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Automatic Cuts for Magnetic Scalar Potential
Formulations
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2L aboratoire d, ENSIEG, Saint Martin d, France
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The approach of magnetic scalar potential T, ¢-¢ is widely popular for solving magnetic problems coupled with electric circuits.
However, cuts are required to preserve the Ampere’s law for the case of ferromagnetic circuits with holes surrounded by coils. The
manual definition of cuts might not be evident even for experimented finite-element (FE) users. This paper presents a new automatic
cuts generation algorithm. First, we present a tool that allows determining if a ferromagnetic region has holes or not. If holes are found,
the region is then inflated to get automatically needed cuts. The presented algorithm is also applicable to generate electric cuts in massive

conductors.

Index Terms—Automatic cut, finite-element (FE) method, multiply connected regions, total magnetic scalar potential.

1. INTRODUCTION

HE formulation in term of total magnetic scalar potential

Top-¢ is known for its robustness and efficiency to solve
magnetic problems coupled with electric circuits [1], [2]. The
main advantage of this formulation is to lead to one unknown
per node in air and ferromagnetic regions and then to save sig-
nificant computation time.

Nevertheless, in case of ferromagnetic regions with holes sur-
rounded by coils, the well-known connexity problem occurs and
cuts are then required to verify Ampere’s law. The manual defi-
nition of cuts could not be obvious even for experimented FE
users. This paper proposes an algorithm to detect ferromag-
netic region with holes and subsequently to find appropriate
cut surfaces.

In the next section, we will describe the T¢-¢ formulation
and clarify the reason that makes us to generate automatically
the cuts.

II. Th¢p-¢ FORMULATION

The Ty¢p-¢ formulation is able to treat problems with mag-
netic devices coupling with electric circuits. By using this for-
mulation, we have in the air region €2

H=171 ty—grad¢ (1)
B =oH 2)

where t( is computed in 2y region with a unit current in the
inductor and satisfying ty X n = 0 on its boundary 9€.

In magnetic circuit region €2,;,, in order to circumvent the
so-called cancellation error caused by the subtraction of two
great numbers, it is convenient to use the total scalar magnetic
potential ¢

H = —grad¢ 3)
B = uH. 4)
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cut surface with potential jump

Fig. 1. Closed magnetic circuit surrounding by coils.
On using nodal variable, we compute t( in the region €2 such
as

to = ho — grad(5¢) )

where

e by is the field in {2y region created by a unit current in the

inductor, calculated with Biot—Savart law.

e ¢ is the reduced-total increment [3], [4] calculated with

a unit current in the inductor with the respect of the condi-
tion of changing between different domains (in this case,
between )y and €2,;,). Therefore, we compute d¢ such as
[ho — grad(6¢)] x n = 0 on 9.

This formulation is very attractive because only one unknown
per node in €2y and €2, is needed. However, in case of a multiply
connected region {2, surrounded by coils, Ampere’s law is not
verified. This problem is known as connexity problem. Let us
consider Fig. 1.

On the closed-loop C, the H circulation must be equal to nl
such as (6)

j{ H-dl=nl. (6)
c
Whereas it is equal to zero in this configuration
j{ H-dl = f —grad(¢) - dl = 0. @)
c c

The solution which was found to solve this problem is to allow a
discontinuity of the potential in the magnetic circuit by creating
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Coordinate system of the element Sheu element

N, 2 y

Fig. 2. Shell element.

a cut. The value of the discontinuity of potential will be imposed
by the total current (nl) which surrounds the magnetic circuit
[3]. The cut is then modeled by shell elements [5] with double
nodes (see Fig. 2). Each couple of double nodes is at the same
coordinates and each node is at different sides of the cut (top
and bottom in the example). We can now consider that €2,,, have
no more holes and d¢ is now computed on 92 and on the cut
itself. In such a way, Ampere’s law is naturally restored.

Then, we can see that it could be difficult for an FE user to
understand the problem and even for an experimented one to
avoid mistakes. The best way seems to automate the total pro-
cedure. In the next section, we will investigate in a new method
to generate the cut. We will then clarify its pertinence compared
to others approaches.

