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ABSTRACT

This paper presents a general framework to recover task-
related sources from a multi-class Brain-Computer Interface
(BCI) based on motor imagery. Our method gathers two
common approaches to tackle the multi-class problem: 1)
the supervised approach of Common Spatial Patterns and
Sparse and/or Spectral variants (CSP, CSSP, CSSSP) to dis-
criminate between different tasks; 2) the criterion of statis-
tical independence of non-stationary sources used in Inde-
pendent Component Analysis (ICA). Our method can exploit
different properties of the signals to find the best discrimi-
native linear combinations of sensors. This yields different
models of separation. This work aims at comparing these
models. We show that the use of a priori knowledge about
the sources and the performed task increases classification
rates compared to previous studies. This work gives a gen-
eral framework to improve Brain-Computer Interfaces and to
adapt spatial filtering methods to each subject.

1. INTRODUCTION

The ultimate goal of Brain-Computer Interfaces (BCIs) is to
provide disabled people suffering from severe motor diseases
with a tool to restore communication and movement [2]. Al-
though substantial progress has been made in the field, some
improvements could help BCIs to move out of the laborato-
ries. Brain-computer systems are always an association be-
tween an electrophysiological phenomenon and a signal pro-
cessing algorithm. A typical example of a BCI is based on
the imagination of movement, which results in somatotopic
brain signal variations in specific frequency bands [11, 5].

On the one hand, Independent Component Analysis
(ICA) has been widely used for analyzing and cleaning brain
signals in electroencephalography (EEG). This approach,
initiated in the early 90’s by Jutten and Hérault [7], aims at
tackling the Blind Source Separation (BSS) problem (neither
a priori information about the sources nor the mixing process
is provided) by assuming mutual statistical independence be-
tween sources. Such models have proved useful to increase
classification rates of BCIs [4, 10], but do not use a priori in-
formation about the tasks, namely the labels of tasks during
the training step. Different separation principles can be used
to tackle the BSS problem. They depend on the statistical
properties of sources, and on how statistical independence
is evaluated. When sources are assumed to be independent
and identically distributed (iid), non-gaussianity of sources
is used, which involves higher order statistics or mutual in-
formation. The non-gaussianity assumption case can be re-
leased, yielding other families of algorithms based on col-
oration or time-varying energy [13]. The efficient algorithm
provided by Pham [13] to jointly diagonalize matrices allows

to use different kinds of diversity in the time and frequency
domains, therefore it is suitable for comparing different sep-
aration models.

On the other hand, the goal-oriented approach of Com-
mon Spatial Patterns (CSPs) has been developed and im-
proved since its introduction in [9]. The idea of CSP is to find
the linear combination optimizing the ratio between intra and
inter-class covariance matrices. Many improvements were
achieved: 1) by considering frequency-specific covariance
matrices [8] (CSSP); 2) the Sparse-Spatio Spectral version
(CSSSP) aimed at jointly optimizing a temporal filter [6]; 3)
and the invariant CSP (iCSP) was able to reduce the neg-
ative effects introduced by non-stationary signals [3]. This
approach proved useful to discriminate two motor imagery
tasks but suffers from a lack of generalization to multi-class
problems. A one-versus-rest (OVR) approach has been pro-
posed [14] to generalize the approach to multi-class discrim-
ination problems, but it suffers from some obvious limita-
tions. For example, if one class is the exact barycenter of the
two others, a one-versus-rest approach would fail.

This paper presents an approach to use both the su-
pervised idea of CSP to exploit our knowledge about per-
formed tasks and the theoretical framework of ICA for non-
stationary sources to recover task-related sources. Different
properties of the signal can be used to perform the separation.
The resulting different models are compared and quality of
separation is assessed by classification rates in a 8-subject 4-
class motor imagery experiment (left hand, right hand, foot
and tongue). The remainder of this paper is organized as fol-
lows: in section 2, we present the experimental paradigm,
section 3 provides the reader with the different models and
methods we compared; finally we present and discuss results.

2. SUBJECTS AND EXPERIMENTAL PARADIGM

In this study, the EEG data of eight subjects (three females
and five males with a mean age of 23.8 years and a standard
deviation of 2.5 years, [10, 4]), recorded during a cue-based
four-class motor imagery task, was analyzed. Two sessions
on different days were recorded for each subject, each ses-
sion consisting of six runs separated by short (a couple of
minutes) breaks. One run consisted of 48 trials (12 for each
of the four possible classes), yielding a total of 288 trials per
session.

