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Abstract. A design method is proposed that sequentially generates observation sites for the
construction of a kriging predictive model. The objective of the construction is to allow a precise
inversion of the system in the following sense: with any reachable target point T in the output
space one wishes to be able to associate an input vector xT such that the system response at xT

will be close to T (which requires that the model ensures a precise prediction of the response
at xT ). Intuitively, the observation sites should not be spread over the admissible input space,
but should rather concentrate in areas such that, when mapped by the system, they cover
the reachable output space. Two approaches are proposed that are shown on examples (one
with five input and two outputs, derived from a problem in oil industry) to give satisfactory
results. They are based on the maximization of a measure of dispersion of the observations in
the output space and can cope with the presence of observation errors, a rather typical situation
for experimentation with real physical systems.

1. Introduction

We consider an experimental design problem related to the construction of a prediction model
for a multi-input/multi-output system, with application to a problem in oil industry. We assume
that no parametric (knowledge-based) model is available to describe the input/output relations
of the system. The objective of the construction is as follows: with any given reachable (p-
dimensional) target vector T in the output space of the system one wishes to associate a (m-
dimensional) input vector xT such that the model prediction ŷ(xT ) is as close to T as possible.
The experimental design problem consists in selecting N points X1, . . . ,XN (N fixed) in the
m-dimensional input space X (a compact subspace, or a finite subset, of R

m) such that this
inverse-prediction problem is solved with maximum accuracy after the observation of Yi = Y (Xi),
i = 1, . . . , N .

We model the input/output relationship by kriging [1, 2], a modelling tool based on stochastic
processes, which, at low computational cost, gives an estimate of the (mean squared) prediction
error at any unsampled point, thereby indicating the accuracy of the model prediction in each
point of the input domain, see Section 2. In practice, we use the Matlab toolbox DACE [3].
Adopting a bayesian point of view, after having collected observations at X1, . . . ,XN we obtain
the posterior distribution of Y (x) conditional to Y N = (Y1, . . . , YN )⊤, for any x ∈ X . This can
be used to compute the inverse prediction for the target T ,

xT = arg min
x∈X

IE{‖Y (x) − T‖2 |Y N} = arg min
x∈X

[
‖ŷN (x) − Y ‖2 + σ̂2

N (x)
]
, (1)



with ŷN(x) = IE{Y (x) |Y N} and σ̂2
N (x) = IE{‖Y (x) − ŷN (x)‖2 |Y N} respectively the model

prediction and variance at x. Define

ρN (T ) = ‖ŷN (xT ) − T‖2 + σ̂2
N (xT ) (2)

and

JM,N (X1, . . . ,XN ) = max
T∈Y

ρN (T ) , JI,N (X1, . . . ,XN ) =

∫

Y
ρN (T )µ(dT ) (3)

(which depend on the observations Y N ), with Y the reachable output domain and µ(·) some given
probability measure on Y. Using a direct formulation of the inverse-prediction design problem,
one might then consider the minimization of EJM (X1, . . . ,XN ) = IE{JM,N (X1, . . . ,XN )}
or EJI(X1, . . . ,XN ) = IE{JI,N (X1, . . . ,XN )} with respect to X1, . . . ,XN . However, this is
a formidable task and we shall follow another route (the functions JM,N (X1, . . . ,XN ) and
JI,N (X1, . . . ,XN ) will nevertheless be used to evaluate a posteriori the quality of a given design
in terms of inverse prediction performance).

In order to avoid the explicit construction of xT for every T , we reformulate the problem and
simply try to obtain good model predictions over Y by designing experiments that sample Y
as uniformly as possible, in the sense that the N observed responses Yi = Y (Xi), i = 1, . . . , N ,
are as spread as possible in R

p. One can note that this enforces the exploration of the whole
domain Y. At the same time, one wishes that the Xi’s remain as concentrated as possible in X
in order to have a precise prediction model via kriging.

The design method is sequential, in the sense that the observation point Xn+1 is chosen after
Y1, . . . , Yn have been observed. This implies the use of an initial design (with a small number of
points compared to N). We suppose that no prior information on the system is available and
use a space-filling initial design. Two methods are then used (and compared) for the sequential
addition of design points. Both look one-step ahead.

