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We present both the experimental and computational methods and results of phase-separating experiments
performed with sulfur hexafluoride �SF6� close to its critical density. These experiments were performed in
microgravity to suppress buoyancy and convection-driven effects. Phase separation under reduced gravity is
analyzed for both 0.3 mK and 3.6 mK temperature quenches in order to derive the early-stage growth law. We
found a 1/3 growth law for early stages of phase separation for a volume fraction of minority domains of 50%.
Our findings support the hypothesis of a crossover between Brownian motion and hydrodynamic effects in the
early stages of phase separation. The temperature inside the bulk of the pure fluid was estimated using a
proposed histogram method. Our histogram method allowed temperature estimation below thermistors’ sensi-
tivity and detected small temperature variations inside the bulk of the pure fluid.
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I. INTRODUCTION

According to the laws of thermodynamics, a system will
evolve toward a minimum of its free energy. It is often con-
venient to measure the distance from a target steady state by
means of order parameters and express the free energy as an
analytical function in respect to the appropriately chosen or-
der parameters �1�. If the free energy has two minima, then
there are two phases that coexist and two equilibrium values
of the order parameter. The process that occurs when a sys-
tem undergoes a change of its free energy shape from one
minimum to two minima is called phase separation. When a
state variable, such as temperature, changes and initiates
phase separation, the resulting behavior is a dynamic out-of-
equilibrium growth of minority domains. Phase separation
became a natural testing ground for nonequilibrium statisti-
cal physics and it is also a problem of considerable practical
importance. Engineering applications are especially impor-
tant in two-phase heat and mass transfer processes. Phase
separation is also ubiquitous in materials processing, e.g.,
metallic alloys �2�, polymer alloys, and polymer-liquid crys-
tal mixtures �3�. The late-stage growth of the minority do-
mains is important in materials processing because the final
properties of the material depend greatly on the final mor-
phology when phase separation is completed �2�. To help
understand the domain growth process, an important step is
to find natural scales to measure observable quantities. Pre-
vious results in phase-separation experiments have shown
that near-critical fluids have such a natural length and time
scale �4�. Two types of morphologies and growth kinetics
have consistently been observed: �1� Slow growth with dis-
connected domains, and �2� fast growth with connected do-
mains. These results have suggested that phase-separation
phenomenon exhibits universality, i.e., the growth laws may
be described by master curves that are valid for all fluids

within these two scale factors. Recent results obtained using
colloid-polymer mixture in microgravity showed a clear
crossover from early-stage to late-stage spinodal decomposi-
tion for large quenches �5�. In this paper, we present experi-
mental results, derive the early-stage growth curves, and dis-
cuss the temperature derivation based on our histogram
method.

II. BACKGROUND

A. Pure fluids and binary mixtures

Binary liquids near the critical point of miscibility belong
to the same universality class as pure liquids �cf. the three-
dimensional Ising model �2,6��. Their dynamic behavior,
however, can be marked differently, especially in a gravita-
tional field �7�. This difference can be seen from the order
parameter M �M is a generic variable that describes or con-
trols a phase transition�. M is the concentration difference
M =c−cc for liquid mixtures, where c is the concentration
and cc is the critical concentration. At cc, the osmotic com-
pressibility diverges and the mutual diffusion coefficient
goes to zero. When T is changed to induce phase separation,
sedimentation usually occurs because one phase is denser
than the other. An appropriate order parameter �M� for pure
fluids is the dimensionless density difference M = ��−�c� /�c,
where � is the density and �c is the critical density. At the
critical point, the isothermal compressibility �kT� diverges
and the thermal diffusivity vanishes. Because pure fluids
near the critical temperature have a very large isothermal
compressibility, they are very sensitive to the Earth’s gravi-
tational field �8�. Experiments are complicated by the very
high compressibility of the fluid that induces density gradi-
ents even in the single-phase regime. Convective flows, often
turbulent, are also observed �9�. These properties lead to a
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very fast heat transport mechanism, the so-called piston ef-
fect �10,11�. Specifically, the small diffusivity localizes the
heat taken by the fluid to a boundary layer near the boundary
between the external heat source and the fluid. At the same
time, a large expansion coefficient decreases the density in
this boundary layer so that the bulk of the fluid senses the
temperature decrease very rapidly, which resembles the ef-
fect produced by a real piston. The piston effect allows ther-
mal equilibration in the bulk of a fluid sample to be limited
only by the thermal response of the thermostat �12–14�. This
fast thermalization occurs at the expense of a changed den-
sity in the boundary layer, so that the bulk density decreases.
This unavoidable lack of homogeneity between the boundary
layer and the bulk fluid modifies the separation process. The
boundary layer has a negligible effect on nucleation and
phase separation in the bulk. However, the wetting film can
only be seen when the growing droplets are of the order of
the cell thickness and a large-scale bubble begins to form.

During an actual phase-separation experiment, pure fluids
and binary liquids are always sensitive to convection and/or
sedimentation. Because such externally imposed convective
flows tend to increase the growth rates of minority phase
domains, attempts have been made to avoid buoyancy driven
convection in terrestrial experiments by preparing density-
matched liquid mixtures, e.g., by adding a small amount of
deuterated cyclohexane in a cyclohexane-methanol mixture
�CM�. These attempts show that it is practically impossible
to avoid long-term sedimentation in terrestrial experiments
because density matching can never be perfect. Although liq-
uid mixtures and pure fluids are formally part of the same
universality class, there are significant differences also, start-
ing with the order parameter itself. These differences are
especially large when comparing transport and interfacial
properties in the phase separated regime. The corresponding
diffusion coefficients, Dm for liquid mixtures and Dth for
pure fluids, both disappear at the critical point and create
critical slowing down. During the phase-separation process,
in the absence of convection, mass transport processes are
purely diffusive in a liquid mixture, while in pure fluids the
transport of heat and mass are strongly coupled by the latent
heat of vaporization. The viscosity, �, can also be quite dif-
ferent. This will lead to large differences in the fluctuation
relaxation time �. � for SF6, for example, is 30 times larger
than � for the CM mixture.