The subjects were sitting in a comfortable armchair
in front of a computer screen. As mentioned above, the
paradigm consisted of four different tasks, namely the imag-
ination of movement (motor imagery) of the left hand, right
hand, foot, and tongue, respectively. At the beginning of each
trial (t = 0 s), a fixation cross appeared on the black screen.
In addition, a short acoustic warning tone was presented at



this time instant. After two seconds (at t = 2 s), a cue in
the form of an arrow pointing either to the left, right, down
or up (corresponding to one of the four classes left hand,
right hand, foot or tongue) appeared for 1.25 s, prompting the
subjects to perform the target motor imagery task. No feed-
back (neither visual nor acoustic) was provided. The subjects
were asked to carry out the mental imagination until the fix-
ation cross disappeared from the screen at t = 6 s. A short
break followed, lasting at least 1.5 s. After that, the next trial
started. The paradigm is illustrated in Figure 1 (left).

Figure 1: Timing scheme of the BCI paradigm (left) and elec-
trode setup of the 22 channels with inter-electrode distances
of 3.5 cm. Some locations corresponding to the international
10-20 system are labeled (right).

22 Ag/AgCl electrodes (with inter-electrode distances of
3.5 cm) were used to record the EEG, the setup is depicted in
Figure 1 (right). Monopolar derivations were used through-
out all recordings, where the left mastoid served as reference
and the right mastoid as ground. The signals were sampled
at 250 Hz and bandpass-filtered between 0.5 and 100 Hz. An
additional 50 Hz notch filter was enabled to suppress power
line noise.

Although a visual inspection of the raw EEG data was
performed by an expert, no trials were removed from the sub-
sequent analysis in this study in order to evaluate the robust-
ness and sensitivity to outliers and artifacts of each model.
Three EOG channels and one ECG channel were also used to
measure electrophysiological activity of the subjects. Those
channels were added to the analysis of the data according to
the method described below.

3. METHODS

3.1 Method Overview

Figure 2 shows an overview of the whole processing stage
during the training and the test step. The wavelet box in the
training step processing overview is represented in gray be-
cause its use depends on the model employed for source sep-
aration (see below). The spatial filter computation is done ac-
cording to the different methods described below. The train-
ing step is used to fix some of the parameters of the method
whereas the test step consists in applying the procedure to
unseen data with previously fixed parameters. The dashed
lines represent information, which is shared between learn-
ing and test steps. Trainings are dependent from subjects and
sessions.

3.2 Preprocessing

3.2.1 General Source Separation Framework

The main goal of this work is to find the best spatial filters us-
ing some statistical models of source separation and a priori
knowledge about the tasks performed. We know that source
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Figure 2: Training and test steps. Overview of the method.

separation is impossible if sources are modeled as Gaussian,
identically and independently distributed. Whereas some al-
gorithms like Infomax try to maximize independence, there-
fore using non-gaussianity of the sources; one other way to
move from the Gaussian iid case is to consider simple time
structures within the data. The goal of our work is to study
the performance of some simple time structures by assuming
that, in some basis (Fourier, wavelets, time), the coefficient
of the process are uncorrelated with a smoothly varying vari-
ance. Such a general model leads to separation principles
based only on second-order statistics.

The general framework is that we are trying to recover
sources s(t) related to each task by assuming the simplest
source separation model for linear or convolutive mixtures
of sensor measurements x(t):

x(t) = As(t) ↔ X(t, f ) = AS(t, f ) (1)

x(t) = A⋆ s(t) ↔ X(t, f ) = A( f )S(t, f ) (2)

with A unknown and independent rows in s. The arrow means
that a linear transform is applied, typically a short Fourier
transform or a wavelet transform to take into account the
time-frequency or time-scale properties of the signal. The
separation principle given by Pham and Cardoso in [13] aim-
ing at exploiting slow-varying variances of sources yields the
joint diagonalization of covariance matrices either in the time
or frequency/scale domain.