The first method chooses Xn+1 that maximizes IE{mini=1,...,n ‖Y (x) − Yj‖
2 |Y1, . . . , Yn}

(Section 3), the conditional (posterior) expectation of the minimum squared distance between
Y (x) and the Yi’s already observed. The second method (Section 4) chooses Xn+1 that
maximizes the conditional expectation of the second order Tsallis entropy [4] of a kernel density
estimator formed from the Yi’s and Y (x) (following the idea that maximum entropy over a
compact set is obtained for the uniform distribution, the second-order Tsallis entropy being
used for it allows simple analytical calculations). The precision of the model prediction is taken
into account by both approaches (through the conditional distribution of Y (x)), which favors
the choice of Xn+1 close to points Xi already sampled.

It may happen that for practical reasons the use of the experimental device requires that
batches of k points Xi+1, . . . ,Xi+k are chosen simultaneously. Moreover, for the application
considered in Section 6.2 those k points must be chosen before the k previous observations are
available. This k-points-at-a-time design problem is considered in Section 5.

In Section 6 the two approaches of Sections 3 and 4 are compared (in particular in terms of
JM,N and JI,N , see (3)) through simulations, first for a 2-inputs/1-output system (which allows
easy graphical presentations of the results), second for a 5-inputs/2-outputs system (constructed
from real data obtained from a problem in oil industry). The corruption of observations by errors
is considered, to account for the presence of random perturbations in real (physical) experiments.

2. Prediction by kriging

The presentation is for one output only. When there are p outputs, as in the example of Section
6.2, we use p distinct models (although co-kriging could then be used, see, e.g., [5]). The system
output (response) at x is modelled by

Y (x) = f⊤(x)β + Z(x) + ε(x) , (4)



where f(x) = (f1(x), . . . , fk(x))
⊤ is a vector of known regression functions, β = (β1, . . . , βn)

⊤ is
a vector of unknown parameters, Z(·) is a stochastic process, stationary on X , the admissible
domain for the inputs x, and ε(x) denotes an observation error. Those errors are assumed to
be centered and independently distributed (also independently from Z(x)), with variance σ2

ε .
Throughout the paper we assume that σ2

ε is known. The process Z(x) is supposed to have
zero mean, variance σ2

z and covariance Cov{Z(X1), Z(X2)} = σ2
z Ω(X1 − X2, ψ) with Ω the

correlation function and ψ a vector of unknown parameters.
Suppose that n observations have been performed for the inputs (design points) X1, . . . ,Xn.

The associated outputs are denoted Y1, Y2, . . . , Yn and satisfy Yi = f(Xi)
⊤ β + Z(Xi) + εi.

We also denote Y n = (Y1 . . . Yn)
⊤, Zn = (Z(X1) . . . Z(Xn))

⊤, F = (f(X1) . . . f(Xn))
⊤, ε =

(ε1 . . . εn)
⊤ and R the correlation matrix of Zn. Take an arbitrary point x0 and denote

f0 = f(x0), Y0 = f⊤0 β + Z0 + ε0 the observation at x0 and r0 the correlation between Z(x0)
and Zn (thus a n-dimensional vector). The kriging predictor at x0 is linear, unbiased and has
minimum variance, i.e., ŷ(x0) = a0 + a⊤ Y n, where a0 and a can be determined by minimizing
the predictor variance under the zero-bias constraint. When the characteristics of the process
are known (i.e., when Ω, σ2

z and ψ are known), direct calculations give the solution

ŷn(x0) = f⊤0 β̂ + r⊤0 R
−1 (Y n − F β̂) , (5)

where
β̂ = (F⊤R−1 F )−1F⊤ R−1Y n , (6)

with R = R + (σ2
ε/σ

2
z) In and In the n-dimensional identity matrix. The variance of this

prediction is given by

σ̂2
n(x0) = σ2

z

(
a⊤R a− 2a⊤ r0 + 1

)
+ σ2

ε , (7)

where a is obtained from ŷn(x0) = a⊤Y n.
Supposing that the process Z(·) and the observation errors are jointly normal, one can easily

construct the likelihood function l(β, σ2
z , ψ) for the unknown parameters β, σ2

z and ψ, which can
then be estimated by maximum likelihood, see, e.g., [6]. Easy calculations give

l(β, σ2
z , ψ) = −

1

2

[
n log(σ2

z) + log(det R) +
(Y n − F β)⊤R−1(Y n − F β)

σ2
z

]
. (8)

Note that the maximum likelihood estimator for β coincides with (6) when σ2
z and ψ are replaced

by their optimal (maximum-likelihood) values. When σ2
ε = 0 (no measurement errors), we get

