6.4) since χ( ω κ )ω -1 2 ω 1 2
∞ is uniformly bounded and converges strongly to ω -1 2 ω 1 2 ∞ when κ → ∞. To prove ii) we write with obvious notation:

ω -1 2 χ( ω κ )δ x = ω -1 2 χ( ω κ )F (ω ∞ ≤ Cκ)δ x + ω -1 2 χ( ω κ )F (ω ∞ ≥ Cκ)δ x = χ( ω κ )ω -1 2 ω 1 2 ∞ ω -1 2 ∞ F (ω ∞ ≤ Cκ)δ x + ω -1 2 χ( ω κ )F (ω ∞ ≥ Cκ)ω ∞ ω -1 ∞ δ x .
The first term in the last line is O((lnκ)

1 2 ) uniformly in x, the second is O(1) if C is large enough, using Lemma C.1 and the fact that ω -1 ∞ δ x is in L 2 (R) uniformly in x. 2 6.2 Massless case {sec2.massle
We consider now the massless case m ∞ = 0. For simplicity we will assume that a(x) ≡ 1, i.e.

ω = (D 2 + c(x)) 1 2 , c(x) > 0, c ∈ S -µ .
We set as above

h = D 2 + c(x), ω 1 = (h + 1) 1 2 . {mass1} Lemma 6.5 Let χ ∈ C ∞ 0 (R). Then: i) ω 1 2 1 χ(x)ω -1 2 , ω 1 χ(x)ω -1 are bounded. If F ∈ C ∞ 0 (R) then ii) ω δ 1 [χ(x), F ( h κ 2 )]ω -1 2 ∈ O(κ δ-3/2 ) ∀ 0 ≤ δ < 3/2. Proof. Set χ = χ(x). Then χD 2 χ = Dχ 2 D -χ"χ and hence χD 2 χ ≤ CD 2 + Cχ 1 , for χ 1 ∈ C ∞ 0 (R). This implies that χ(h + 1)χ ≤ C(D 2 + χ 1 ) ≤ Ch, since c(x) > 0. Therefore ω 1 χω -1 is bounded, which proves the second statement of i). Since ω 1 χ 2 ω 1 ≤ C(h + 1), we also have χω 1 χ 2 ω 1 χ ≤ Cω 2 ,
which by Heinz theorem implies that χω 1 χ ≤ Cω and proves the first statement of i).

To prove ii) we write using (2.1):

ω δ 1 [χ, F ( h κ 2 )]ω -1 2 = i 2πκ 2 C ∂ z F (z)(z -h κ 2 ) -1 ω δ 1 [χ, h]ω -1 2 (z -h κ 2 ) -1 dz ∧ d z. Since [χ, h] = 2Dχ ′ -χ" we see using i) that ω δ 1 [χ, h]ω -1 2 = ω δ+ 1 2 1 B, where B is bounded. Using the bound h α (z -h κ 2 ) -1 ∈ O(κ -2α )|Imz| -1 for z ∈ supp F , we obtain ii). 2
To define the interaction in the massless case, we set:

ϕ κ (x) := √ 2φ(ω -1 2 F ( h κ 2 )δ x ) x ∈ R,
where F ∈ C ∞ 0 (R) equals 1 near 0, κ ≫ 1 is again an UV cutoff parameter, and:

V κ := R g(x) : P (x, ϕ κ (x)) : dx. {mass2}
Lemma 6.6 Assume that g is compactly supported and

ga p ∈ L 2 (R) for 0 ≤ p ≤ 2n. Then: i) ω -1 2 F ( h κ 2 )δ x ∈ L 2 (R)
for x ∈ supp g so the UV cutoff fields ϕ κ (x) are well defined. ii) V κ converges in 1≤p<∞ L p (Q, dµ) to a real function V and there exists ǫ > 0 such that:

V -V κ L p (Q,dµ) ≤ C(p -1) n κ -ǫ , ∀ p ≥ 2.
iii) one has

ω -1 2 F ( h κ 2 )δ x ∈ O((lnκ) 1 
2 ), uniformly for x ∈ supp g.

The function V in Lemma 6.6 will be denoted by:

V =: R g(x) : P (x, ϕ(x)) : dx.
Proof. To simplify notation we set F κ = F ( h κ 2 ). We take χ ∈ C ∞ 0 (R) equal to 1 on supp g. Then for x ∈ supp g, we have

ω -1 2 F κ δ x = ω -1 2 F κ χδ x = ω 1 2 F κ ω -1 χω 1 ω -1 1 δ x ∈ L 2 (R),
since ω -1 1 δ x ∈ L 2 and ω -1 χω 1 is bounded by Lemma 6.5 i). To prove ii) we may assume that P (x, λ) = λ p . We express the kernel w p,κ (k 1 , . . . , k p ) as in Lemma 6.1 and set w p,κ =: T κ g. Since g = χ p g, we have w p,κ = T κ χ p g, and hence w p,κ = Tκ g, where:

T

* κ = RΓ(χω -1 2 F κ F -1 ) = RΓ(ω -1 2 1 )Γ(a(κ)F -1 ), for a(κ) = ω 1 2 1 χF κ ω -1 2 . We set also T∞ = RΓ(χω -1 2 F -1 ),
and we claim that

T * κ -T * ∞ ∈ O(κ -ǫ
) for some ǫ > 0, (6.5) {e.mass3}

which clearly implies ii).

If we set a 0 (κ) = F κ ω 1 2

1 χω -1 2 , then using Lemma 6.5 ii), we obtain: a(κ) = a 0 (κ) + a 1 (κ), and a 0 (κ) ∈ O(1), a 1 (κ) ∈ O(κ -δ ), for some δ > 0. (6.6) {e.mass2}

Clearly on ⊗ p h, one has:

Γ(a 0 + a 1 ) = I⊂{1,...,p} a I(1) ⊗ • • • ⊗ a I(p) =: Γ(a 0 ) + S(κ), (6.7) {e.mass1}
for I(j) = 1l I (j). By (6.6) the terms in (6.7) for

I = ∅ are O(κ -δ ) hence S(κ) is O(κ -δ ). Since by Lemma 6.2 RΓ(ω -1 2 1
) is bounded, it follows that RΓ(ω

-1 2 1 )S(κ) is O(κ -δ
). Therefore we only have to estimate RΓ(χω -1 2 ) -RΓ(ω

-1 2 1 )Γ(a 0 (κ)) = RΓ(ω -1 2 1 ) -RΓ(ω -1 2 1 F κ ) Γ(ω 1 2 1 χω -1 2 ).
By Lemma 6.5 i), Γ(ω

1 2 1 χω -1 2
) is bounded, and by Lemma 6.2

RΓ(ω -1 2 1 ) -RΓ(ω -1 2 1 F κ ) ∈ O(κ -ǫ ).
This completes the proof of ii).

It remains to prove iii). We write for x ∈ supp g:

ω -1 2 F κ δ x = ω -1 2 F k χδ x = ω -1 2 χF κ δ x + ω -1 2 [F κ , χ]ω 1 ω -1 1 δ x = ω -1 2 χω 1 2 1 ω -1 2 1 F κ δ x + ω -1 2 [F κ , χ]ω 1 ω -1 1 δ x .
(6.8) {e.mass5}

By Lemma 6.4 ii), ω

-1 2 1 F κ δ x ∈ O((lnκ) 1 
2 ), uniformly for x ∈ supp g. Moreover by Lemma 6.5, ω -1 2 χω 1 2

1 is bounded, hence the first term in the r.h.s. of (6.8) is O(lnκ)

1 2 . Next ω -1 1 δ x is in L 2 (
R) uniformly in x, so the second term is O(κ -δ ) for some δ > 0 by Lemma 6.5 ii). This completes the proof of iii). 2

Lower bounds {lowersec}

In this section we prove some lower bounds on the UV cutoff interaction V κ . As explained in Sect. 3, V κ is now considered as a function on Q. In all this section we assume that m ∞ > 0.