In the time domain, this principle leads to consider a par-
tition of the observation interval into Tq, with q ∈ [1..Q]. For
each time interval, we define the covariance matrix:

Cxx(Tq) = Et∈Tq
(x(t)x(t)T )

Then, the estimation of the separation matrix B = A−1 is done
by approximately jointly diagonalizing the set

S = {Cxx(Tq)|q ∈ [1..Q]}

This joint diagonalization is done by the Pham’s algo-



rithm [13] by minimizing the following criterion:

C(B) = ∑
Q
q=1 wq

[

logdetdiag
(

BCXX (Tq)B
T
)

− logdet
(

BCXX (Tq)B
T
)]

where wq is used to normalize covariance matrices to unit
traces. Using the Hadamart inequality [12], it can be shown
that this criterion is zero if and only if every matrices are
diagonal.

The same procedure can be applied in the frequency/scale
domain by previously projecting the signals onto a Fourier
or wavelet basis. In this case it exploits the time-frequency
diversity of sources. The model remains the same in such a
basis due to linearity of the transform (wavelet basis).

In such a case covariance matrices are defined as:

CXX (Tq, f ) = Et∈Tq
(X(t, f )X(t, f )T )

Then, the estimation of the separation matrix B is done by
approximately jointly diagonalizing the set

S = {CXX (Tq, f )|q ∈ [1..Q]}

This joint diagonalization is done by the Pham’s algo-
rithm [13]. The criterion is the same as above except that
the sum is over q and f .

Thus the general procedure of this framework is summa-
rized by:

1. for a partition {T1, · · · ,TQ} of the observation interval
in Q subintervals, compute local sample covariance ma-
trices Cxx(Tq),

2. jointly diagonalize the local normalized covariance ma-
trices using the Pham’s algorithm:

A priori knowledge about the performed tasks during
training is included by considering only task-specific covari-
ance matrices. This makes our approach close to CSPs but
our advantage is that the multi-class generalization problem
due to the Rayleigh quotient in CSP is avoided by our ap-
proach based on independence.

3.2.2 Model-Based source separation for Spatial Filtering

In the following, k will represent the index of the men-
tal tasks k ∈ [1..4]. Frequency domains will be denoted as
mu or beta (µ or β ), which represent wavelet transforms
of the signals at scales 4 and 3 respectively. Those bands
are known to be involved in motor imagery [11]. Discrete
wavelet transform was used as frequency basis (Daubechies).
Ek(.) will denote the average across all trials related to class
k. Cxx(t ∈ [t1, t2],k) will denote the set of covariance matrices
for every trial of one session of a subject for task k computed
with EEG in the time domain between t1 and t2. And fi-
nally CXX (t ∈ [t1, t2],k, f ) will denote the set of covariance
matrices for every trials of one session of a subject for task k
computed with EEG in the wavelet basis domain between t1
and t2.

Different kinds of diversities are to be considered in the
following models:

1. Inter-class diversity (ICD): sources related to motor im-
agery have a varying energy among classes. We exploit
the fact that a source active for one mental task is active
with a different energy (or not active at all) for another
mental task. This kind of diversity is exploited by con-
sidering task-specific covariance structures, it is used by
CSP to find discriminative linear transforms of sensors.

2. Time-varying energy (TVE): as motor tasks are known
to be a succession of activations in different brain areas,
it can be assumed that sources related to a mental task
realization can be active with different energies across
the task. Joint diagonalization covariance matrices com-
puted using successive time windows will help recover-
ing sources [13].

3. Coloration (Col): sources are known to be non-white
in the brain. This information can be used in the fre-
quency domain by jointly diagonalizing matrices in the
frequency domain. Pham showed [12] that sources
can be recovered using this criterion if they have non-
proportional power-spectra.

Lastly signals can be considered either in the time domain
(TD) or in the frequency domain (FD).

3.2.3 Exploiting inter-class diversity in the time domain

This first model uses ICD. We recall that this kind of di-
versity is exploited by considering task-specific covariance
structures. For each trial of one specific task, we compute
the covariance matrix of the EEG from t = 2.5 s to t = 7.5 s.
Then we average across every trials of one specific task. As
this is done for every mental task, the procedure leads to a
joint diagonalization of 4 covariance matrices (one for each
task):

S = {Ek(Cxx(t ∈ [2.5,7.5],k)) | k ∈ [1..4]}

3.2.4 Exploiting inter-class diversity and time-varying en-
ergy in the time-domain

This second model aims at exploiting the idea that sources
are active with different energies between different tasks
and/or that the energy of a source is time-varying inside one
task. This information is used by partitioning the previous
interval to 4 subintervals, [2.5,7.5] = ∪4

i=1Ti. Thus the diag-
onalization set consists of 16 covariance matrices:

S = {Ek(Cxx(t ∈ Ti,k)) | i ∈ [1..4],k ∈ [1..4]}

3.2.5 Exploiting inter-class diversity and coloration in the
frequency domain

As brain waves variations resulting from mental tasks are
frequency-specific, we also designed a model to exploit di-
versity of frequency distribution of sources. This assumes
that sources have non-proportional power spectra and/or a
coloration diversity. The discrete wavelet transform is used
to project signals onto wavelet basis (Daubechies). The set
of diagonalization consists of 8 covariance matrices in the
frequency domain, 2 scales for each task:

S = {Ek(CXX (t ∈ [2.5,7.5],k, f )) |k ∈ [1..4], f ∈ {µ,β}}

3.2.6 Exploiting separately inter-class diversity in the fre-
quency domain, convolutive model

The last method consists in assuming that the structure of
the mixing process has to be considered separately in each
band (different mixing models in µ and β ). This assumption
implies that sources in mu band have to be found separately
from sources in beta band. This yields to 2 joint diagonaliza-
tions of 4 frequency-specific covariance matrices (4 tasks):

Sµ = {Ek(CXX (t ∈ [2.5,7.5],k,µ)) |k ∈ [1..4]}



Sβ = {Ek(CXX (t ∈ [2.5,7.5],k,β )) |k ∈ [1..4]}

Such a model results in two separation matrices Bµ and Bβ ,
and thus two different sets of frequency-specific sources.

3.2.7 Artifacts removal

As EOG and ECG channels was available for this experi-
ment, we added those channels into the separation and re-
jected the sources that were highly correlated with non-EEG
channels (correlation coefficient greater than 0.5). Only
columns of the mixing matrix corresponding to clean chan-
nels were kept for the test step.

3.3 Features Extraction

Our convolutive model yields frequency-specific sources,
whereas the sources related to the other models are not
frequency-specific. Due to the elimination of contaminated
sources (high correlation with EOG channel), the number
of sources can vary. We detected that, whereas the convo-
lutive model could theoretically result in twice the number
of sources we get for other models, our elimination step re-
moves much more sources for the convolutive model than for
any other model. Thus we observed that the number of viable
sources remains almost the same for each model (around 20
sources).

In line with physiological knowledge of movement imag-
ination, our feature extraction evaluates frequency-specific
band power in the µ and β band. Power spectral density es-
timations were computed using Discrete Wavelet Transform
(3 seconds of signal is used to compute the discrete wavelet
transform). As the frequency sampling rate of the data is
250 Hz, only scales four and three (corresponding to the µ
and β bands) are considered. Features from our frequency-
specific sources (convolutive model) were considered differ-
ently: µ band power is computed from µ-specific sources
and β band power is computed from β -specific sources. This
finally results in around 40 features for every model.

3.4 General Procedure

For each subject and each session, a 10 × 10-fold cross-
validation is performed. For each cross-validation, 90 % of
the trials are used as training trials and the remaining of the
data is used as test trials. A linear discriminant analysis
(LDA, [10]) is used to classify features.

4. RESULTS

4.1 Cross-Validated Results

We present in Table 1 the mean classification accuracy across
subjects and sessions for cross-validated data. These results
do not show any significant superiority of one model among
the others. A high diversity of skills among subjects for con-
trolling a BCI accounts for this result. Nevertheless, methods
based on frequency domain seems to perform slightly worse
than methods based on time domain. Overall performance of
our methods is very satisfying regarding the difficulty of the
considered task. Our method do not benefit from any feature
selection algorithm, therefore it can be compared with [10]
in which the best classification rate is achieved with Infomax
(about 65 %). Results obtained in [4] outperforms the results
presented here (ranging from 65 to 75 %) but used a feature
selection (sequential forward selection) to range about 1300
features from the feature extraction step.

