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Introduction

An important literature is dedicated to the estimation of extreme quantiles, i.e. quantiles of order 1 -α with α tending to zero. The most popular estimator was proposed by Weissman [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF], in the context of heavy-tailed distributions, and adapted to Weibull-tail distributions in [START_REF] Diebolt | Bias-reduced extreme quantiles estimators of Weibull distributions[END_REF][START_REF] Gardes | Estimating extreme quantiles of Weibull tail-distributions[END_REF]. We also refer to [START_REF] Dekkers | On the estimation of the extremevalue index and large quantile estimation[END_REF] for the general case. In a lot of applications, some covariate information is recorded simultaneously with the quantity of interest. For instance, in climatology one may be interested in the estimation of return periods associated to extreme rainfall as a function of the geographical location. The extreme quantile thus depends on the covariate and is referred in the sequel to as the conditional extreme quantile. Parametric models for conditional extremes are proposed in [START_REF] Davison | Models for exceedances over high thresholds[END_REF][START_REF] Smith | Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion)[END_REF] whereas semi-parametric methods are considered in [START_REF] Beirlant | Regression with response distributions of Pareto-type[END_REF][START_REF] Hall | Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data[END_REF]. Fully 1 non-parametric estimators have been first introduced in [START_REF] Davison | Local likelihood smoothing of sample extremes[END_REF], where a local polynomial modelling of the extreme observations is used. Similarly, spline estimators are fitted in [START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF] through a penalized maximum likelihood method. In both cases, the authors focus on univariate covariates and on the finite sample properties of the estimators. These results are extended in [START_REF] Beirlant | Local polynomial maximum likelihood estimation for Pareto-type distributions[END_REF] where local polynomials estimators are proposed for multivariate covariates and where their asymptotic properties are established.

Besides, covariates may be curves in many situations coming from applied sciences such as chemometrics (see Section 5 for an illustration) or astrophysics [START_REF] Bernard-Michel | Gaussian Regularized Sliced Inverse Regression[END_REF]. However, the estimation of conditional extreme quantiles with functional covariates has not been addressed yet. Two statistical fields are involved in this study. In the one hand, nonparametric smoothing techniques adapted to functional data are required in order to deal with the covariate. We refer to [START_REF] Bosq | Linear processes in function spaces[END_REF][START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF][START_REF] Ramsay | Functional Data Analysis[END_REF][START_REF] Ramsay | Applied functional Data Analysis[END_REF] for overviews on this literature. We propose here to select the observations to be used in the conditional quantile estimator by a moving window approach. In the second hand, once this selection is achieved, extreme-value methods are used to estimate the conditional quantile, see [START_REF] Embrechts | Modelling extremal events[END_REF] for a comprehensive treatment of extreme-value methodology in various frameworks.

Whereas no parametric assumption is made on the functional covariate, we assume that the conditional distribution is heavy-tailed. This semiparametric assumption amounts to supposing that the conditional survival function decreases at a polynomial rate. To estimate the conditional quantile, we focus on three different situations. In the first one, the convergence of α to zero is slow enough so that the quantile is located in the range of the data. In the second situation, the quantile is located near the boundary of the sample. Finally, in the third situation, the convergence of α to zero is sufficiently fast so that the quantile may be beyond the boundary of the sample. This situation is clearly the most difficult one since an extrapolation outside the range of the sample is needed to achieve the estimation.

Nonparametric estimators are defined in Section 2 for each situation. Their asymptotic distributions are derived in Section 3. Some examples are provided in Section 4 and an illustration on spectrometric data is given in Section 5. Proofs are postponed to Section 6.