As consequence we prove Prop. 7.2, which will be needed in Sect. 8. We recall from (3.2) that:

P (x, λ) = 2n p=0 a p (x)λ p ,
for a 2n (x) ≡ a 2n > 0.

{lower1} Lemma 7.1 Let f κ,x and f mod κ,x be defined in (3.4), (6.3). Assume that

g ≥ 0, g ∈ L 1 (R), ga 2n 2n-p p ∈ L 1 (R), 0 ≤ p ≤ 2n -1.
Then there exists C > 0 such that if

D 2 := C(1 + sup 0≤p≤2n-1 g(x)|a p (x)| 2n 2n-p dx), D 3 = C(1 + g(x)dx), one has g(x) : P (x, φ(f κ,x )) : dx ≥ -D 2 -D 3 (ln κ) n , ∀κ ≥ 2,
and the analogous result for f κ,x replaced by f mod κ,x .

Proof. We prove the lemma for f κ,x , the proof for f mod κ,x being the same, using Lemma 6.4 ii) instead of Lemma 6.2 iii). Note first from by Lemma 6.2 iii) f κ,x ∈ O((ln κ) 1 2 ) uniformly in x. We will use the inequality

a p b n-p ≤ ǫb n + C ǫ a n ∀ǫ > 0, a, b ≥ 0, (7.1) {el1.1}
valid for n, p ∈ N with p ≤ n. In fact (7.1) follows from

λ p ≤ ǫλ n + C ǫ , ∀ǫ > 0, λ ≥ 0, by setting λ = ba -1 .
We recall the well-known Wick identities:

: φ(f ) n := [n/2] m=0 n! m!(n -2m!) φ(f ) n-2m - 1 2 f 2 m . (7.2) {wick}
We apply (7.2) to f = f κ,x . Picking first ǫ small enough in (7.1) we get:

: φ(f κ,x ) 2n :≥ 1 2 (φ(f κ,x ) 2n -C(ln κ) n ).
Using again (7.1) for ǫ = 1, we get also:

| : φ(f κ,x ) p : | ≤ C 2 (|φ(f κ,x )| p + (ln κ) p/2 ) 0 ≤ p < 2n.
which yields: :

P (x, φ(f κ,x )) :≥ 1 2 (φ(f κ,x ) 2n -C 2n-1 p=0 a p (x)|φ(f κ,x )| p ) -C((ln κ) n + 2n-1 p=0 a p (x)(ln κ) p/2
). Using again (7.1), we get:

a p (x)|φ(f κ,x )| p = a p (x) 2n-p 2n-p |φ(f κ,x )| p ≤ ǫφ(f κ,x ) 2n + C ǫ a p (x) 2n 2n-p , a p (x)(ln κ) p/2 = a p (x) 2n-p 2n-p (ln κ) p/2 ≤ C((ln κ) n + a p (x) 2n 2n-p ),
which yields for ǫ small enough:

: P (x, φ(f κ,x )) :≥ -C 2n-1 p=0 a p (x) 2n 2n-p -C(ln κ) n .
Integrating this estimate we obtain the lemma. 2

As a consequence of Lemma 7.1, we have the following proposition, which allows to control a lower order polynomial by the P (ϕ) 2 Hamiltonian H.

{lower-pert}

Proposition 7.2 Let P (x, λ) be as in (3.2). Let

H = dΓ(ω) + R g(x) P (x, ϕ(x)) : dx and Q(x, λ) = 2n-1 r=0 b r (x)λ r where gb r ∈ L 2 (R), gb 2n 2n-r r ∈ L 1 (R). Let D > 0 such that sup 0≤p≤2n ga p 2 + sup 0≤r≤2n-1 gb r 2 + g 1 + sup 0≤p≤2n-1 ga 2n 2n-p p 1 + sup 0≤r≤2n-1 gb 2n 2n-r r 1 ≤ D. Then ± R g(x) : Q(x, ϕ(x)) : dx ≤ H + C(D). Proof. Set R(x, λ) = P (x, λ) ± Q(x, λ) and W = R g(x) : R(x, ϕ(x)) : dx, W κ = R g(x) : R(x, ϕ κ (x)) : dx.
It follows from Lemma 6.2, Lemma 2.8, and Lemma 7.1 that W, W κ satisfy the conditions in Lemma 2.5 with constants C i depending only on D. It follows then from Thm. 2.3 that

H ± R g(x) : Q(x, ϕ(x)) : dx = H 0 + W ≥ -C(D),
for some constant C(D) depending only on D. 2 8 Higher order estimates {sec4}

This section is devoted to the proof of higher order estimates for variable coefficients P (ϕ) 2 Hamiltonians. Higher order estimates are important for the spectral and scattering theory of H, because they substitute for the lack of knowledge of the domain of H. The higher order estimates were originally proved by Rosen [Ro] in the constant coefficients case ω = (D 2 +m 2 ) 1 2 for g ∈ C ∞ 0 (R) and P (x, λ) independent on x. The proof was later extended in [DG] to the natural class g ∈ L 1 (R) ∩ L 2 (R). The extension of these results to x-dependent polynomials is straightforward.

Analysing closely the proof of Rosen, one notes that a crucial role is played by the fact that the generalized eigenfunctions of the one-particle energy (D 2 + m 2 ) 1 2 , namely the exponentials e ik•x are uniformly bounded both in x and k.

To extend Rosen's proof to the variable coefficients case, it is convenient to diagonalize the one-particle energy ω in terms of eigenfunctions and generalized eigenfunctions of ω 2 = Da(x)D + c(x). However some bounds on eigenfunctions and generalized eigenfunctions are needed to replace the uniform boundedness of the exponentials in the constant coefficients case. These bounds are given by conditions (BM1), (BM2).

In this section, we will prove the following theorem.

{4.1}

Theorem 8.1 Let H be a variable coefficients P (ϕ) 2 Hamiltonian as in Thm. 3.1. Assume that hypotheses (BM1), (BM2), (BM3) hold. Then there exists b > 0 such that for all α ∈ N, the following higher order estimates hold:

N α (H + b) -α < ∞, H 0 N α (H + b) -n-α < ∞, N α (H + b) -1 (N + 1) 1-α < ∞. (8.1) {e4.0}
The rest of the section is devoted to the proof of Thm. 8.1.