B. Nucleation and generalized nucleation

The classical view of phase separation is that of meta-
stable nucleation and spinodal decomposition �14–18�. Ac-
cording to this approach, the single-phase state may be main-
tained in a metastable state because the free energy costs
associated with the two-phase interface produce a local free
energy minimum in the single-phase state. If a fluctuation is
large enough to overcome the energy barrier associated with
the interfacial energy, then it will nucleate a new phase and
droplets will grow. Nucleation centers of some sort are re-
quired for droplet growth when in the metastable state. In
spinodal decomposition region, there is no local minimum in
the mean-field free energy so that the one-phase state is un-

stable and the two phases appear spontaneously. Under the
usual conditions of phase separation, unstable and metastable
potentials may be clearly defined using the mean-field ap-
proximation �8�. This approximation assumes a very small
level of fluctuations, so that nucleation of a growing domain
is more likely to occur on a foreign particle, such as rain-
drops forming on dust particles, or on a container wall. Near
the critical point, the fluctuations are large and the mean-field
approximation breaks down. As a result another form of gen-
eralized nucleation takes place �19�. The presence of large
fluctuations around the mean and the small interfacial energy
barrier, a property of near-critical fluids that is constantly
penetrated, suggests that each fluctuation is a potential nucle-
ation site. During generalized nucleation, droplets form uni-
formly inside the fluid, much as in the spinodal decomposi-
tion case. Other experimental results in liquid mixture
previously described the crossover from nucleation to spin-
odal decomposition �20�.

C. Influence of hydrodynamics and Brownian motion

Phase separation has been of great theoretical interest
over the last several decades. The work by Siggia has initi-
ated many attempts to explain the two growth laws by con-
sidering hydrodynamic arguments �21�. Several groups have
done large-scale direct numerical simulations by using dif-
ferent approaches to solve coupled equations involving dif-
fusion and hydrodynamics �14,22–26�. Some of these simu-
lations have recovered a linear growth law at late stages
�21,25�. Some other simulations were unable to reach the late
stages of separation but did calculate the transient values of
the growth exponent, which was found to be between 1 and
1/3. More recently, some fully three-dimensional simulations
of phase-separating fluid have found the transition from slow
growth to fast growth. This transition appears to be con-
trolled by the interparticle distance or the volume fraction
�27,28�. The above-mentioned numerical simulations con-
firm the predictions made earlier in �29�. The explanation of
the existence of the two different regimes, their relation to
the pattern morphology, and the absence of a crossover was
explained by considering coalescence as the main mecha-
nism for growth in all cases so that the transition corresponds
to the onset of hydrodynamics effects that start at a particular
volume fraction. In addition, the linear growth law was
found by considering the hydrodynamic effects of coales-
cence when many droplets are close together. At high equi-
librium volume fraction ��� droplet coalescence is a leading
candidate for the underlying growth mechanism at late times
in both the “fast” and the “slow” growth case. In the “slow”
growth case, the Brownian motion of the droplets implies a
characteristic collision rate of the droplets. When randomly
moving spherical droplets collide, they coalesce and grow
�30,31�. This growth mechanism also leads to a t1/3 growth
law �19�. The “fast” growth at late times is also explained
using a coalescence mechanism �21,32�. At higher values of
volume fraction ���, droplets also form as a result of coales-
cence of two neighboring droplets. However, two coalescing
droplets induce coalescence with another nearby droplet
through hydrodynamic lubrication interactions. Although in
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principle such an interaction should be repulsive, in the pres-
ence of a “mean field” of many neighboring droplets that
also interact repulsively induces a positive feedback that re-
inforces droplets’ coalescence. The characteristic time be-
tween coalescence events is controlled by the hydrodynamic
process. The hydrodynamic mechanism can only work when
the droplets are closely packed, i.e., for large volume fraction
�. In addition, the hydrodynamic interactions can generate
chain reactions of successive coalescences that create inter-
connected patterns. It was also shown that at a “critical”
value of the volume fraction the hydrodynamic mechanism
will dominate over the Brownian mechanism and the transi-
tion from “slow” to “fast” growth occurs. The hydrodynamic
model also predicted a sharp transition between “fast”
growth and “slow” growth regimes at ��0.3 �29�. The
above cited theoretical studies underline the importance of
droplet interaction for the growth and morphology of minor-
ity domains. When the droplets are far apart, growth is slow
and follows a t1/3 growth law for late times through a diffu-
sion process of either coalescence by Brownian motion or by
diffusion of mass �the Lifshitz-Slyozov mechanism�. When
the growing domains are close together, they interact through
hydrodynamics and grow quickly. There appears to be sev-
eral growth laws in the latter case depending on the type of
interaction of flow that is present. If the interactions are as-
sumed to be in the limit of large viscosity or small Reynolds
number the growth law is t1. In the limit of large Reynolds
number, where inertial effects dominate, other growth laws
have been predicted. Furukawa �9,33� predicted growth ex-
ponents between 2/5 and 2/3 depending on the temperature
quench depth. All numerical experiments assumed that the
boundary layers are of negligible importance and it is diffi-
cult to see how such an assumption can be realized in a
system of closely spaced droplets where interfacial bound-
aries are clearly a dominant feature. Despite multiple expla-
nations and diverging approaches, one trend was clearly sug-
gested both in experimental and theoretical studies �9�: The
exponent of growth law increases when external flows are
applied to the system. This has been clearly observed in a

phase-separation experiment with a slight temperature gradi-
ent �34�. In that experiment the thermal capillary flow clearly
increases the exponent of the growth law. The roles of hy-
drodynamic instabilities, such as Rayleigh-Taylor �35� and
Maragoni instability �36�, in pure fluids or solute-capillary
flows in binary liquids have not been considered in all pos-
sible detail. In addition, most of the previous studies have
considered linear approximations to the fully nonlinear hy-
drodynamic equations. In this paper, we present results re-
garding phase separation in pure fluid, in the early stage of
the fast growth regime.

III. EXPERIMENT

To prevent external flows and sedimentation from influ-
encing the growth processes, these experiments were per-
formed in a microgravity environment using the Alice-II in-
struments �37�. This instrument is specially designed to
obtain high precision temperature control with stability of
approximately 10 �K over 50 h, and repeatability of ap-
proximately 40 �K over 7 days. To place the samples near
the critical point, constant mass cells were prepared with a
high precision density, to 0.02%, by observing the volume
fraction change of the cells as a function of temperature on
the ground �38�. Two cylindrical sapphire windows 12 mm
diameter and 9.0 mm long are pressed into a copper block
with a corresponding cylindrical hole and glued to the copper
at the sides of the sapphire. This method avoids the unknown
volume associated with o-rings, allowing the above high pre-
cision density measurements to be verified. A layer of SF6,
was sandwiched between the two sapphire windows and sur-
rounded by a copper housing in the optical cell shown in Fig.
1. Temperature control and precise quenches are provided by
thermoelectric �Peltier� heat pumps. The temperature is
quenched below the coexistence temperature Tcx, as shown
in Fig. 2, while the liquid-gas interface was visualized
through light transmission normal to the windows.