Estimators of conditional extreme quantiles

Let E be a (finite or infinite dimensional) metric space associated to a metric d. Let us denote by F (., x) the conditional cumulative distribution function of a real random variable Y given x ∈ E and by q(α, x) the associated conditional quantile of order 1 -α defined by F (q(α, x), x) = 1 -α, for all x ∈ E and α ∈ (0, 1). In this paper, we focus on the case where, for all x ∈ E, F (., x) is the cumulative distribution function of a heavy-tailed distribution. In such a situation, the conditional quantile q(., x) satisfies, for all λ > 0, lim α→0 q(λα, x) q(α, x) = λ -γ(x) ,

where γ(.) is an unknown positive function of the covariate x referred to as the conditional tail index. Loosely speaking, the conditional quantile q(., x) decreases towards 0 at a polynomial rate driven by γ(x). The conditional quantile is said to be regularly varying at 0 with index -γ(x), and this property characterizes heavy-tailed distributions. We refer to [START_REF] Bingham | Regular variation, Encyclopedia of Mathematics and its Applications[END_REF] for a general account on regular variation theory and to paragraph 4.2 for some examples of distributions satisfying [START_REF] Beirlant | Regression with response distributions of Pareto-type[END_REF].

Given a sample (Y 1 , x 1 ), . . . , (Y n , x n ) of independent observations, our aim is to build point-wise estimators of conditional quantiles. More precisely, for a given t ∈ E, we want to estimate q(α, t), focusing on the case where the design points x 1 , . . . , x n are non random. To this end, for all r > 0, let us denote by B(t, r) the ball centered at point t and with radius r defined by

B(t, r) = {x ∈ E, d(x, t) ≤ r}
and let h n,t = h t be a positive sequence tending to zero as n goes to infinity. The proposed estimator uses a moving window approach since it is based on the response variables Y i s for which the associated covariates x i s belong to the ball B(t, h t ). The proportion of such design points is thus defined by

ϕ(h t ) = 1 n n i=1 I{x i ∈ B(t, h t )}
and plays an important role in this study. It describes how the design points concentrate in the neighborhood of t when h t goes to zero, similarly to the small ball probability does, see for instance the monograph on functional data analysis [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF]. Thus, the nonrandom number of observations in the slice

S t = (0, ∞) × B(t, h t ) is given by m n,t = m t = nϕ(h t ). Let {Z i (t), i = 1, .
. . , m t } be the response variables Y i s for which the associated covariates x i s belong to the ball B(t, h t ) and let Z 1,mt (t) ≤ . . . ≤ Z mt,mt (t) be the corresponding order statistics.

In this paper, we focus on the estimation of conditional "extreme" quantile of order 1 -α mt . Here, the word "extreme" means that α mt tends to zero as n goes to infinity, making kernel based estimators [START_REF] Ferraty | Estimating some characteristics of the conditional distribution in nonparametric functional models[END_REF] non adapted. In the sequel, three situations are considered: [START_REF] Beirlant | Regression with response distributions of Pareto-type[END_REF], where x denotes the largest integer smaller than x. Let us highlight that, in the unconditional case, situations (S.1) and (S.3) with c = 0 have already been examined by Dekkers and de Haan [START_REF] Dekkers | On the estimation of the extremevalue index and large quantile estimation[END_REF], the extreme case c = 0 being considered in [START_REF] De Haan | Slow variation and the characterization of domains of attraction[END_REF], Theorem 5.1. A summary of their results can be found in [START_REF] Embrechts | Modelling extremal events[END_REF], Theorem 6.4.14 and Theorem 6.4.15. In situation (S.1), α mt goes to 0 slower than 1/m t and the point-wise estimation of the conditional extreme quantile relies on an interpolation inside the sample, since, from Proposition 2 below, q(α mt , t) is eventually almost surely smaller that the maximal observation Z mt,mt (t) in the slice S t . In such a situation, we propose to estimate q(α mt , t) by: q1 (α mt , t) = Z mt-mtαm t +1,mt (t).