Diagonalization of ω {sec4.1}

Let h, ω as in Thm. 3.1. By Subsect. A.3, h is unitarily equivalent (modulo a constant term) to a Schrödinger operator

D 2 + V (x) for V ∈ S -µ .
Applying then standard results on the spectral theory of one dimensional Schrödinger operators, we know that there exists {ψ l } l∈I and {ψ(•, k)} k∈R such that

ψ l (•) ∈ L 2 (R), ψ(•, k) ∈ S ′ (R), hψ l = (λ l + m 2 ∞ )ψ l , λ l < 0, ψ l ∈ L 2 (R), hψ(•, k) = (k 2 + m 2 ∞ )ψ(•, k), k ∈ R * , l∈I |ψ l )(ψ l | + 1 2π R |ψ(•, k))(ψ(•, k)|dk = 1l.
Moreover using the results of Subsect. A.2 and the fact that h is a real operator we can assume that

ψ l = ψ l , ψ(x, k) = ψ(x, -k). (8.2) {e4.1}
The index set I equals either N or a finite subset of N depending on the number of negative eigenvalues of

D 2 + V . Let h := l 2 (I) ⊕ L 2 (R, dk), and 
W : L 2 (R, dx) → h, W u := ((ψ l |u)) l∈I ⊕ 1 √ 2π R ψ(y, k)u(y)dy. (8.3) {e4.001}
Clearly W is unitary and

W ωW * =: (ω d ⊕ ωc ), for ωd = ⊕ l∈I (λ l + m 2 ∞ ) 1 2 , ωc = (k 2 + m 2 ∞ ) 1 2 . If we set c = W cW * , then it follows from (8.2) that c((u l ) l∈I ⊕ u(k)) = (u l ) l∈I ⊕ u(-k),
i.e. c is the direct sum of the canonical conjugation on l 2 (I) and the standard conjugation on L 2 (R, dk) used for the constant coefficients P (ϕ) 2 model.

Reduction of H

{sec4.2}

We will consider in the rest of this section the transformed Hamiltonian:

H := Γ(W )HΓ(W ) * .
In this subsection we determine the explicit form of H. Let ( Q, μ) be the Q-space associated to the couple ( h, c). We can extend Γ(W ) : Γ(h) → Γ( h) to a unitary map T : L 2 (Q, dµ) → L 2 ( Q, dμ).

{4.1b}

Lemma 8.2 T is an isometry from L p (Q, µ) to L p ( Q, dμ) for all 1 ≤ p ≤ ∞ and T 1 = 1.

Proof. If F is a real measurable function on Q, and m(F ) the operator of multiplication by F on Γ(h), then m(T F ) = Γ(W )m(F )Γ(W ) * , which shows that T is positivity preserving. Since T 1 = T * 1 = 1, T is doubly Markovian, hence a contraction on all L p spaces (see [Si]). We use the same argument for T -1 . 2

Coming back to H we have:

H = H0 + Ṽ , for H0 := Γ(W )H 0 Γ(W ) * = dΓ(ω d ⊕ ωc ), Ṽ := Γ(W )V Γ(W ) * .
We know from Lemma 6.4 that V is the limit in

1≤p<∞ L p (Q, dµ) of V mod κ
, where V κ is a sum of terms of the form

R ga p (x) r 1 a * (f mod κ,x ) p r+1 a(f mod κ,x )dx,
where f mod κ,x = ω -1 2 χ( ω κ )δ x . This implies using Lemma 8.2 that

Ṽ = lim κ→∞ Ṽκ , in 1≤p<∞ L p (Q, dµ)
where Ṽκ is a sum of terms of the form

R ga p (x) r 1 a * (W f mod κ,x ) p r+1 a(W f mod κ,x )dx. Another useful expression of Ṽ is Ṽ = R g(x) : P (x, φ(x)) : dx, (8.4) {e4.3} for φ(x) = ϕ(W δ x ).
Therefore we see that H is very similar to a P (ϕ) 2 Hamiltonian with constant coefficients, the only differences being that in addition to the usual one-particle energy (k 2 + m 2 ∞ )

1 2 we have the diagonal operator ωd , and in the interaction the delta function δ x is replaced by W δ x .

From now on we will work with H and to simplify notation we will omit the tildes on the objects Q, μ, H, H0 , Ṽ , h, ωd , ωc . The one-particle energy ω d ⊕ ω c will be denoted simply by ω.

Cutoff Hamiltonians

{sec4.3}

We first recall some facts from [DG].

Let h be a Hilbert space equipped with a conjugation c. Let π 1 : h → h 1 be an orthogonal projection on a closed subspace h 1 of h with [π 1 , c] = 0. Let h ⊥ 1 be the orthogonal complement of h 1 . In all formulas below we will consider π 1 as an element of B(h, h 1 ). With this convention the orthogonal projection on h 1 , considered as an element of B(h, h), is equal to π * 1 π 1 . Let U : Γ(h 1 ) ⊗ Γ(h ⊥ 1 ) → Γ(h) the canonical unitary map. We denote by

L 2 (Q 1 , dµ 1 ), L 2 (Q ⊥ 1 , dµ ⊥ 1 ) the Q-space representations of Γ(h 1 ), Γ(h ⊥ 1 )
. Recall that by [START_REF] Derezinski | Spectral and scattering theory of spatially cut-off P (ϕ) 2 Hamiltonians[END_REF]Prop. 5.3], we may take as Q-space representation of Γ(h) the space L 2 (Q, dµ) for

Q = Q 1 × Q ⊥ 1 , µ = µ 1 ⊗ µ ⊥ 1 .
Accordingly we denote by (q 1 , q ⊥ 1 ) the elements of

Q = Q 1 × Q ⊥ 1 . If W ∈ B(Γ(h)) we set: B(Γ(h)) ∋ Π 1 W := U Γ(π 1 )W Γ(π * 1 ) ⊗ 1l U * .
The following lemma is shown in [START_REF] Derezinski | Spectral and scattering theory of spatially cut-off P (ϕ) 2 Hamiltonians[END_REF]Subsect. 7.1].

Lemma 8.3 i) If w ∈ B fin (Γ(h)) then Π 1 Wick(w) = Wick(Γ(π * 1 π 1 )wΓ(π * 1 π 1 )). (8.5) {sechigh.e2}
ii) If V is a multiplication operator by a function in L 2 (Q, dµ) then Π 1 V is the operator of multiplication by the function

Π 1 V (q 1 ) = Q ⊥ 1 V (q 1 , q ⊥ 1 )dµ ⊥ 1 . (8.6) {sechigh.e1} {sechigh.2}
In particular if W = Π q 1 a * (h i )Π p 1 a(g i ), then

Π 1 W = Π q 1 a * (π * 1 π 1 h i )Π p 1 a(π * 1 π 1 g i ).
(8.7) {P51}

Let now {π n } n∈N be a sequence of orthogonal projections on h such that

π n ≤ π n+1 , [π n , c] = 0, s-lim n→+∞ π n = 1l, (8.8) {ep.11}
and let Π n the associated maps defined by (8.5). Using the representation (8.6) it is shown in [S-H.K, Prop. 4.9] that

i) Π n V → V in L p (Q, dµ), when n → ∞, if V ∈ L p (Q, dµ), 1 ≤ p < ∞ ii) e -tΠnV L 1 (Q,dµ) ≤ e -tV L 1 (Q,dµ) .
(8.9) {ep.9}

Notation

{sec4.4}

Index sets.

An element u ∈ h is of the form (u l )⊕u(k) ∈ l 2 (I)⊕L 2 (R, dk). We put together the variables l ∈ I and k ∈ R into a single variable K ∈ I ⊔R. We denote by dK the measure on I ⊔R equal to the sum of the counting measure on I and the Lebesgue measure on R. Then h = L 2 (I ⊔ R, dK) and (u|v

) h = l∈I u l v l + R u(k)v(k)dk = I⊔R u(K)v(K)dK.
For K ∈ I ⊔ R we set:

ω(K) := (k 2 + m 2 ∞ ) 1 2 if K = k ∈ R, (λ l + m 2 ∞ )
1 2 if K = l ∈ I, so that the operator ω is the operator of multiplication by ω(K) on L 2 (I ⊔ R, dK). We set also:

|K| := |k| if K = k ∈ R, l if K = l ∈ I. a ♯ (K) := a ♯ (k) if K = k ∈ R, a ♯ (e l ) if K = l ∈ I,
where {e l } l∈I is the canonical basis of l 2 (I).