σ2
z = (1/n)(Y n − Fβ̂)⊤R−1(Y n − Fβ̂) and its substitution in (8) gives an expression that only

depends on ψ. Also, one can easily check that ŷn(Xi) = Yi and σ̂2
n(Xi) = 0, i = 1, . . . , n, when

σ2
ε = 0; that is, the predictor is a perfect interpolator with zero prediction variance at the design

points when there are no observation errors.
The design points Xi will be determined sequentially, which requires using an initial design

X0 that defines where the first observations are to be taken. When no prior information on the
system to be modelled is available, this initial design should have a space-filling property, i.e.,
the initial points should be as spread as possible in the admissible domain X . Two situations
will be considered in Section 6. When the input domain is 2-dimensional (Section 6.1), we use a
latin hypercube design with 9 points, which is easy to generate, combined with the optimization
of a maximin-distance criterion in order to ensure that the points are well enough spread in X , as
suggested in [7]. In the case of a 5-dimensional input domain (Section 6.2), a complete factorial
design with 32 points will be preferred. Indeed, we noticed that the presence of observations at
the edges of X gives better kriging predictions. The factorial design is then completed by 16
points added inside the domain, such that all canonical projections along 1, 2, 3 and 4 dimensions
are identical.



A rather standard approach for the sequential construction of design points ensuring precise
kriging predictions over the whole domain X consists in locating the (n + 1)-th observation at
the point Xn+1 given by

Xn+1 = arg max
x∈X

σ̂2
n(x) (9)

where σ̂2
n(x) is given by (7). When there are no observation errors, this approach thus prevents

the repetition of observations at the same location (since σ̂2
n(x) = 0 when an observation has

already been made at x). This property generalizes to approaches that take the prediction
variance into account, but may not be satisfied when σ2

ε 6= 0. In that case, one may use the
re-interpolation technique suggested in [8]. A first kriging interpolator is constructed, taking the
presence of measurement errors into account. Therefore, the predictor does not interpolate the
data, i.e., the predictions ŷn(Xi) at the design points Xi differ from the associated observations
Yi. Second, a new kriging predictor is constructed, using the predictions ŷn(Xi) as if they
were observations, assuming there are no observation errors. One can show that for any x
the prediction at this second stage coincides with ŷn(x) of the first stage, with the noticeable
difference that the prediction variance for the second predictor is now zero at the observation
points Xi. Although this re-interpolation technique is proposed in [8] for the case of computer
experiments, we shall use it in Section 6.2 for the case when the observations are corrupted by
measurement errors.

3. Sequential maximin distance

Consider the following quantity, d(y, Y n) = mini=1,...,n ‖y − Yi‖
2, which measures how far y is

from the observations already performed. Using a bayesian approach with a non-informative
prior, one can consider that the posterior distribution of Y (x) at some unsampled x given the
observations Y n is approximately normal, Y (x) ∼ N (ŷn(x), σ̂

2
n(x)), where ŷn(x) and σ̂2

n(x) are
respectively given by (5) and (7). We then choose next design point Xn+1 as the one that
maximizes

J1,n(X) = IE{d̄(Y (X), Y n) |Y n} (10)

where d̄(Y (X), Y n) is a truncated version of d(Y (X), Y n), d̄(Y (X), Y n) = d(Y (X), Y n)χλ(Y
n)

with χλ(Y
n) the indicator function of the set [min(Y n)−λ,max(Y n)+λ] (this truncation permits

to avoid to give excessive weight to Y (X) falling outside the reachable output domain). The
computation of J1,n(X) requires the evaluation of an integral in R

p. An analytic expression
is easily obtained when p = 1 ; for larger p the integrant is computed with λ = 0 over a grid
(100 × 100 for p = 2 in the example of Section 6.2).

4. Sequential maximization of Tsallis entropy

This second approach follows an idea similar to that in the method above, but measures the
dispersion of the observations in the output space through entropy. Since maximum entropy
over a compact set is obtained for the uniform distribution, we shall maximize the entropy of the
distribution of the observations in Y. Entropy estimation is a vast domain and many approaches
have been suggested, see, e.g., [9, 10], among which nearest-neighbor methods are promising,
especially when the dimension p is large, see [11]. Here we follow a rather standard approach,
where a kernel-density estimator for the distribution of the Yi’s is plugged into the expression
of the entropy. At step n, when the observations Y n are available, consider the kernel density
estimator based on Y n and Y (X)

φ̂n(y;Y (X)) =
1

n+ 1

[
n∑

i=1

ϕYi,σ(y) + ϕY (X),σ(y)

]

(11)



with ϕz,σ(·) the probability density function of the normal N (z, σ2). Usually, the smoothing
parameter σ (window width) is taken decreasing with n (at an appropriate rate to ensure suitable
convergence properties for the estimator). However, the number of observations is often severely
restricted for the type of applications considered here, and σ will be kept constant.