A. Cells and quenches

The sample cell �Fig. 1�a�� includes three thermistors
�Th1, Th2, and Th3� used to measure the temperature inside
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FIG. 1. �Color online� Cross section of the cylindrical sample cell �a�. The fluid volume is contained between two sapphire windows and
a CuBeCo alloy ring. The cell consists of a D=12 mm diameter cylinder made of CuBeCo containing a thin layer, 9 mm thick of SF6,
sandwiched between two sapphire windows. Growth and morphology phase diagram of SF6 �b�. The supercritical fluid at initial temperature
Ti �point A�, with an off-critical density �M is quenched below the coexistence curve �CXC� and droplets of vapor �volume V1� and liquid
�volume V2� nucleate and grow. Previous experiments show that the curve V1 /V2�50% separates a region of slow growth �A-B, quench 50
mK below CXC� where the droplets are disconnected and grow as t1/3, and a region of fast growth �A-C, quench 3 mK below CXC�, where
the droplets are interconnected and grow linearly in t1. By adjusting the piston between quenches, different final points, could be reached �see
points D, E, and F in panel �b��. The critical point, Pc, is characterized by critical temperature Tc=45.54 °C, and the Mc corresponding to
the critical density �c=0.737 g /cm3.
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the fluid with a response time of approximately 10 ms. A
sealed piston to the left-hand side can slide in and out of the
cell volume to change the fluid’s average density at a con-
stant mass. The volume of the cell was initially adjusted to
M =0.02% on the ground so that the second run was per-
formed at the critical density. In order to allow this piston to
operate, we used a cell that is thicker than usual �L
=4.340 mm�, for an aspect ratio of �=D /L=2.765. The
thick cell allowed the bubbles to grow to a larger size before
wetting effects from the wall influenced the growth. It also
prevents the thermal boundary layer at the sapphire windows
or copper sidewalls from influencing the in-situ thermistors.
The gas droplets in the full field of the cell were visualized
through light transmission normal to the windows using a
LED light source at 633 nm. Optical microscopy of 3.1 �m
resolution was used to visualize density fluctuations and
small droplets. The volume fraction of the gas phase is a key
parameter for these experiments. Adjusting the temperature
quench depth controlled this parameter. This is possible be-
cause of the lever rule that relates the volume fraction of the
gas to the temperature quench �T,

� =
M+ − M

M+ − M
=

1

2
�1 − �1 +

	T

�T
	−

 , �1�

where M = �� / �c is the order parameter ���=�−�c�, �T
= �Tc−T� is the quench depth with respect to the critical tem-
perature, 	T= �Tc−Tcx� is the quench depth between the co-
existence temperature �Tcx� and critical temperature �Tc�, and

=0.325 is a universal exponent.

The coexistence curve �Fig. 1�b�� near the critical point is
given by M = �B�1−T /Tc�
, where B is a system-dependent
parameter �B=1.6 for SF6�. The coexistence temperature is
different for each density and must be accurately determined
at each density in order to estimate 	T accurately. The
quenches of the phase-separation experiments concurrently
find Tcx. Alice-II initially finds Tcx by quenching through the
temperature range corresponding to Tcx several times while
measuring the turbidity. Near the critical point, the turbidity
becomes very large due to critical opalescence. The turbidity
is quantified by measuring the light transmission signal of a
laser beam that traverses the fluid. The intensity of the laser

beam is measured with photodiodes before and after it enters
the fluid sample. Before each pass through Tcx, the cell was
heated to 1 K above Tc where it equilibrates to a homog-
enous state. Initially nine 0.10 K temperature quenches were
delivered through the �0.50 K region around Tcx and the
turbidity was measured at each temperature. The range of
largest turbidity around Tcx is then probed with nine addi-
tional 0.050 K quenches through the �0.250 K regions
around Tcx followed by a single 25 mK and a 15 mK quench
to reduce the uncertainty range of Tcx. The last 15 mK tem-
perature quench region is then quenched through in 1 mK
steps and Tcx is measured with �0.5 mK error. Because of
the heating effect of the laser beam this initial search is only
precise to within 1 mK. One unintended consequence of us-
ing a thicker cell �L=4.340 mm� was that the search proce-
dure overestimated Tcx because this increased thickness de-
creased the light intensity and made the cell appear more
turbid at a higher temperature than expected from previous
experiments. As a result, many of the automated quenching
sequences missed phase separations altogether and some that
did separate were too turbid to visualize the droplets and to
find a quantitative growth law.

Each of the phase-separation runs consisted of three sets
of quenches. First, a large temperature quench was per-
formed through the expected Tcx estimated during the Tcx
search protocol. This temperature quench resulted in uniform
separation and reliable growth data for each run. In the two-
phase-separation runs reported in detail here, the first quench
in run 1 was of 2.3 mK, placing the system 0.70 mK below
Tcx. The first quench in the second run was of 3.6 mK that
placed the system 0.36 mK below Tcx �Fig. 1�b��. The second
set of quenches consisted of a series of 0.3 mK quenches that
stepped through the same range as the large quench. The
third and final set of thermal quenches consisted of 0.1 mK
quenches, which were the limit of Alice-II’s quenching abil-
ity that also stepped through the expected Tcx. After each
thermal quench the fluid visualization attempted to detect if
phase separation occurred. If no phase separation occurred,
then the temperature was above Tcx; otherwise, the growth of
the droplets was recorded using a CCD camera and digital
recording tape. The system was uniformly illuminated and
recordings were made of both the full view and the micro-
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FIG. 2. �Color online� Temperature quench of 3.6 mK measured by three thermistors �Th1, Th2, and Th3� placed inside the SCU and one
mounted on the external wall �Tm� of the cell. The experiment spanned over 1 hour �a�, but the temperature settled after about 1 minute �b�.
The vertical arrows point to specific time markers and relate to images in Fig. 3 and Fig. 5.
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scopic field of the cell. This microscopic field was a square
of 0.9 mm in width. By visualizing the phase separation in
uniform illumination the effect of light heating was mini-
mized and Tcx was estimated to a higher precision.