Lattices.

For ν ≥ 1, we consider the lattice ν -1 Z and let

R ∋ k → [k] ν ∈ ν -1 Z be the integer part of k defined by -(2ν) -1 < k -[k] ν ≤ (2ν) -1 . We extend the function [•] ν to I ⊔ R by setting [K] ν := [k] ν if K = k ∈ R, l if K = l ∈ I.
As above we put together the variables l ∈ I and γ ∈ ν -1 Z into a single variable δ ∈ I ⊔ ν -1 Z.

For κ ∈ [1, +∞[ an UV cutoff parameter, we denote by Γ κ,ν the finite lattice ν -1 Z ∩ {|γ| ≤ κ}.

As in [START_REF] Derezinski | Spectral and scattering theory of spatially cut-off P (ϕ) 2 Hamiltonians[END_REF]Sect. 7.1] we choose increasing sequences κ n , ν n tending to +∞ in such a way that Γ κn,νn ⊂ Γ κ n+1 ,ν n+1 .

We denote by Γ n the finite lattice Γ κn,νn . The finite subset of I ⊔ ν -1 Z:

T n := {l ∈ I| l ≤ κ n } ⊔ Γ n can be rewritten as T n = {δ ∈ I ⊔ ν -1 Z| |δ| ≤ κ n }.
Finite dimensional subspaces.

For γ ∈ ν -1 Z we denote by e γ ∈ L 2 (R, dk) the vector e γ (k) = ν

1 2 1l ]-(2ν) -1 ,(2ν) -1 ] (k -γ).
Following our previous convention we set for δ ∈ I ⊔ ν -1 Z:

e δ := 0 ⊕ e γ if δ = γ ∈ ν -1 Z, e l ⊕ 0 if δ = l ∈ I.
Clearly (e δ ) is an orthonormal family in h.

For n ∈ N we denote by h n the finite dimensional subspace of h spanned the e δ for δ ∈ T n , and denote by π n : h → h n the orthogonal projection on the finite dimensional subspace h n . Note that h n is invariant under the conjugation c.

Finally we set

a ♯ (δ) := a ♯ (e γ ) if δ = γ ∈ ν -1 Z, a ♯ (e l ) if δ = l ∈ I.
{blob} Proposition 8.5 Assume hypotheses (BMi) for i = 1, 2, 3. Set for J = {1, . . . , , s} ⊂ N and K i ∈ I ⊔ R:

V J n := ad a(K 1 ) • • • ad a(Ks) V n .
Then there exists b, c > 0 such that for all λ 1 , λ 2 < -b

(H n -λ 2 ) -1 2 V J n (H n -λ 1 ) -1 2 ≤ c s 1 F (K i ),
where F :

I ⊔ R → R + satisfies for each δ > 0: I⊔R |F (x, K)| 2 ω(K) -δ dK ≤ C.
Proof. We have using (8.7):

V n = g(x) : P (x, ϕ n (x)) : dx, (8.10) {e4.4}

where where

: ϕ n (x) p := p r=0 p r r 1 a * (π * n π n W ω -1 2 δ x ) p r+1 a(π * n π n W ω -1 2 δ x ). ( 8 
m n (x, δ) = (e δ |W δ x ) h . Let for k ∈ R: C n (k) := [k] νn - 1 2 ν -1 n , [k] νn + 1 2 ν -1 n ,
be the cell of Γ n centered at [k] νn . Using (8.3) we get:

m n (x, δ) :=    ν 1 2 n Cn(γ) (k 2 + m 2 ∞ ) -1 4 ψ(x, k)dk if δ = γ ∈ Γ n , (λ l + m 2 ∞ ) -1 4 ψ l (x), if δ = l ∈ I. (8.13) {e4.7}
Then as in [Ro], [DG], we obtain that

V J n = R g(x) s 1 r n (x, K i ) : P (s) (x, ϕ n (x)) : dx, where P (s) (x, λ) = ( d dλ ) s P (x, λ) and r n (x, K) = ν n Cn(k) ω(k ′ ) -1 2 ψ(x, k ′ )dk ′ if K = k ∈ R, ψ l (x) if K = l ∈ I.
We note that

V J n = Π n R g(x) : R n (x, K 1 , . . . , K s , ϕ(x)) : dx, (8.14) {e4.9b} for R n (x, K 1 , . . . , K s , λ) = P (s) (x, λ) s 1 r n (x, K i ).
Since assumptions (BM1), (BM2) are satisfied, we know that:

|ψ(x, k)| ≤ CM (x), uniformly for x, k ∈ R, |ψ l (x)| ≤ Cǫ l M (x), uniformly for x ∈ R, l ∈ I,
where l∈I ǫ 2 l < ∞. Let us now prove corresponding bounds on the functions r n (x, K). We consider first the case K = l ∈ I: we have:

|r n (x, l)| ≤ Cǫ l M (x), uniformly in x, l. (8.15) {e4.11} If K = k ∈ R we get: ω(k ′ ) -1 2 |ψ(x, k ′ )| ≤ Cω(k) -1 2 M (x), uniformly for n ∈ N, k ′ ∈ C n (k), x ∈ R,
which yields:

|r n (x, k)| ≤ Cω(k) -1 2 M (x), uniformly for n ∈ N, k, x ∈ R. (8.16) {e4.12}
If we set:

F (K) = ω(k) -1 2 if K = k ∈ R, ǫ l if K = l ∈ I, (8.17) {e4.13b}
and collect (8.15), (8.16) we get:

|r n (x, K)| ≤ CF (K)M (x), uniformly for n ∈ N, K ∈ I ⊔ R, x ∈ R (8.18) {e4.8}
We note that by condition (BM3), we have:

ga p M s ∈ L 2 , g(a p M s ) 2n 2n-p+s ∈ L 1 , 0 ≤ s ≤ p ≤ 2n -1.
If we apply the arguments in Prop. 7.2 to the polynomial

Q n (x, K 1 , . . . , K s , λ) = P (s) (x, λ) s 1 F (K i ) -1 r n (x, K i ),
using the bound (8.18), we obtain that e -t(V ±Wn) is uniformly bounded in L 1 (Q), (8.19) {e4.9}

It turns out that condition (BM2) is really a condition on the behavior of generalized eigenfunctions ψ(x, k) for k near 0. In this respect the potentials fall naturally into two classes, depending on whether µ > 2 or µ ≤ 2. This distinction is also relevant to condition (BM1). In fact by the Kato-Agmon-Simon theorem (see [START_REF] Reed | Methods of modern mathematical physics[END_REF]Thm. XIII.58]) if V ∈ S -µ for µ > 0 h has no strictly positive eigenvalues. As is well known h has a finite number of negative eigenvalues if µ > 2. Therefore condition (BM1) is always satisfied for M (x) ≡ 1 if µ > 2.

Results of Subsects. B.1, B.2, B.3 are standard results. We used the reference [START_REF] Yafaev | Mathematical Scattering Theory (Analytic Theory)[END_REF]. Results of Subsects. B.4, B.5, B.6 are easy adaptations from those in [START_REF] Yafaev | The low energy scattering for slowly decreasing potentials[END_REF].