A natural candidate is Shannon entropy, which, for φ(·) a probability density function (pdf)
on (a subset of) R

p, writes H1(φ) = −
∫

Rp φ(t) log[φ(t)] dt. However, the computation of

H1[φ̂n(·;Y (X))] with φ̂n(·;Y (X)) given by (11) is rather cumbersome and we thus consider
another form of entropy that yields far simpler calculations. The second-order Tsallis entropy
of the pdf φ(·) writes H2(φ) = 1 −

∫
Rp φ

2(t) dt and can be given an analytic expression when

substituting the estimator φ̂n(·;Y (X)) for φ. Indeed, for φ(y; z1, . . . , zm) = (1/m)
∑m

i=1 ϕzi,σ(y)
we have

H2[φ(·; z1, . . . , zm)] = 1 −

∫

Rp

φ2(t; z1, . . . , zm) dt = 1 − (1/m2)

m∑

i,j=1

ϕzi,σ
√

2(zj) .

Similarly, the criterion
J2,n(X) = IE{H2[φ̂n(·;Y (X))] |Y n} , (12)

where Y (x) has the normal posterior Y (X) ∼ N (ŷn(X), σ̂2
n(X)), can be given an analytic

expression using the property
∫

Rp ϕa,σ(t)ϕb,δ(t) dt = ϕ
a,
√
σ2+δ2(b). Next point Xn+1 is then

obtained by maximizing J2,n(X).

5. Batch sequential implementation

It may happen that practical considerations impose that batches of k points are chosen
simultaneously, i.e., Xn+1, . . . ,Xn+k at step n (k = 6 in the example of Section 6.2). Both
criteria Ji,n(Xn+1, . . . ,Xn+k), i = 1, 2, then depend on Yn+1, . . . , Yn+k−1 which are unknown at
step n. This makes the problem very complicated and we use the following drastic simplification:
the k next design points at step n are simply chosen as local maximizers of Ji,n(X) (including
the global one).

Moreover, it also happens that observations do not correspond to direct measurements but
require some treatment of the collected data, which induces a delay k′, meaning that at step
n the observations Yn, . . . , Yn−k′+1 are not available yet (k′ = k = 6 in the example of Section
6.2). Here we use a drastic simplification again, and simply replace the unknown observations
by their predicted values based on Y n−k′ .

One may notice that when using the criterion J2,n(·) for choosing the location of next
design points, the problems caused by batch treatment and delays can receive an exact analytic
solution. Indeed, consider for instance the case of batch treatment. When Yn+1, . . . , Yn+k−1

are unknown, one may consider first IE{J2,n(Xn+1, . . . ,Xn+k) |Y
n+k−2}. The expectation with

respect to Yn+k−1 can be calculated analytically, which gives an expression that depends on the
prediction ŷn+k−2(Xn+k−1). Using the linearity of this prediction with respect to Y n+k−2, similar
calculations can be back-propagated and yield a criterion depending only onXn+1, . . . ,Xn+k and
Y n. Similar developments can be made to calculate expectations with respect to Yn, . . . , Yn−k′+1

when a delay k′ is present. However, we do not follow this approach here (those developments
will be presented elsewhere), and use the simplifications mentioned above for the examples in
the next section.

6. Examples

We first consider a 2-inputs/1-output toy example that allows a graphical illustration of the
behavior of the two methods of Sections 3, 4. We then apply those methods to a more complex



5-inputs/2-outputs model that represents the behavior of a real chemical system. For both

examples, we take f(x) = 1 in (4) and Ω(t, ψ) = e−ψ‖t‖
2

.

6.1. A toy example with two inputs and one output

The system is supposed to follow the equation (no observation error, σε = 0)

Y (x1, x2) = 0.2ex1−3 + 2.2|x2| + 1.3x6
2 − 2x2

2 − 0.5x4
2 − 0.5x4

2 + 2.5x2
1

+0.7x3
1 +

3

(8x1 − 2)2 + (5x2 − 3)2 + 1
+ sin(5x1) cos(3x2

1) .