III. INFLATING TO GENERATE CUTS
A. Classical Approach

Lots of works have already been realized on the subject [3],
[6], [7], and [8]. Most part of them search cutting surfaces by
deflating scalar magnetic region around each coil. They obtain
a surface which blocks up the hole of the coil. The cut is then the
intersection between this surface and the ferromagnetic region.
These approach leads to efficient results but has some draw-
backs. First, this deflation algorithm works on a high number
of elements (air and ferromagnetic region), and then the method
might be time consuming. Moreover, for a magnetic circuit with
two surrounding coils and one hole only; two cutting surfaces
are found and only one is needed.

We propose a new approach similar to previous method which
enables to suppress theses problems. Instead of deflating the
scalar potential regions, the basic idea is to inflate the ferromag-
netic circuit region.

In this section, we study a magnetic circuit which needs to be
cut. First, we are going to describe a tool that permit to compute
the number of holes for a given magnetic circuit. Second, we
will explain the procedure to generate the required cuts.

B. With Holes or Not?

The tool that we use to detect a region with holes is the
Euler—Poincaré characteristic x and the genus Gof the region

[9]
x=V-FE+F 8)
G =) ©)

where V, E, and Fare, respectively, the number of vertices,
edges, and faces representing one region. The genus G is the
number of holes of the region. An example is presented in Fig. 3.
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V=24
E=40
F=14
z:.
G=2

Fig. 3. Characteristic Euler—Poincaré for two-hole magnetic circuit.

In this example, we can see that the use of Euler—Poincaré
characteristic is able to recognize holes of one region and then
to point out if this region needs cuts or not.

C. Inflate the Magnetic Circuit to Make Cuts

The goal of algorithm is from a mesh of a multiply connected
magnetic circuit, to find out a set of facets which make the circuit
simply connected.

The basic idea is to simulate the growth of a balloon injected
inside the region until it occupies the whole region. Then the
meeting part of balloon’s boundary will form the appropriated
cuts. We can easily figure out that cuts generated will make the
region simply connected. However, we will see that this process
is going to generate a set of surfaces. Only some of them will
cut really the magnetic circuit, it will be then necessary to keep
the good ones and to eliminate the others.

Let us now explain our algorithm precisely.

1) Initialization:

* Grouping volume of magnetic circuits into connected

regions.

¢ From the finite-element (FE) mesh, return all elements in
each connected region.

e Set all these elements as unvisited.

* For each group, choose an arbitrary element which will
be the initial set I of the balloon and mark it visited at
range k = 0 (see Fig. 4).

2) Iteration: We repeat the following procedure until there

are no more elements unvisited.

* Return all the neighbors of the initial set /.
* For each neighbor:
—If it was marked at rang r superior or equal to
k, stock the facet between this neighbor and the
involved element into the set K of acceptable facets
for cut.
—If the neighbor is unvisited, add this element to
the temporary set 7" and mark it at rang k + 1.
—Else, continue with the next neighbor element.
* Replace the initial set I by the temporary set 7" and so on.
‘We can see that the previous procedure ensures that the region
defined by all the visited elements remains simply connected.
The volume of the multiply connected magnetic circuit will be
occupied step by step by the balloon’s volume. The procedure
works in parallel if there is more than one group of multiply
connected magnetic circuits. This allows the algorithm to go
faster.
3) Filter: After having visited all elements, we obtain a set
K of acceptable facets cut. These facets are grouping in different



1670

Fig. 4. Mesh and an arbitrary initial element.

Fig. 5. Acceptable facets for cut AF.

Fig. 6. Final cut obtained on 3-D multiply connected magnetic circuit.

connected surfaces. Only some of them are the real cut. For
example, in Fig. 5, the real cut must be the both bold lines.

We need then to eliminate the non part of cut. These parts
are distinguished from the real cut by their floating edges in the
magnetic circuit region.

Finally, we get the resulting cuts. We present here a two-hole
magnetic circuit and the cuts obtained with our approach (see
Fig. 6).