For For two solutions f, g of the equation

-u" + V u = ζ 2 u, the Wronskian W (f, g) = f ′ (x)g(x) -f (x)g ′ (x) is independent on x.
We start by recalling a well-known fact about existence of Jost solutions. Moreover one has:

{3.2} Proposition B.1 Assume V ∈ S -µ (R) for µ > 2. Then for any ζ ∈ Arg[0, π] there exist unique solutions θ ± (x, ζ) of -u" + V u = ζ 2 u,
θ ± (x, ζ) = θ ± (x, -ζ).
Proof. Uniqueness of θ ± is obvious since the Wronskian of two solutions vanishes at ±∞. We look for θ ± (x, ζ) as solutions of the Volterra equations:

θ ± (x, ζ) = e ±iζ•x + K ± θ ± (x, ζ), (B.1) {e3.01}
where:

K + (ζ)u(x) = +∞ x ζ -1 sin(ζ(y -x))V (y)u(y)dy, K -(ζ)u(x) = x -∞ ζ -1 sin(ζ(x -y))V (y)u(y)dy. Using the bound |ζ -1 sin(ζ(y -x))e -Imζ•y | ≤ Cye -Imζ•x , 0 ≤ x ≤ y,
we obtain that We recall additional identities between Jost solutions θ

|(K + (ζ)) n u(x)| ≤ e -Imζ•x (n!) -1 (C +∞ x y|V ( 
± (•, ζ) if ζ = k > 0.
We first set:

w(k) := W (θ + (•, k), θ -(•, k)).
Next by computing the Wronskian below at ±∞, we get that:

W (θ ± (•, k), θ ± (•, -k)) = ±2ik. Clearly θ -(x, k) = m ++ (k)θ + (x, k) + m +-(k)θ + (x, -k), θ + (x, k) = m --(k)θ -(x, k) + m -+ (k)θ -(x, -k). (B.2) {e3.1} We set m(k) := (2ik) -1 w(k). (B.3) {e3.0}
We can express the coefficients in (B.2) using Wronskians and get

m +-(k) = m -+ (k) = (2ik) -1 W (θ + (•, k)θ -(•, k)) = m(k), m ++ (k) = -(2ik) -1 W (θ + (•, -k), θ -(•, k)), m --(k) = -(2ik) -1 W (θ + (•, k), θ -(•, -k)). (B.4) {e3.2}
Using the identity θ ± (x, -k) = θ ± (x, k) and iterating the identities (B.2), we obtain 

m(-k) = m(-k), m ++ (k) = -m --(k), |m(k)| 2 = 1 + |m ++ (k)| 2 = 1 + |m --(k)| 2 . (B.
:= m(k) -1 θ + (x, k) k > 0, m(-k) -1 θ -(x, -k) k < 0 (B.6) {e3.7}
is a family of generalized eigenfunctions of h. The zeroes of w lie on iR + and correspond to negative eigenvalues of h. We write the kernel of the spectral family dE dλ (x, y, λ) using the functions θ ± (x, ±k). Using (B.16) we obtain: The following result shows that generalized eigenfunctions are always uniformly bounded in |k| ≥ ǫ for ǫ > 0.

Proof. Since θ ± (•, ζ) ∈ L 2 (R ± ) for Imζ > 0,

{3.8}

Proposition B.9 Assume V ∈ S -µ for µ > 0. Then for {ψ(x, k)} k∈R defined in (B.17 Let us now prove Prop. 2.10. By elliptic regularity, we know that h is selfadjoint and bounded below on H 2 (R d ) and (h+s) -1 preserves S(R d ). Computing multicommutators ad α x ad β D (h+s) -1 on S(R d ), we first see by induction on α, β that ( D 2 + s ) x α D β (h+s) -1 x -α D -β ∈ O(1), uniformly in s ≥ 0.

The same computations show then that ( D 2 + s ) D |α| x |β| ad α x ad β D (h + s) -1 is uniformly bounded on L 2 (R d ), which by the Beals criterion show that (h + s) -1 ∈ Op(S 0,0,-2 ). we obtain that h -α ∈ Op(S -2α,0 ) for α ∈]0, 1[. Using also that h n ∈ Op(S 2n,0 ) for integer n, we obtain ii).

C.2 Proof of Prop. 2.11

Let us first prove i). We use the notation in Subsect. C.1. Set T (s) = Op((b + s) -1 ). By pdo calculus and (C.23), we get that (h + s)T (s) -1l ∈ Op(S 0,-1-µ,-1 2 ) hence (h + s) -1 -T (s) ∈ Op(S 0,-1-µ,-3/2 ).

Using (C.24) for ǫ = 1 2 this implies that h -1 2 -Op(b -1 2 ) ∈ Op(S -2,-1-µ ). Next we write using again pdo calculus: h 1 2 = hh -1 2 = hOp(b -1 2 ) + Op(S 0,-1-µ ) = Op(b 1 2 ) + Op(S 0,-1-µ ), which proves i). Let us now prove ii). By Prop. 2.10, we know that ω = Op(c), for cb 1 2 ∈ S 0,-1-µ , where b is defined in Prop. 2.10. By pseudodifferential calculus, we obtain that:

[ω, i[ω, i x ]] = Op({c, {c, x }}) + Op(S 0,-2 ).

Since ck ∈ S 1,-µ , we get:

{c, {c, x }} = { k , { k , x }} + S 0,-1-µ = x -1 ( ξ 2 k 2 - (ξ|x) 2 k 2
x 2 ) + S 0,-1-µ . We pick 0 < ǫ ≪ 1 and write:

( ξ 2 k 2 - (ξ|x) 2 k 2 x 2 ) = d 2 (x, ξ) -x -2ǫ , for d(x, ξ) = ( ξ 2 k 2 - (ξ|x) 2 k 2 x 2 + x -2ǫ ) 1 2 .
Using that d 2 ∈ S 0,0 and d 2 ≥ x -2ǫ , we see easily that d ∈ S 0,0 ǫ , hence x -1 2 d ∈ S 0,-1 2 ǫ . Using again (2.6), we get: Op( x -1 d 2 ) = Op( x -1 2 d) 2 + Op(S 0,-3+4ǫ ǫ ).

Choosing ǫ > 0 small enough and setting γ = x -1 2 d, we obtain the proposition. 2

{ima}

  Theorem 4.5 [Scattering theory]Let H be as in Thm. 3.1 and assume that the hypotheses of Thm. 4.4 hold. Let us denote by h c (ω) the continuous spectral subspace of h for ω. Then:1. The asymptotic Weyl operators:W ± (h) := s-lim t±∞ e itH W (e -itω h)e -itH exist for all h ∈ h c (ω),and define a regular CCR representation over h c (ω).

  is negative near infinity and has no zero energy resonances, then (BM2) is satisfied for M (x) = x µ/4 (see Prop. B.10). If c(x)m 2 ∞ is positive near infinity, holomorphic in a conic neighborhood of R and has no zero energy resonances, then (BM2) is satisfied for M (x) = 1 in {|x| ≤ R} and M (x) = +∞ in {|x| > R} (see Prop. B.14).