High variability of classification rates across subjects
(ranging from 40 to 80 percents) leads us to consider subject-
specific results. Table 2 presents results for each subject and
each session. The classification rate (percentage and standard
deviation) is considered in the second column of the table.
The third column of the table gives the corresponding best
model (notations are those introduced in section 3). From
basic probability calculus we can derive our specific signif-
icance test: probability that one method appears 7 or more
times as the best method if methods are randomly ranked
is 0.08 (cumulative binomial distribution with parameters
p = 0.25 and n = 16). Thus the table 2 shows that our
method based on the use of inter-class diversity and time-
varying energy in the time-domain is significantly best than
the others (p = 0.08). It appears clear that the method based
on inter-class diversity and coloration in the frequency do-
main performs worse than the others (best method for only
one session).

Lastly we note an overall superiority of the time domain
based methods over the frequency domain based methods,
respectively the two first and two last methods. This fact
appears obvious by considering the number of session for
which time based methods appears as best models (12 over
16) against the number of frequency-based methods ranked
as best (4 over 16 sessions).

Mean (%) Std Deviation
ICD, TD 69.3 17.4
ICD, TVE, TD 70.2 16.2
ICD, col., FD 66.8 16.8
Convolutive 68.8 17.2

Table 1: Summary of the cross-validated performance

Correct (%) Best Model
S1 ses1 77.2 (1.27) ICD, TD
S1 ses2 78.8 (1.32) ICD, TD
S2 ses1 52.3 (2.00) ICD, TVE, TD
S2 ses2 56.0 (2.08) ICD, TVE, TD
S3 ses1 82.3 (1.08) ICD, TVE, TD
S3 ses2 84.3 (0.86) ICD, TD
S4 ses1 83.4 (1.24) ICD, col., FD
S4 ses2 80.7 (2.11) ICD, ,TVE, TD
S5 ses1 77.1 (1.38) ICD, TD
S5 ses2 88.4 (1.31) Convolutive
S6 ses1 55.8 (2.07) ICD, TVE, TD
S6 ses2 66.1 (1.83) Convolutive
S7 ses1 39.1 (1.44) ICD, TVE, TD
S7 ses2 43.6 (2.31) ICD, TD
S8 ses1 81.4 (0.84) Convolutive
S8 ses2 86.7 (0.90) ICD, TVE, TD

Table 2: Classification rates for each session (ses1 or ses2)
and each subject (S1 to S8) given by the best model. The
standard deviation is given between round brackets.

5. DISCUSSION

Different a priori information were considered in this pa-
per, namely we used Inter-Class Diversity, Time-Varying En-



ergy and Coloration either in the time (for Time-Varying En-
ergy) or in the frequency (Coloration) domain. First of all,
we showed in section 3 that finding multi-class spatial fil-
ters can benefit from the use of simple a priori knowledge.
Then some simple tests of significance showed that exploit-
ing Inter-Class Diversity and Time-Varying energy in the
time domain proved better than the other methods consid-
ered here. It was quite obvious that using a priori knowl-
edge about the tasks performed would improve classification
rates. But improvements due to a priori knowledge about
time-varying energy was quite surprising. This result sup-
ports the hypothesis that different sources appears during the
performance of the tasks and that their time course is not
constant. Time interval partitioning was very simple and we
think that some refined partitioning of intervals could result
in significant improvements of the classification rates.

We pointed out a disadvantage of such a refined frame-
work by showing that none of the presented methods could
be considered as best for every subjects. Unsurprisingly, the
design of optimal spatial filters have to cope with inherent
difficulties of studying brains and real subjects: methods
have to be subject-dependent to yield optimal results. The
set of methods presented here raises the classical issue of Oc-
cam’s Razor: fitting data with the most refined model could
be dangerous if subjects’ imagined tasks are significantly
modified by training. These two considerations have to be
tackled in two different ways to make such signal processing
algorithm available for daily life use: 1) an automatic pro-
cedure has to be designed to select subject-specific methods;
2) adaptive algorithms will be necessary to adapt systems to
subjects.

In summary, we presented here an efficient frame-
work for increasing classification rates of multi-class BCI
paradigms. Our framework is well grounded on the Pham’s
theoretical work about joint approximate diagonalization and
provides natural a priori knowledge that can be used to gather
advantages of both Independent Component Analysis (we as-
sume statistical independence of sources) and Common Spa-
tial Patterns.

6. CONCLUSION

We presented different models to use a priori knowledge
about the performed task. Those models are based on the
mathematical theory of non-stationary source separation.
Our models do not suffer from any multi-class limitations
and yield good results regarding the complexity of our treat-
ment.
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