D. Computation Time

The process of inflation is very quick. We can explain this
point because the method is based only on the relationship be-
tween different neighbor elements. With a standard FEM data-
base, the process of inflation is nearly instantaneous.

The most time consuming part of the algorithm is to eliminate
the non part of cuts (step 3). The total needed time to generate
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TABLE 1
COMPARISON BETWEEN INFLATING METHOD AND DEFLATING METHOD

Number of cuts generated
Number of

Case Configuration X
= required cuts
By inflating By
= deflating
1 O“ 1 1 1
3 ‘ f”%ﬂ / I 2 1
¥ ([t D) 2 2 2

s (= 'tf 5 ,'10 1 2 1

the complete cuts for the problem presented in the following
is about 7 s on a Pentium IV 1.8 GHz 512 Mb of RAM. The
problem was modeled with more than 64 000 elements and most
of them are in the magnetic circuit. This example gives an idea
of speed of the method.

IV. DISCUSSION

Four points can be discussed about this method. First, the
time consuming of this technique is reduced in comparison to
air deflating techniques [5]. It works with elements of the mag-
netic circuit, region which has fewer elements than the whole
problem. Therefore, the number of elements that this method
has to treat is small, so do the time.

Second, most part of time, the number of generated cuts is
equal to the number of holes. We present in Table I a summary
of some cases in which we compare the air deflating approach
and our method.

For case 1 and 4, both methods are equivalent leading to
the good number of cuts. For case 2, our method returns one
cut and only one is needed. For the third case, the deflating
approach is superior to ours which generates too much cuts.
Finally, in case 5, our method leads to a too high number of
cutting surfaces. It must be pointed out that to generate a too
high number of cuts is not really a problem. In fact, if a coil
does not surround a closed magnetic circuit, the reduced-total
increment ¢ calculated on a nonneeded cut will be naturally
imposed to zeros by the formulation. The problem of nonneeded
cut generation will only increase the computation time of the
method by useless integration.

Third, the generated cut does not depend on any auxiliary
object like inductors but directly on the mesh of the magnetic
circuit. This is an advantage in comparison of [5] for problems
with nonmesh inductors, the deflating method being based on
the mesh of coils. Moreover, we can notice that for some
configurations, we will get fewer cuts than holes if there are
some intersections between cuts. But the important point is
that the multiply connected magnetic circuit will be always
cut into simply connected one.
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Potential Jump

Fig. 7. Magnetic field of the watch motor obtained with automatic cuts. Zoom
area represents the potential jump.

Fig. 8. Magnetic field of the watch motor with manual cuts.

Fourth, this method works with all kind of multiply connected
region. Therefore, we can use it for the case of multiply con-
nected massive conductor. In this configuration, we also need
cuts, but electric ones [10].

V. RESULTS ON AN INDUSTRIAL EXAMPLE

We have implemented the algorithm in FLUX-—software
package which enable to take into account magnetic problems
coupled with electric circuits. The example presented in Fig. 7
is a watch motor which is composed by a permanent magnet,
a multiply connected magnetic circuit highly saturated. It is
coupled with an external electric circuit. The total problem was
modeled with 46 379 elements.

The computation of characteristic Euler—Poincaré returns
two holes. The execution of the algorithm of inflation returns

two sets of cuts. The total time needed to execute all the in-
flating process was 2 s on a Pentium IV 1.8 GHhz 512 Mb of
RAM.

We present here the magnetic field in the magnetic circuit for
a current of 0.02 mA in the inductor.

The Fig. 8 shows results obtained in the same condition but
with a manual cuts. Both results present a very good adequation.

VI. CONCLUSION

We have presented a new algorithm to generate the automatic
cut in case of magnetic circuits with holes. The scheme pro-
poses a powerful tool to generate cuts on any multiply connected
configuration without taking into account any auxiliary object.
This contribution strongly improves the computation time of
cuts generation by working within in the low number of ele-
ments. Moreover, the approach is general and can be applied
for the generation of electric cuts.
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