  -π ≤ a < b ≤ π, we denote by Arg]a, b[ the open sector {z ∈ C| a < argz < b}. The corresponding closed sector (with 0 excluded) will be denoted by Arg[a, b]. For α ∈ R the function z α is defined by (re iθ ) α = r α e iαθ , for -π < θ ≤ π. B.1 Jost solutions for quickly decreasing potentials {sec3.2}

  with asymptoticsθ ± (x, ζ) = e ±iζ•x (1 + o(1)), θ ′ ± (x, ζ) = ±iζe ±iζ•x (1 + o(1))when x → ±∞. They satisfy the estimates|θ ± (x, ζ)e ±iζx | ≤ e ∓Imζ•x C x -µ+1 ,uniformy for ±x ≥ 0 and ζ ∈ Arg[0, π].

  y)|dy) n , for x ≥ 0, which gives the estimate |θ + (x, ζ)e iζ•x | ≤ e -Imζ•x (e C +∞ x |y||V (y)|dy -1), proving the desired bound for θ + (x, ζ). The case of θ -(x, ζ) is treated similarly. The last identity follows from uniqueness. 2

  we obtain by the standard argument that the resolvent (hz) -1 has kernel R(x, y, z) = -w(ζ) -1 θ + (x, ζ)θ -(y, ζ), y ≤ x, -w(ζ) -1 θ -(x, ζ)θ + (y, ζ), x ≤ y.for ζ 2 = z, Imζ > 0 andw(ζ) = W (θ + (•, ζ), θ -(•, ζ)).The zeroes of w lie on iR + and correspond to negative eigenvalues of h.If E(λ) = 1l ]-∞,λ] (h), then from (2iπ) dE dλ (λ) = R(λ + i0) -R(λ -i0),We obtain that for λ > 0 dE dλ (λ) has a kernel satisfying:4πk dE dλ (x, y, λ) = m(k) -1 θ + (x, k)θ -(y, -k) + m(-k) -1 θ + (x, -k)θ -(y, k), for y ≤ x,where k 2 = λ. Note that dE dλ (λ) is both real and selfadjoint hence dE dλ (x, y, λ) = dE dλ (y, x, λ). Using the identities (B.2) and (B.5), we obtain that4πk dE dλ (x, y, λ) = |m(k)| -2 (θ + (x, k)θ + (y, -k) + θ -(x, k)θ -(y, -k)) (B.7) {e3.4} for k 2 = λ. Setting ψ ± (x, k) := m(k) -1 θ ± (x, k) k > 0, (B.8) {e3.5} we obtain 4πk dE dλ (x, y, λ) = ψ + (x, k)ψ + (y, k) + ψ -(x, k)ψ -(y, k), (B.9) {e3.6}for k 2 = λ, which shows that {ψ(•, k)} k∈R defined in (B.6) is a family of generalized eigenfunctions of h. 2 B.3 Condition (BM2) for quickly decreasing potentials {sec3.3}Let us now consider in more details the Volterra integral equations (B.1) for ζ = k > 0. Let F ± be the Banach space of C 1 functions on R ± bounded with bounded derivatives equipped with the obvious norm.The operators (1l -K ± (k)) -1 are bounded onF ± and ]0, +∞[∋ k → (1l -K ± (k)) -1 ∈ B(F ± ) is norm continuous. It follows that k → θ ± (•, k) ∈ F ± is continuous on ]0, +∞[, and hence w(k) is continuous on ]0, +∞[. Moreover when k → 0, (1l -K ± (k)) -1 converges in B(F ± ) to (1l -K ± (0)) -1, where = 0 iff there exists a solution u of -u" + V u = 0, with asymptotics:u(x) → u ± , u ′ (x) → 0 for x → ±∞, u ± = 0.Such a solution is called a zero energy resonance for h. Recall that condition (BM2') is introduced in Remark 4.2. B.5 Resolvent and spectral family {sec3.5} {3.7} Proposition B.8 We set as in Subsect. B.1:w(k) := W (θ + (•, k), θ -(•, k)), m(k) := (2ik) -1 w(k).The family {ψ(•, k)} defined byψ(x, k) := m(k) -1 θ + (x, k) k > 0, m(-k) -1 θ -(x, -k) k < 0 (B.17) {e3.7bis} is a family of generalized eigenfunctions of h in |k| ≥ ǫ. Proof. As in Subsect. B.2, we can since η ± (•, ζ) ∈ L 2 (R ± ) for Imζ > 0 write the kernel of (hz) -1 as: R(x, y, z) = -r(ζ) -1 η + (x, ζ)η -(y, ζ), y ≤ x, -r(ζ) -1 η -(x, ζ)η + (y, ζ), x ≤ y. for ζ 2 = z, Imζ > 0 and r(ζ) = W (η + (•, ζ), η -(•, ζ)).

  y, λ) = m(k) -1 θ + (x, k)θ -(y, -k) + m(-k) -1 θ + (x, -k)θ -(y, k), for y ≤ x,where k 2 = λ and By Prop. B.7 the algebraic identities used in the proof of Prop. B.2 are satisfied by θ ± (•, k). Repeating the above proof we obtain the proposition. 2 B.6 Bounds on generalized eigenfunctions away from k = 0.

  ) one has for all ǫ > 0: ψ(•, k) ∞ ≤ C ǫ uniformly for |k| ≥ ǫ. Proof. Arguing as in the proof of Thm. B.3 it suffices by Prop. B.7 to verify that |m(k)| -1 = 2|k| w(k) , is uniformly bounded for |k| ≥ ǫ. We first claim that w(k) is a continuous function of k in |k| ≥ ǫ. In fact writing the Volterra integral equation (B.14) as a fixed point equation in an appropriate Banach space of continuous functions, we see that for a fixed x ≥ R(ǫ), u 1 (x, k) and u 2 (x, k) are continuous functions of k in |k| ≥ ǫ. The same holds for η + (x, k), η ′ + (x, k). Using the differential equation satisfied by η + (•, k), we see that k → (η + (0, k), η ′ + (0, k)) is continuous in k. Using the same argument for

  (λ + s) -1 ds, for λ ≥ 0, α ∈]0, 1[ (C.24) {pdoe.6}

  l∈I and generalized eigenfunctions {ψ(x, k)} k∈R of h such that conditions (BM1), (BM2), (BM3) hold. Then the essential spectrum of H equals [inf σ(H) + m ∞ , +∞[. Consequently H has a ground state.

{mainmain} Theorem 4.3 [HVZ Theorem] Let H be as in Thm. 3.1 and assume that there exists a basis of eigenfunctions {ψ l (x)} {mainim} Theorem 4.4 [Mourre estimate]

Acknowledgements We thank Fritz Gestesy, Erik Skibsted, Martin Klaus and especially Dimitri Yafaev for very helpful correspondence on generalized eigenfunctions for one dimensional Schrödinger operators.

8.5 Proof of the higher order estimates {sec4.6}

For 0 ≤ τ ≤ 1 and n ∈ N we set:

Note that with the notation in Subsect. 8.1:

{smallem} Lemma 8.4 there exists C > 0 such that i)

Proof. To prove i) we note that ω c ([k] νn ) τ converges in norm to ω τ c for 0 ≤ τ ≤ 1, which implies that N -1 2 (N τ n -N τ )N -1 2 tends to 0 in norm. Since ω([K] νn ) ≥ c > 0 uniformly in n, we know that N 1 2 (N τ n + 1) -1 is bounded uniformly in n. This implies that (N τ n + 1) -1 converges in norm to (N τ + 1) -1 when n → ∞.

To prove ii) we follow the proof of [S-H.K, Prop. 4.8]: we have seen above that N -1 2 (H 0,n -H 0 )N -1 2 tends to 0 in norm. Moreover ω d ⊕ ω([k] νn ) ≥ C > 0 uniformly w.r.t. n. This implies that e -tH 0,n is hypercontractive with hypercontractivity bounds uniform in n. This implies that if W ∈ L p (Q, dµ) and e -T W ∈ L 1 (Q, dµ) there exists C such that N ≤ C(H 0,n + W + C), uniformly in n. Writing

and using the above bound, we obtain that (H 0,n +W +C) -1 converges in norm to (H +W +C) -1 . Moreover it follows from Theorem 2.3 ii) that the constant C above depend only on e -tW L 1 for some t > 0.