(S.1) α mt → 0 and m t α mt → ∞, (S.2) α mt → 0, m t α mt → c ∈ [1, ∞) and m t α mt → c . (S.3) α mt → 0 and m t α mt → c ∈ [0,
(

) 2 
In the intermediate situation (S.2), estimator (2) can still be used, since for n large enough, m t α mt = c > 0 and thus the estimation relies on a conditional extreme value of the sample. Let us note that, if c is not an integer, then m t α mt → c implies m t α mt → c . Otherwise, if c is an integer, then condition m t α mt → c is necessary to prevent the sequence m t α mt from having two adherence values and q1 (α mt , t) from oscillating.

In situation (S.3), α mt goes to 0 at the same speed or faster than 1/m t and the conditional extreme quantile is eventually larger than Z mt,mt (t) with positive probability e -c ≥ e -1 . Thus, its estimation is more difficult since it requires an estimation outside the sample. We propose in this case to estimate q(α mt , t) by:

q2 (α mt , t) = q1 (β mt , t) (β mt /α mt ) γn(t) = Z mt-mtβm t +1,mt (t) (β mt /α mt ) γn(t) , (3) 
where β mt satisfies (S.1) and γn (t) is a point-wise estimator of the conditional tail index γ(t). Such estimators have been proposed both in the finite dimensional setting [START_REF] Beirlant | Local polynomial maximum likelihood estimation for Pareto-type distributions[END_REF] and in the general case [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF], see also paragraph 4.1 for some examples. Note that ( 3) is an adaptation of Weissman estimator [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF] in the case where covariate information is available. The extrapolation is achieved thanks to the multiplicative term (β mt /α mt ) γn(t) which magnitude is driven by the estimated tail index γn (t). As expected, the extrapolation is all the more important as the tail is heavy.

Main results

We first give some notations and conditions useful to establish the asymptotic distributions of our estimators. In the sequel, we fix t ∈ E and we assume:

(A) The conditional quantile function α ∈ (0, 1) → q(α, t) ∈ (0, +∞) is differentiable, the function defined by

α ∈ (0, 1) → ∆(α, t) = γ(t) + α ∂ log q ∂α (α, t) ∈ (0, +∞)
is continuous and such that lim α→0 ∆(α, t) = 0.

Assumption (A) controls the behavior of the log-quantile function with respect to its first variable. It is a sufficient condition to obtain the heavy-tail property [START_REF] Beirlant | Regression with response distributions of Pareto-type[END_REF], see for instance [START_REF] Bingham | Regular variation, Encyclopedia of Mathematics and its Applications[END_REF], Chapter 1. For all a ∈ (0, 1), let us introduce ∆(a, t) = sup α∈(0,a)

|∆(α, t)|.
The largest oscillation of the log-quantile function with respect to its second variable is defined for all a ∈ (0, 1/2) as

ω n (a) = sup log q(α, x) q(α, x ) , α ∈ (a, 1 -a) , (x, x ) ∈ B(t, h t ) 2 .
Finally ) → 0 for some δ > 0, then, there exists an event A n with P(A n ) → 1 as n → ∞ such that

{(log Z mt-i+1,mt , i ∈ J kt ) |A n } d = {(log q(V i,mt , T i ), i ∈ J kt ) |A n } ,
where V 1,mt ≤ . . . ≤ V mt,mt are the order statistics associated to the sample {V 1 , . . . , V mt } of independent uniform variables and {T 1 , . . . , T kt } are random variables in the ball B(t, h t ).

Note that this result is implicitly used in [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF], proof of Theorem 1. We also refer to [START_REF] Falk | Laws of small numbers: Extremes and rare events[END_REF], Theorem 3.5.2, for the approximation of the nearest neighbors distribution using the Hellinger distance and to [START_REF] Gangopadhyay | A note on the asymptotic behavior of conditional extremes[END_REF] for the study of their asymptotic distribution. Here, condition k 2 t ω n (m

-(1+δ) t
) → 0 shows that, the smoother the quantile function is on the slice S t , i.e. the smaller its oscillation is, the easier the control of the uppest observations is, i.e the larger k t can be.

The next proposition is dedicated to the study of the position of the conditional extreme quantile q(α, t) with respect to the largest observation in the slice S t .