The small temperature quenches produce inhomogeneous
separations and are usually only used to determine Tcx to
higher precision. We did, however, analyze the separation
from the 0.3 mK quench in the second run. Because the
system separated on the very last 0.3 mK quench, Tcx was
very near the bottom of the 3.6 mK range of the first large
quench. Unfortunately, in an attempt to economize on time,
the 0.1 mK quenches of the third sequence stopped at about
1 mK above Tcx. We were, however, able to visualize density
fluctuations using microscopy and analyze the microscope
images in these 0.3 mK quenches in order to estimate Tcx as
discussed below �39�.

B. The 3.6 mK quench

The temperature inside the sample cell unit �SCU� ini-
tially follows the temperature �Tm� measured by the ther-
mistor placed on the external wall of the SCU. However, the
temperature inside the SCU, does not follow the Tm at the
bottom of the quench, but seems to relax more slowly to the
final temperature. Unfortunately, the internal temperature is
only known within 1 mK precision of the thermistors used.
The decrease in Tm, shown in Fig. 2�b�, marked the begin-
ning of the cooling pulse to the SCU and the temperature
decrease in Th1, Th2, and Th3 is immediate while Tm lags.
This verifies that the proper origin of time is the time of the
heat pulse recorded by Tm. Figure 2�b� shows that the time
lag of Tm is almost 10 s.

An interesting feature of this 3.6 mK quenching experi-
ment was an upward drift of temperature measured inside the
SCU at later times �Fig. 2�a��. This upward drift corresponds
to the formation of the large bubble �Fig. 3�. In Fig. 3�a� the
bubble is not yet well defined and the three thermistors, Th1,
Th2, and Th3 are all at approximately the same temperature.
In Fig. 2�a�, Th2 and Th3 begin to drift upward. This upward
drift correlates with the increased contrast of the interface of
the large bubble and the presence of thermistors Th2 and Th3
in the interior of the large bubble while Th1 remained out-
side. In Figs. 3�c� and 3�d� Th1 stayed outside of the inter-
face and remained at the same temperature as Tm. Th3 re-
mained in the bubble and its temperature continued to drift
upward by 1 mK over approximately 30 min. Th2’s tempera-

ture also drifts upward, but this thermistor was clearly out-
side of the bubble. The largest temperature drift of Th2 oc-
curred near the boundary of the bubble �Fig. 3�d��.

C. The 0.3 mK quench

Although the 0.3 mK temperature quench did not result in
homogenous separation, the microscopic observations did
provide a good visualization of the nucleation process in
near-critical fluids. In the case of the 0.3 mK temperature
quench experiment, the images were divided in two groups:
The “up” group, with one representative example shown in
�see Fig. 4� Fig. 5�a�, and the “down” group, with represen-
tative images of SCU shown in Figs. 5�b� and 5�c�. The
video recording for the 0.3 mK temperature quench experi-
ment started when the fluid was very turbid due to critical
opalescence. The spatial size of fluctuations grew on the last
part of the “down” plateau and eventually the fluid separates
into gas and liquid phases �Fig. 5�d��.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Image processing tools such as filtering and fast Fourier
transforms �FFT� were used to extract information and phase
separation from the recorded images corresponding both to
0.3 mK and 3.6 mK quenches. The video recording of the
“down” region shows intensity fluctuations over a very small
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FIG. 3. Temporal and morphological evolution related to 3.6 mK temperature quench corresponding to temporal markers indicated by
vertical arrows in Fig. 2�a�. The three thermistors measure the temperature inside the SCU �see Fig. 2�. Out of the three groups of numbers
marked on the left-hand side of each image, the central group shows the recording time in hours, minutes, seconds, and fractions of seconds.
Toward the end of the recorded sequence �d� only the third thermistor is left inside the gas bubble and overheats �Fig. 2�a��.
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FIG. 4. The last 0.3 mK temperature quench steps through the
critical temperature. The temperature is measured by the thermistor
Tm. The two distinctive regions of the quench were called “up”
�before quench� and “down” �after quench�. Time markers indicated
by arrows and labeled A, B, C, and D, correspond to images shown
in Fig. 5.
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spatial distance, close to the resolution of the movie. At the
same time, the optical noise is also short range and overlaps
with the intensity fluctuations determined by actual density
fluctuations taking place inside the fluid. Therefore, subtract-
ing a background image is not very effective in reducing
optical noise for the “down” region �40�. As a result, the first
step in image processing of the “down” region was to use
n-point filter to reduce the effect of optical noise. Different
moving average filter sizes were used to test their influence
on the FFT power spectrum. For the purpose of noise reduc-
tion, a filter the size of nine pixels proved to give the clearest
contour of the color-coded FFT power spectrum �39�. The
peak value of the wave number �km� of the radial average of
the power spectrum varies with the size of the averaging
filter �not shown�. A plot of km versus the filter’s size re-
vealed the existence of two distinct regions: Smoothing with-
out cutting short range fluctuations, and severe filtering re-
vealing only large scale fluctuations �data not shown�. For
relative small values of the filter’s size �less than 10 units�,
the wave number is relatively high and quickly decreasing
with the increase of the filter’s size. This suggests that, al-
though the filter is still effective in smoothing the images, it
also allows the small range fluctuations �high wave-number
values� to pass. On the other end, a filter size around 10 units
filtered most of the short-scale fluctuations, including optical
noise, and is still capturing fluctuations over an intermediate
range.

A. Analysis of images recorded during the “down” region of
the 0.3 mK quench

The following procedure was used to extract information
from recorded images. We first applied a n-point filter to a
recorded image in the “down” region to obtain the corre-
sponding filtered image. The latest was subtracted from the
original image and the resulting image was called fluctuation
image �Fig. 6�a��.

We used the above procedure to eliminate the background
noise for recorded frames in the 0.3 mK quench and 3.6 mK
quench. Two-dimensional FFT and their corresponding
power spectra for the fluctuation images such as those shown
in Fig. 6�b� were performed to estimate the average wave
number km. The dark ring in the power spectra corresponds
to randomly oriented structures. This distinctive structure of
significantly high amplitude is an indication of large-scale
fluctuations. Based on the radial symmetry of the power
spectra �Fig. 6�b��, we averaged the power spectra along all

radii centered on the dc component. The broad peak in the
plot of the radial average of the power spectrum �Fig. 7�
corresponds to the ring in the power spectrum shown in Fig.
6�b�. The average power spectrum revealed a characteristic
wavelength that emerged from the fluctuations at a given
time.