Since by (8.9) e -tVm is uniformly bounded in L 1 (Q), we see that (H 0,n + V m + C) -1 converges in norm to (H 0 + V m + C) -1 when n → ∞, uniformly w.r.t. m. Again by (8.9) V m → V in L p for some p > 2 and e -tVm is uniformly bounded in L 1 , so by Prop. 2.4 we obtain that (H 0 + V m + C) -1 converges to (H 0 + V + C) -1 when m → ∞, wich completes the proof of the lemma. 2 Let us denote simply by ω n the operator ω d ⊕ ω c (([k] νn ). Since [ω n , π * n π n ] = 0, we have

where

for

By (8.9) ii), this implies that e -t(Vn±ΠnWn) is uniformly bounded in L 1 (Q).

Applying then Thm. 2.7 to a = ω n and using (8.19) we get that there exists C > 0 such that

To complete the proof of the proposition it remains to check that for each δ > 0

which follows from (8.17) since l∈I ǫ 2 l < ∞. 2 Proof of Thm. 8.1. We follow the proof in [Ro]. This proof consists in first proving higher order estimates for the cutoff Hamiltonians H n and N τ n , with constants uniform in n. The corresponding estimates for the Hamiltonians without cutoffs are then obtained by the principle of cutoff independence ( [START_REF] Rosen | The (φ 2n ) 2 Quantum Field Theory: Higher Order Estimates[END_REF]Prop. 4.1]). The convergence results needed to apply [START_REF] Rosen | The (φ 2n ) 2 Quantum Field Theory: Higher Order Estimates[END_REF]Prop. 4.1] are proved in Lemma 8.4. The estimates for the cutoff Hamiltonians rely on three kinds of intermediate results:

the first ([Ro, Lemma4.2], [START_REF] Rosen | The (φ 2n ) 2 Quantum Field Theory: Higher Order Estimates[END_REF]Corollary 4.3]) consists of identities expressing expectation values of (powers of) N τ in terms of Wick monomials. These identities carry over directly to our case, replacing R by I ⊔ R, a ♯ (k) by a ♯ (K) and the mesure dk by dK.

The second ( [START_REF] Rosen | The (φ 2n ) 2 Quantum Field Theory: Higher Order Estimates[END_REF]Prop. 4.5]) is the generalized pullthrough formula wich also carries over to our case. The last is the bound in [START_REF] Rosen | The (φ 2n ) 2 Quantum Field Theory: Higher Order Estimates[END_REF]Lemma 4.4] which is replaced in our case by Prop. 8.5. Carefully looking at the proof of the higher order estimates for the cutoff Hamiltonians in [START_REF] Rosen | The (φ 2n ) 2 Quantum Field Theory: Higher Order Estimates[END_REF]Thm. 4.7] and [START_REF] Rosen | The (φ 2n ) 2 Quantum Field Theory: Higher Order Estimates[END_REF]Corollary 4.8] we see that it relies on the fact that the

2 ), which is checked in Prop. 8.5. This completes the proof of Thm. 8.1. 2

A Appendix A {sec3}

In this section we will give sufficient conditions on the functions a, c in the definition of ω for conditions (BM1), (BM2) to hold.

A.1 Sufficient conditions for (BM1)

{sec3.0} {suff} Proposition A.1 Let h = Da(x)D + c(x) be as in Thm. 3.1. Then: i) condition (BM1) is satisfied for M (x) = x α for α > 1 2 . ii) if h has a finite number of eigenvalues, condition (BM1) is satisfied for M (x) = 1.

Proof. ii) is obvious. To prove i) we take an orthonormal basis {ψ l } l∈I of the point spectrum subspace of h, and set u l = D s x -α ψ l for some s > 1 2 . By Sobolev's theorem we have

In this subsection we show that if h = Da(x)D + c(x) is a second order differential operator as in Thm. 3.1 satisfying (BM2), then the generalized eigenfunctions ψ(x, k) can be choosen to satisfy additionally the following reality condition:

{3.1}

Lemma A.2 Assume that the family {φ(•, k)} k∈R satisfies assumption (BM2). Then there exists a family {ψ(•, k)} k∈R of generalized eigenfunctions of h satisfying (BM2) and additionally:

(A.1) {e.real1}

Let {φ(x, k)} k∈R be a basis of generalized eigenfunctions for h. To such a family one can associate a unitary map:

Note that if ψ satisfy (A.1) and W ψ is defined as in (A.2), then W ψ is a real operator i.e.

Proof. Let us define the unitary operator Ω :

Clearly { φ(•, k)} k∈R is a family of generalized eigenfunctions of h. Therefore we can introduce the unitary map Ωu

and is unitary, so:

, the similar identity for φ and (A.3), we obtain that

where T (z 1 , z 2 ) = (z 2 , z 1 ). Iterating this formula we obtain the identity:

Let us find the generalized eigenfunctions ψ(x, k) under the form

Clearly {ψ(•, k)} k∈R will be a basis of generalized eigenfunctions of h as soon as A(k) ∈ U (C 2 ). Using (A.4) we see that it will satisfy (A.1) if

To solve (A.6), we deduce first from (A.5) that

Therefore T g(S)T = g(S -1 ) if g is a polynomial. By the standard approximation argument and the spectral theorem for unitary operators this extends to all measurable functions on the unit circle.

For z = e iθ , -π < θ ≤ π, we set z α = e iαθ . Setting A(k) = (S) -1 2 (k), we get

We show in this subsection that in order to verify condition (BM2) we can reduce ourselves to the case a(x) ≡ 1. We have then

which will allow to use standard results on generalized eigenfunctions for Schrödinger operators in one dimension. Let ψ : R → R be a diffeomorphism with ψ ′ > 0. We denote by ψ -1 the inverse of ψ. To ψ we associate the unitary map

ds.

Proof. Let ψ : R → R be a diffeomorphism as above. We have

Choosing ψ as in the lemma we get g(x) = ψ ′ • ψ -1 (x) and

This easily implies the first statement of the lemma. Next from (3.1) we get that g -

In this section we recall some results about generalized eigenfunctions for one-dimensional Schrödinger operators, taken from [START_REF] Yafaev | Mathematical Scattering Theory (Analytic Theory)[END_REF], [START_REF] Yafaev | The low energy scattering for slowly decreasing potentials[END_REF]. For the reader's convenience, we will sketch some of the proofs. These results are used to obtain some sufficient conditions for (BM2). We saw in Subsect. A.3 that we can reduce ourselves to considering a Schrödinger operator:

Proposition B.3 Assume that V ∈ S -µ for µ > 2. Then: 1) if h has no zero energy resonance, then h satisfies (BM2) for M (x) ≡ 1.

2) if h has a zero energy resonance and |w(k [START_REF] Yafaev | Mathematical Scattering Theory (Analytic Theory)[END_REF]Prop.7.13]).