The initial design is a 9-points maximin latin hypercube (several such initial designs have been
used, showing little influence on the performance), points are then added sequentially up to
N = 20. The designs obtained when using the criteria J1,n(·) and J2,n(·), see (10, 12), are
presented in Figure 1–left. The dots correspond to the initial design. The associated responses
are presented on Figure 1–right. The diamonds (resp. stars) correspond to the points added
when using J1,n(·) (resp. J2,n(·)). Note that the design points generated by both methods tend
to concentrate in X whereas the associated responses are dispersed in Y.
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i
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Figure 1. Comparison of the designs (left) generated by J1,n(·) (diamonds) and J2,n(·) (stars)
and associated responses (right), the initial design is a maximin Latine hypercube with 9 points
(dots); the dashed lines (left) correspond to contour plots of Y (x).

We illustrate now the performance of the methods in terms of xT and ρN (T ), see (1, 2).
Figure 2–left presents the location of xT for T varying within its reachable bounds on a regular
grid of size 50 and Figure 2–right presents ρN (T ) as a function of T . The symbols are the same
as in Figure 1: diamonds for the design generated with J1,n(·), stars for J2,n(·). The left part
shows how the system can be inverted, the right part indicates the (mean-squared) error that
can be expected. Note that the points xT tend to gather around design points (compare with
Figure 1–left) in order to reduce the prediction error.

6.2. An application in oil industry with a five inputs/two outputs system

We consider now a more complex system, with measurement errors, 5-inputs and 2-outputs,
constructed empirically from real experimental data obtained from a chemical system. The
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Figure 2. Location of xT (left) and ρN (T ) (right) for the designs generated by J1,n(·) (diamonds
and solid line) and J2,n(·) (stars and dashed line).

input domain is reduced to a grid GX that has been selected with the help of chemists and
contains K = 13 × 17 × 13 × 6 × 5 = 86190 points. The initial design contains 48 points, see
Section 2, and points are added sequentially up to N = 500. The standard deviations σε,i,
i = 1, 2, of the measurement errors for both responses are supposed to be known and constant,
equal to 5% of the range for the corresponding response. We consider batch sequential design,
with batches of size k = 6, in the presence of a delay k′ = 6, see Section 5.

The noise-free responses (available since this is a simulated example) associated with the
design points generated when using the criteria J1,n(·) and J2,n(·), see (10, 12), are presented in
Figure 3. The dots correspond to the responses for the initial design. Note that both methods
yield responses reasonably spread in Y.

Finally, we measure the performance of the methods by computing the values of the criteria
JM,N = maxT∈GY

ρN (T ) and JI,N = (1/K)
∑K

i=1 ρN (Ti), see (3), with Ti ∈ GY , the image of the
grid GX by the noise-free system.

For the sequential maximin-distance approach of Section 3 (criterion J1,n(·)) we get JM,N =
0.0383 and JI,N = 0.0071, whereas for the approach based on Tsallis entropy (criterion J2,n(·)
of Section 4) we get JM,N = 0.0462 and JI,N = 0.0074. It should be noticed that the second
method (based on Tsallis entropy) is much faster than the first one. For that reason the first
method is partly implemented in Fortran. The two methods then generate the last batch of 6
points (the computational burden increases with n) in approximately 10 minutes.

When the design points are generated according to the rule (9), thereby enforcing a space-
filling property in the whole domain X , we get JM,N = 0.0546 and JI,N = 0.0091, which shows
the interest of the two approaches proposed in the paper for the inverse prediction problem
under consideration.

7. Conclusion

This paper deals with the issue of designing experiments for the construction of a model with
good ‘inverse-prediction’ features, that is, a model which associates with each output value T
an input value xT that predicts T well. Two methods are proposed, both of them taking the
prediction accuracy into account via a kriging model. They have been compared first on a 2-



Figure 3. Dispersion of the responses associated with the designs generated by J1,n(·) (left) and
J2,n(·) (right), responses associated with the initial design points are indicated by dots; the grey
background corresponds to the image of the input grid GX by the true (simulated noise-free)
system.

inputs/1-output noise-free toy example and then on a 5-inputs/2-outputs noisy system derived
from a physical application. Both methods seem to give satisfactory results, the one using Tsallis
entropy being more advisable for high output dimensions due to the analytic form of the design
criterion. Finally, when compared with the space-filling algorithm that places design points at
the maxima of the kriging variance, both approaches perform better for the inverse-prediction
problem under consideration.
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