The maximum of the broad peak of the radial average of
the power spectrum is related to the characteristic length of
the fluctuations �41�. The relationship between the spatial
and frequency domains is �42�,

k =
km

N	x
, �2�

where N=172 is the total number of pixels in the image,
	x=3.1 �m represents the image resolution in spatial do-
main, and km represents the dimensionless value of the maxi-
mum of the broad peak in the radial average power spectrum
shown in Fig. 7. The value for the wave vector is related to
the characteristic length of the correlated fluctuations ��� as
follows �43�:

k = 2/� . �3�

For example, a value of km=29 arbitrary units corresponds
with a characteristic length of 7.45 �m. The thermistors sen-
sitivity is below the temperature quench depth and the only
way to determine the temperature for each image is to use
image analysis techniques. The method we developed to de-
termine the temperature is based on the characteristics of the
histograms and does not take into consideration the spatial
position of a pixel in the recorded image.

The histograms of the fluctuation images �see Fig. 6�a��
are shown in Fig. 8. The histograms have a Gaussian shape
�43� and are in good agreement with the statistic of fluctua-
tions. The histogram has a width �i that relates to the vari-
ance of gray level intensity, ��i2, in the recorded image.
First we considered that the intensity of the scattered light is
proportional to the variation in the density of the fluid

��I2 = c2���2 , �4�

where �I= �I− I0 / I0, c is a dimensionless temperature-
dependent coefficient. The local density fluctuations, ���2
= �	�2 /�c

2, can be determined by measuring the fluctuations
of the intensity of scattered light, ��I2= �	I2 / I0

2. According
to Domb �44�, the density fluctuations are related to the iso-
thermal compressibility according to the following relation-
ship:

(a) (b) (c) (d)

FIG. 5. Microscopic and full views of SCU during the 0.3 mK quench for “up” �a� and “down” ��b� and �c�� regions. The last image
shows the phase-separating domains �d� that occurs toward the final stage of “down” plateau. The image sequence corresponds to time
markers shown in Fig. 4.
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�	�2
�c

2 = ckBTckT/V , �5�

where kB is Boltzmann’s constant, �c is the critical density,
Tc is the critical temperature, V is the volume of fluid cov-
ering one pixel �3.1 �m� in the recording image at a depth
of t0=1.9 �m, and kT is the isothermal compressibility. Near
the critical point, the isothermal compressibility of a fluid is
given by the power law �45�

kT = k0�T − Tc

Tc
	−�

, �6�

where k0=1.33�10−8 m2 /N, and �=1.19 for SF6 �7�. By
substituting �6� into �5� and the result into �4�, the relative

temperature, 	T= �T−Tc�, can be estimated by measuring the
variance of the scattered light intensity,

	T = T − Tc = Tc� k0kBTc

V��I2
	1/�

. �7�

Equation �7� allows us to estimate the temperature based on
measured intensity fluctuations of the scattered light. This
method has the advantage of avoiding any reference to the
spatial correlation of the pixels in the recorded image, which
will be affected by the finite size of the physical system.
However, one observation must be made: The CCD camera
records gray levels corresponding to scattered light intensity
and, as a result, we determine the variance of the gray levels
in the recorded image and not the variance of the intensity of

(a1) (a2) (a3)

(b1) (b2) (b3)

Time

FIG. 6. Fluctuation images were obtained by subtracting the filtered image from the original image �a�. The corresponding power spectra
�b� show a characteristic ring corresponding to a maximum of FFT power spectrum. The ring’s associated characteristic wave number is a
good estimate of the characteristic length associated to the fluctuating images shown in panels �a�.
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FIG. 7. �Color online� Radial average of the power spectra of fluctuation images in the “down” region �see Fig. 6�b��. The continuous line
represents the polynomial interpolation used to estimate the wave number associated with the maximum of the broad peak in the power
spectrum �km�.
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the scattered light. According to Kammoun et al. �46� and
Guenoun et al. �47�, the variance of the gray levels in the
background image, �background, is proportional to the gain of
the camera ���background. Therefore, appropriate calibration
must be performed �45� in order to directly link the gray
level i=1,2 , . . . ,256 and the corresponding light intensity I
scattered by the fluid,

I �
i2

�
�

i2

�background
. �8�

Taking into account the above observation, we developed a
method for estimating the relative temperature of a fluid
based on the histogram of the recorded images. According to
�8�, the variation of the scattered light intensity around the
average value of the gray levels �i is

��I �
�i���i2
�background

�
�i�i

�background
, �9�

where �i is the variance of the gray levels in the image. By
substituting �9� into �4�, one finds that a small density fluc-
tuation induces a change in the scattered light intensity that
can be estimated using the average gray scale intensity, �i,
and the variance, �i, of the recorded picture of the cell

��� = b�i
�i

�background
, �10�

where b is a calibration constant. In order to determine the
calibration constant b, we used images recorded at the begin-
ning of the experiment at temperatures higher than the criti-
cal temperature. The estimated average gray level intensity,
�i0, and variance, �i,0, are related to the calibration constant

b = ��0
�background

�i0�i,0
, �11�

where ��0= ��−�c� /�c=0.0�0.02 % at the beginning of the
experiment. Finally, substituting the calibration constant �11�
into �10� we determined the local density fluctuations ��
using the average gray levels intensity, �i, and the variance,
�i, of the histogram of recorded images

�� = ��0
�i�i

�i0�i,0
. �12�

After substituting �12� into �5� and the result into �7� it was
possible to derive an explicit relationship for the relative
temperature of the fluid,

	Ti = T − Tc = Tc� k0kBTc��i0�i,0�2

V��0
2��i�i�2 	1/�

=
30.158 658 12

��i�i�2/� ,

�13�

where k0=1.33�10−8 m2 /N, kB=1.38�10−23 J /K is Bolt-
zmann’s constant, Tc=318.687 K, and �=1.19 for SF6 �7�, V
is the volume corresponding to an image area of 1 pixel
=3.1 �m and a field depth of t0=1.9 �m, meaning V
=3.1 �m�3.1 �m�1.9 �m=1.76�10−17 �m3. The
depth of focus is t0��0 / �4NA