Proof. For k > 0 we deduce from (B.2) that:

Therefore it suffices to bound m(k) -1 . Using the integral equations (B.1), we obtain that: Let V ∈ S -µ for 0 < µ ≤ 2. For Imζ ≥ 0, we set

where z Note that (z

We set also S(a, x, ζ) := 

with asymptotics

We have

For ǫ > 0 let R(ǫ) be such that |V (y)| ≤ ǫ/2 for |y| ≥ R(ǫ). Then the following estimates are valid:

Proof. We follow [START_REF] Yafaev | The low energy scattering for slowly decreasing potentials[END_REF] and treat only the case of η + . For |ζ| ≥ ǫ and x ≥ R(ǫ), we look for

We find that (u 1 (•, ζ), u 2 (x, ζ)) has to satisfy the following Volterra equation:

Uniformly for |ζ| ≥ ǫ and y ≥ x ≥ R(ǫ), we have:

The equation (B.14) can be solved by iteration and we obtain as in the proof of Prop. B.1 that: 

Proof. From Prop. B.5 we obtain that:

1 2 e -S(0,x,k) , x → +∞.

Using that (ik)

we obtain

we obtain the first identity for k > 0 and replacing then k by -k for all k = 0. The proof of the second identity is similar, using instead

Proposition B.7 Set for |k| ≥ ǫ:

Then we have: 

Writing the differential equation satisfied by θ ± as a first order system, we see that this bound extends to ±x ∈ [0, R(ǫ)] uniformly for ǫ ≤ |k| ≤ C. 2 η -(•, k), we obtain the continuity of w(k) in |k| ≥ ǫ. We note that w(k) does not vanish in |k| ≥ ǫ since w(k) = 0 would imply that k 2 is an eigenvalue of h which is impossible if V ∈ S -µ . Therefore |m(k)| -1 is locally bounded in |k| ≥ ǫ. It remains to bound |m(k)| -1 near infinity. We use the notation in the proof of Prop. B.5. Let us pick C ≫ 1 such that R(C) = 0. Then for k ≥ C we have:

Using the fact that u 1 , u 2 are uniformly bounded in x ≥ 0 and k ≥ C, we obtain from (B.14

The same argument gives

and hence In this subsection we give some classes of slowly decreasing potentials for wich condition (BM2) holds.

As in Subsect. B.3 the possible existence of zero energy resonances has to be taken into account. For quickly decreasing potentials, the definition of zero energy resonances is connected with the integral equation (B.1) for ζ = 0. For slowly decreasing potentials, we have to consider instead the integral equations (B.14). This leads to the following definition:

Assume that v ∈ S -µ for 0 < µ < 2 is such that |V (x)| ≥ c x -µ for |x| large enough. We will say that h has a zero energy resonance if there exists a solution of -u" + V u = 0, with asymptotics:

for constants u ± = 0.

Potentials negative near infinity.

We consider first the case of potentials which are negative near infinity. We assume that V ∈ S -µ for 0 < µ < 2 and:

(B.18) {negat} {suffsuff} Proposition B.10 Assume that V ∈ S -µ for 0 < µ < 2 satisfies (B.18) and has no zero energy resonance. Then condition (BM2) holds for M (x) = x µ/4 .

Proof. By Prop. B.9 it suffices to consider the region |k| ≤ 1. We fix R as (B.18) and define the functions η ± (x, k) using the phase S(±R, x, ζ). We will consider only the + case. We first claim that

Clearly it suffices to prove the statement in x ≥ R, since we can extend the bound to [-R, R] using the differential equation satisfied by θ + . Let us prove (B.19). We will simply write

), from which we get 1). This proves (B.19). Next as in Subsect. B.3, we can set U = (u 1 , u 2 -1) and consider the equations (B.14) as a fixed point equation:

This implies also that (η + (•, k), η ′ + (•, k)) converges locally uniformly when k → 0 to the pair (η + (•, 0), η ′ + (•, 0)) obtained from (u 1 (•, 0), u 2 (•, 0)) by formula (B.13) for k = 0. We see that η + (x, 0) is a solution of -u ′′ + V (x)u = 0, with asymptotics:

x → +∞.

By the convergence result above (and its analog for η -(•, k)), we also see that

for some c = 0. Clearly m(0) = 0 iff h admits a zero energy resonance. Using (B.17), (B.19) and Prop. B.9, we obtain then that

which completes the proof of the proposition. 2

Potentials positive near infinity.

Let us now consider the case of potentials wich are positive near infinity. The following lemma is shown in [START_REF] Yafaev | The low energy scattering for slowly decreasing potentials[END_REF]Thm. 4].

{3.9}

Lemma B.11 Assume that V ∈ S -µ for 0 < µ < 2 is positive near infinity, more precisely:

Then there exists unique solutions η ± (x, 0) of -u" + V u = 0, with asymptotics:

where a ≫ 1 is such that V (x) > 0 in |x| ≥ a.

{3.10}

Lemma B.12 Assume in addition to (B.20) that there exists θ, R > 0 such that V extends holomorphically to D(R, θ) = {z ∈ C||z| > R, |Argz| < θ} and satisfies

Then for any ±x ≥ R, (η ± (x, s), η ′ ± (x, s)) converges to (η ± (x, 0), η ′ ± (x, 0)) when s → 0.

Proof. : We check that the assumptions of [START_REF] Yafaev | The low energy scattering for slowly decreasing potentials[END_REF]Thm. 7] are satisfied. We consider the two parts D ± (R, θ) = D(R, θ) ∩ {±Rez > 0} of D(R, θ) and set z ′ = log(±z) for z ∈ D ± (R, θ).

Applying Hadamard three lines theorem to F (z ′ ) = V (e z ′ )(±e µz ′ )q 0 , we obtain [START_REF] Yafaev | The low energy scattering for slowly decreasing potentials[END_REF]Thm. 7], we obtain the lemma. 2 {ilt} Lemma B.13 The functions η ± (x, k) are uniformly bounded for |x| ≤ R, |k| ≤ 1.

Proof. We consider only the case of η + (x, k). Let φ 0 (x, k), φ 1 (x, k) the two regular solutions of (E) with boundary conditions:

By Lemma B.12, a i (k) converges to a i (0) when k → 0. 2 {suffsuffsuf Proposition B.14 Assume that V ∈ S -µ for 0 < µ < 2 satisfies the hypotheses of Lemma B.12 and has no zero energy resonance. Then for each R > 0 condition (BM2) is satisfied for

We refer the reader to Remark 4.1 for the meaning of (BM2) if M takes its values in [0, +∞]. We forget the superscript w to simplify notation. We recall the following caracterization of Op(S p,m ) known as the Beals criterion:

The topology given by the norms of the multicommutators with Op(m) in (C.21) is the same as the original topology on S p,m . We will need also similar objects for symbols and operators depending on a real parameter s ≥ 0. We say that m(s, x, ξ) belongs to S p,m,k if Proof. We know from Prop. 2.10 ii) that ω and ω ∞ and hence [ω, ω ∞ ] belong to Op w (S 1,0 ). Using formula (2.1), we deduce from this fact that for χ ∈ C ∞ 0 (R):

[χ( ω κ ), ω ∞ ] ∈ O(1).

(C.25) {etoto.1}

We take χ 1 ∈ C ∞ 0 (R) with χ 1 χ = χ and set

We first see that

by (C.25). We claim also that for F ∈ C ∞ 0 (R):

In fact we write using (2.1):

This is easily seen to be O(κ -1 ) using the fact that (za) -1 , a(za) -1 are O(|Imz| -1 ) for z ∈ supp F . We note then that ω∞ ≤ c 1 κ, for some c 1 > 0 since ω ∞ ≤ c 0 ω. Hence if G(s) = F (C -1 s) for F as in the lemma and C is large enough, we have G( ω∞ κ ) = 0. Applying then (C.27) to F = 1 -G, we obtain that

).

(C.28) {etoto.5}

We write:

). The first term in the last line is O(1) using (C.28), the second also using (C.25). This completes the proof of the Lemma. 2