2�, where the wavelength of the
laser light was �0=633 nm and the numerical aperture of the
optical system NA=0.2 �48�. We used 36 background frames
extracted from the video recording to find the average of the
gray levels intensity �i0=129�2 arbitrary units with a vari-
ance �i,0=21.3�0.6 arbitrary units. The range of average
background intensity �i0 was between 108 and 155, and the
range for the variance �i,0 of the histograms was between 14
and 29. Based on the complete set of video recordings for the
“down” region, we found that the average gray level inten-
sity was �i=114�9 arbitrary units, the variance was �i
=26�2 arbitrary units, and the estimated temperature differ-
ence was 	Ti=46.74�0.03 �K with a range from
36.19 �K to 67.32 �K. This temperature is within the tem-
perature quench separating the “up” and “down” regions,
which was 300 �K and included the critical point. Near the
critical point, the correlation length also follows a power law
�4�

� = �0�T − Tc

Tc
	−�

, �14�

where the scaling coefficient of the correlation length is
�0,down=0.9�10−10 m, Tc=318.687 K, and �=0.633 for SF6
�7�. Based on this new estimation of the temperature, 	Ti,
the average value for the correlation length from �3� is �i
=2.08�0.008 �m, which is below the pixel resolution of
3.1 �m. The index i for the correlation length emphasizes
that the value was derived using the estimated temperature
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FIG. 8. �Color online� Histograms of the gray level distribution for the fluctuation images. The horizontal axis represents the gray levels
from 0 to 255. The vertical axis represents the percentage of the total number of pixels corresponding to a certain gray level. The continuous
line represents the Gaussian fit of the experimental histogram �filled squares�. The corresponding fluctuation images are shown in Fig. 6�a�.
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from the gray level histograms. Based on the above correla-
tion length �i, and the characteristic length �, it is possible to
compute a dimensionless quantity called the reduced wave
number k�, and a corresponding dimensionless reduced time
�t�� �49�,

k� =
�

�
, t� =

t

t�

, �15�

where t�=6�3� / �kBTc�=1.71442�1017�3, and � is the
shear viscosity. Figure 9 shows the power law in reduced
units k�=� /� and t�= t / t�. The data are a reasonable fit to the
universal curve with a regression coefficient of −0.921. The
power law follows t−0.330 growth for SF6 and is similar to the
power law found for the early stage of growth for shallow
quenches, which is t−1/3 �50,51�.

B. Analysis of images recorded during the 3.6 mK quench

Before the 3.6 mK quench �Fig. 2�, the cell was heated to
1 K above the critical temperature Tc where it equilibrated to

a homogeneous state. As is seen in Fig. 10�a�, the fluid sepa-
rates after the temperature quench. The bright and dark spots
are clusters of gas and liquid droplets with high and low
density, respectively. A microscope was used to record the
detailed morphology of a small area of the original image
�Fig. 10�b��.

In a phase-separating fluid near the critical point it is
shown that hydrodynamics plays an important role in the
pattern evolution and the wetting layers are quickly formed
on any solid surface �52�. In our experiment, the presence of
the three thermistors inside the cell creates inhomogeneities
of the density in the cell �dark spots around thermistors�
caused by the wetting effects which are known to be very
strong near the critical point �Fig. 10�.

1. Macroscopic view of phase separation for SF6

Following the same procedure of image enhancement as
for images corresponding to 0.3 mK quench, the power spec-
tra of enhanced full view images �Fig. 11�a�� were deter-
mined. The enhancement of the phase-separation image re-
sulted not only in a clearer FFT “ring,” but also the
horizontal and vertical lines related to the background noise
were removed. For digital image processing purpose, the im-
age obtained by subtracting the filtered image from the origi-
nal image was called the phase-separating image �Fig. 11�a��.
In order to extract quantitative information from the phase-
separating images, we computed their power spectra �Fig.
11�b�� �53�. The ring is broader at the beginning of the se-
quence and becomes narrower as we approach the end of the
sequence. This means that the corresponding wave numbers
are larger at first and decrease toward the end of the tempera-
ture quench �39�. Since the wave number is inversely pro-
portional to the characteristic length of the clusters in the
image, the characteristic length increases as the phase sepa-
ration progresses.

For each frame in the full view of the phase-separation
region, we extracted a typical size of the fluctuating domain,
called the characteristic length ��� related to the wave num-
ber �k� through Eqs. �2� and �3�. As the experiment
progresses, the estimated maximum of the radial average of

20 30 40 50 60
0.20

0.24

0.28

0.32

t*

k*

FIG. 9. �Color online� Early growth law in pure fluid �SF6�
when gravity effects are absent. The slowly changing wave number
is an indication of slow growth of fluctuations that can be captured
in a log-log plot of the scaled wave vector k� versus the reduced
time t�. The power law of the “down” region for 0.3 mK tempera-
ture quench shows an exponent of −0.330�0.006.

(a) (b)

FIG. 10. Phase separation. Full �a� and microscopic �b� views of the sample cell after a 3.6 mK temperature quench. The presence of the
three thermistors inside the cell creates inhomogeneities of the density in the cell �dark spots around thermistors� caused by the wetting
effects which are known to be very strong near the critical point. The fluid separation in gas and liquid can be observed as domains of
different brightness. The bright and dark spots of the interconnected domain are the basis of the quantitative analysis that we develop
hereafter.
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the power spectrum �km� gets smaller. Based on the estima-
tion of the wave number associated with the broad peak in
the power spectrum the reduced wave number and reduced
time were calculated and a growth law for the early stage of
the phase separation was found �Fig. 12�. The universal law
indicates a t−0.348 growth specific for the early stage.

2. Microscopic view of phase separation for SF6

In the 192�192 pixels microscopic images, the density
varies from high �dark clusters� to low �bright clusters� as

seen in Fig. 10�b�. In order to avoid including the automati-
cally marked numbers on each frame, in our analysis we
cropped all frames to a square image with the maximum
possible area. As a representative example, both the power
spectrum for the original image and the phase-separating mi-
croscopic image are shown in Fig. 13�a�, respectively, Fig.
13�b�. A comparison of the two power spectra shows bright
horizontal and vertical lines that indicated a strong noise
presence in the original image �Fig. 13�a��. Following the
procedure highlighted in the preceding section, we also in-
vestigated the existence of a power law between the reduced
wave number k� and the reduced time t� �Fig. 14�.

(a1) (a2) (a3)

(b1) (b2) (b3)

Time

FIG. 11. Phase-separating images obtained by subtracting the filtered image from the original image for the full view case �a�. Power
spectra corresponding to full view phase-separating images �b�. The thickness of the ring decreases as the time increases, and the wave
number decreases as we move toward the end of the sequence.
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FIG. 12. �Color online� Scaling law for full view images in
reduced units k� versus t�. The data fit reasonably well to the early-
stage growth curve. The continuous line is a linear fit to the experi-
mental data with a slope of −0.348�0.007 and linear correlation
R=−0.933 over 184 images.

(a) (b)

FIG. 13. �Color online� Power spectra of original �a� and filtered
�b� images for microscopic view. The horizontal and vertical lines
along the center of the power spectra �a� are evidence of the optical
noise in the image. The FFT ring is well represented for the original
noisy image, whereas by filtering the optical noise part of the FFT
ring structure is lost.
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We plotted the reduced wave number k� versus the re-
duced time t� in order to extract the scaling law for the mi-
croscopic view. The exponent of the power law was
−0.341�0.01 with a linear regression coefficient R=−0.95
for the region of almost constant or slowly decreasing wave
numbers �Fig. 14�. The fact that the exponent for the full
view �−0.348�0.007� is close to the above exponent for the
microscopic view constitutes experimental evidence of the
scale invariance of the fluctuations.

3. Phase separation induced by piston effect

Above the critical temperature, the fluid under investiga-
tion is transparent and the light is transmitted �Fig. 15�a��.
After the 3.6 mK temperature quench is applied, the bound-
ary at the cell’s wall cools down. A cold boundary layer
forms and its thickness increases in time. This wetting layer
appears as a dark region with a well-defined shape around
the cell’s edge �Fig. 15�c�� and its thickness evolution can be
observed in Figs. 15�d�–15�f�. As a result, after lowering the
temperature at the walls the thermal boundary layer contracts
and the effect is an expansion in the fluids bulk �38,54,55�.

This effect is amplified near the critical point because of the
divergence of the thermal expansion coefficient and diver-
gence of the isothermal compressibility. Recently, Onuki
�56� presented numerical results that explained the formation
of large bubble inside the cell in good agreement with our
experimental results. As a consequence of the piston effect
that adiabatically expands the bulk fluids, small spherical
drops form as shown in Fig. 16. The fluid separates as a
result of two strong concurrent effects: �1� The critical fluc-
tuations, and �2� the piston effect. Although, the piston effect
is not described in this paper in detail, we present here ex-
perimental observation supporting Onuki’s computational
model �56�.

V. CONCLUSIONS

The direct visualization and analysis of critical fluctua-
tions and phase separating in pure fluids in microgravity pro-
vides invaluable information about cooperative phenomena
and the role played by the thermodynamic fluctuations in
determining the critical behavior. Density fluctuations appear
as domains with different intensities compared to the average
value of the image intensity and are detectable only near the
critical point. The images analysis provides valuable infor-
mation regarding the underlying statistical physics of the
system. Image processing techniques, such as the radial av-
erage power spectrum, allowed us to estimate important
characteristics of the fluctuations and phase-separating do-
mains. We observed and extended the growth law in pure
fluids that, when plotted in units scaled by � and �, appears to
match the growth law observed in binary liquids.

Thus there does appear to be universality to the growth
law that matches the previously observed early-stage growth
law. The power law for the early-stage growth shows that
there is neither Brownian motion nor hydrodynamics, and
gives a 1/3 growth law. One would expect a t1 power law at
late times with an interconnected pattern.

Two phase-separation temperature quench runs at the
same density were performed on the same sample of SF6 in

0.034

0.038

0.042

4 6 8 10
t*

k*

FIG. 14. �Color online� The plot of k� versus t� shows a growth
law corresponding to slowly changing wave numbers �time interval
0 to 10 s�. The closeness in the slope values of the two power laws
for the early-stage growth demonstrates the invariance of the scale.

(a) (b) (c)

(d) (e) (f)

FIG. 15. The wetting layer at the edge of the cell acts as a piston adiabatically expanding the interior. The time evolution of the cell’s
wetting layer is recorded in frames �b�, �c�, �d�, �e�, and �f�. The first image �a� was recorded above Tc and is considered a reference image.
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microgravity environment. Performing these experiments on
the same sample greatly increases the quality of these results

as there were no significant changes in the fluid properties
between runs. These results, obtained in the absence of grav-
ity effects established a quantitative relationship between the
morphology and the “universal” evolution law of the pat-
terns.

ACKNOWLEDGMENTS

This work was supported by a Research and Development
grant from the College of Charleston to A.O., NASA Grant
No. NNX07AL01A to R.Q. and S.A.O., and NASA Grants
No. NAG3-1906 and No. NAG3-2447 to J.J.H.

�1� F. Perrot, P. Guenoun, T. Baumberger, D. Beysens, Y. Garra-
bos, and B. Le Neindre, Phys. Rev. Lett. 73, 688 �1994�.

�2� J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Tran-
sitions and Critical Phenomena, edited by D. Domb �Aca-
demic, New York, 1983�, Vol. 8, p. 267.

�3� P. Papon, P. H. E. Meijer, and J. Leblond, The Physics of Phase
Transitions �Springer, Berlin, 2002�, Vol. 1, p. 1.

�4� D. Beysens and Y. Garrabos, Physica A 281, 361 �2000�.
�5� A. E. Bailey, W. C. K. Poon, R. J. Christianson, A. B.

Schofield, U. Gasser, V. Prasad, S. Manley, P. N. Segre, L.
Cipelletti, W. V. Meyer, M. P. Doherty, S. Sankaran, A. L.
Jankovsky, W. L. Shiley, J. P. Bowen, J. C. Eggers, C. Kurta,
T. Lorik, P. N. Pusey, and D. A. Weitz, Phys. Rev. Lett. 99,
205701 �2007�.

�6� H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena �Oxford University Press, Oxford, 1971�.

�7� M. R. Moldover, J. V. Sengers, R. W. Gammon, and R. J.
Hocken, Rev. Mod. Phys. 51, 79 �1979�.

�8� M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Rev. Mod.
Phys. 79, 1 �2007�.

�9� H. Furukawa, Phys. Rev. A 36, 2288 �1987�.
�10� R. Wunenburger, Y. Garrabos, C. Lecoutre-Chabot, D. Beys-

ens, and J. Hegseth, Phys. Rev. Lett. 84, 4100 �2000�.
�11� B. Zappoli, D. Bailly, Y. Garrabos, B. LeNeindre, P. Guenoun,

and D. Beysens, Phys. Rev. A 41, 2264 �1990�.
�12� H. Boukari, J. N. Shaumeyer, M. E. Briggs, and R. W. Gam-

mon, Phys. Rev. A 41, 2260 �1990�.
�13� A. Onuki, H. Hao, and R. A. Ferrell, Phys. Rev. A 41, 2256

�1990�.
�14� A. Onuki, Phase Transition Dynamics �Cambridge University

Press, Cambridge, 2002�.
�15� P. Guenoun, D. Beysens, F. Perrot, Y. Garrabos, and A. Kumar,

J. Phys.: Condens. Matter 6, A199 �1994�.
�16� S. Huang, W. I. Goldburg, and A. W. Bjerkaas, Phys. Rev. Lett.

32, 921 �1974�.
�17� C. M. Knobler and N. C. Wong, J. Chem. Phys. 85, 1972

�1981�.
�18� F. S. Bates and P. Wiltzius, J. Chem. Phys. 91, 3258 �1989�.
�19� Y. Jayalakshmi, B. Khalil, and D. Beysens, Phys. Rev. Lett.

69, 3088 �1992�.
�20� H. Tanaka, T. Yokokawa, H. Abe, T. Hayashi, and T. Nishi,

Phys. Rev. Lett. 65, 3136 �1990�.
�21� E. D. Siggia, Phys. Rev. A 20, 595 �1979�.
�22� F. J. Alexander, S. Chen, and D. W. Grunau, Phys. Rev. B 48,

634 �1993�.
�23� K. Kawasaki and T. Ohta, Physica A 118, 175 �1983�.
�24� K. Koga, M. Kawasaki, T. Takenaka, and H. Hashimoto,

Physica A 198, 473 �1993�.
�25� S. Puri and B. Dunweg, Phys. Rev. A 45, R6977 �1992�.
�26� O. T. Valls and J. E. Farrell, Phys. Rev. E 47, R36 �1993�.
�27� S. Bastea and J. L. Lebowitz, Phys. Rev. Lett. 78, 3499

�1997�.
�28� M. Laradji, S. Toxvaerd, and O. G. Mouritsen, Phys. Rev. Lett.

77, 2253 �1996�.
�29� V. S. Nikolayev, D. Beysens, and P. Guenoun, Phys. Rev. Lett.

76, 3144 �1996�.
�30� H. Tanaka, Phys. Rev. Lett. 72, 1702 �1994�.
�31� H. Tanaka, J. Chem. Phys. 105, 10099 �1996�.
�32� V. S. Nikolayev and D. Beysens, Phys. Fluids 9, 3227 �1997�.
�33� H. Furukawa, Phys. Rev. A 31, 1103 �1985�.
�34� D. Beysens, Y. Garrabos, V. S. Nikolayev, C. Lecoutre, J. P.

Delville, and J. Hegseth, Europhys. Lett. 59, 245 �2002�.
�35� J. J. Hegseth, Y. Garrabos, V. S. Nikolayev, C. Lecoutre-

Chabot, R. Wunenburger, and D. Beysens, Int. J. Thermophys.
23, 89 �2002�.

�36� J. J. Hegseth, N. Rashidnia, and A. Chai, Phys. Rev. E 54,
1640 �1996�.

�37� R. Marcout, J. F. Zwilling, J. M. Laherrere, Y. Garrabos, and
D. Beysens, Microgravity Q. 5, 162 �1995�.

�38� J. Hegseth, V. S. Nikolayev, D. Beysens, Y. Garrabos, and C.
Chabot, Fourth Microgravity and Transport Phenomena Con-
ference, Cleveland, OH, 1998, pp. 1640–1644.

�39� A. Oprisan, Ph.D. thesis, University of New Orleans, 2006.
�40� F. Perrot, D. Beysens, Y. Garrabos, T. Frohlich, P. Guenoun,

M. Bonetti, and P. Bravais, Phys. Rev. E 59, 3079 �1999�.
�41� J. Oh, J. M. Ortiz de Zarate, J. V. Sengers, and G. Ahlers, Phys.

Rev. E 69, 021106 �2004�.
�42� R. C. Gonzalez and R. E. Woods, Digital Image Processing

�Prentice-Hall, Upper Saddle River, NJ, 2008�.
�43� H. Tanaka and T. Nishi, Phys. Rev. Lett. 59, 692 �1987�.
�44� C. Domb, The Critical Point: a Historical Introduction to the

Modern Theory of Critical Phenomena �Taylor and Francis,

(a) (b) (c)

FIG. 16. The apparition of the spherical droplets in the micro-
scopic images is caused by two concurrent effects: The critical fluc-
tuations and the piston effect. The evolution of the droplets is ob-
served as a shadow in the beginning �a� and after less than 1 s the
droplets interface becomes darker than the bulk of the fluid �b,c�.

OPRISAN et al. PHYSICAL REVIEW E 77, 051118 �2008�

051118-12



New York, 1996�.
�45� D. Beysens, J. Straub, and D. J. Turner, Phase Transitions and

Near-Critical Phenomena �Springer, Berlin, 1987�.
�46� F. Kammoun, J. P. Astruc, and D. Beysens, Rev. Sci. Instrum.

63, 3659 �1992�.
�47� P. Guenoun, R. Gastaud, F. Perrot, and D. Beysens, Phys. Rev.

A 36, 4876 �1987�.
�48� J. Hegseth, D. Beysens, and Y. Garrabos, Symposium on ther-

mophysical properties, Boulder, CO, 2003, pp. 22–27.
�49� D. Beysens, P. Guenoun, and F. Perrot, Phys. Rev. A 38, 4173

�1988�.

�50� Y. C. Chou and W. I. Goldburg, Phys. Rev. A 20, 2105 �1979�.
�51� M. Joshua, J. V. Maher, and W. I. Goldburg, Phys. Rev. Lett.

51, 196 �1983�.
�52� H. Tanaka, J. Phys.: Condens. Matter 13, 4637 �2001�.
�53� H. Tanaka and T. Nishi, Phys. Rev. Lett. 59, 692 �1987�.
�54� Y. Garrabos, M. Bonetti, D. Beysens, F. Perrot, T. Frohlich, P.

Carles, and B. Zappoli, Phys. Rev. E 57, 5665 �1998�.
�55� Y. Garrabos, B. Le Neindre, P. Guenoun, B. Khalil, and D.

Beysens, Europhys. Lett. 19, 491 �1992�.
�56� A. Onuki, Phys. Rev. E 75, 036304 �2007�.

UNIVERSALITY IN EARLY-STAGE GROWTH OF PHASE-… PHYSICAL REVIEW E 77, 051118 �2008�

051118-13