Proposition 2 If ω n (m -(1+δ) t
) → 0 for some δ > 0, then • under (S.1), P(Z mt,mt < q(α mt , t)) → 0,

• under (S.2) or (S.3), P(Z mt,mt < q(α mt , t)) → e -c .

Let us first focus on situation (S.1) where the estimation of the conditional extreme quantile is addressed using q1 (α mt , t), an upper order statistic chosen in the considered slice.

Theorem 1 Let (α mt ) be a sequence satisfying (S.1).

If (m t α mt ) 2 ω n (m -(1+δ) t
) → 0 for some δ > 0 then,

(m t α mt ) 1/2 q1 (α mt , t) q(α mt , t) -1 d → N (0, γ 2 (t)).
It appears that the estimator is asymptotically Gaussian, with asymptotic variance proportional to γ 2 (t)/(m t α mt ). Thus, the heavier is the tail, the larger is γ(t), and the larger is the variance. Besides, the asymptotic variance being inversely proportional to α mt , the estimation remains more stable when the extreme quantile is far from the boundary of the sample. Considering now situation (S.2), an asymptotically Gaussian behavior cannot be expected since, in this case, the estimator is based on the c th uppest order statistic in the considered slice.

Theorem 2 Let (α mt ) be a sequence satisfying (S.2).

If ω n (m

-(1+δ) t
) → 0 for some δ > 0 then, q1 (α mt , t) q(α mt , t) -

1 d → E(c, γ(t)),
where E(c, γ(t)) is a non-degenerated distribution.

The asymptotic distribution E(c, γ(t)) could be explicitly deduced from the proof of the result. It is omitted here for the sake of simplicity. Situation (S.3) is more complex since the asymptotic distribution of q2 may depend both on the behavior of q1 and γn . In the next theorem, two cases are investigated. In situation (i), the asymptotic distribution of q2 is driven by q1 . At the opposite, in situation (ii), q2 inherits its asymptotic distribution from γn .

Theorem 3 Let (β mt ) be a sequence satisfying (S.1) and let (α mt ) be a sequence eventually smaller than (β mt ). Define

ζ mt = (m t β mt ) 1/2 log(β mt /α mt ). If (m t β mt ) 2 ω n (m -(1+δ) t
) → 0 for some δ > 0 and there exists a positive sequence υ n (t) and a distribution D such that

υ n (t)(γ n (t) -γ(t)) d → D, (4) 
then, two situations arise:

(i) Under the additional condition

ζ mt max υ -1 n (t), ∆(β mt , t) → 0, (5) 
we have

(m t β mt ) 1/2 q2 (α mt , t) q(α mt , t) -1 d → N (0, γ 2 (t)). (6) 
(ii) Otherwise, under the additional condition

υ n (t) max ζ -1 mt , ∆(β mt , t) → 0, (7) 
we have

υ n (t) log (β mt /α mt ) q2 (α mt , t) q(α mt , t) -1 d → D. (8) 
Note that, even though the main interest of this result is to tackle the case where (α mt ) is a sequence satisfying (S.3), it can also be applied in the more general situation where α mt is eventually smaller than β mt . For instance, it appears that, in situation (S.2), q2 (α mt , t) is a consistent estimator of q(α mt , t) in the sense that the ratio converges to one in probability whereas, in view of Theorem 2, q1 (α mt , t) is not consistent. Some applications of Theorem 3 are provided in the next section.

Examples

In paragraph 4.1, the above theorem is illustrated with a particular family of conditional tail index estimators. The corresponding assumptions are simplified in paragraph 4.2 for some classical heavy-tailed distributions.

Some conditional tail-index estimators

In [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF], a family of conditional tail index estimators is introduced. They are based on a weighted sum of the log-spacings between the k t largest order statistics Z mt-kt+1,mt , . . . , Z mt,mt . The family is defined by

γn (t, W ) = kt i=1 i log Z mt-i+1,mt (t) Z mt-i,mt (t) W (i/k t , t) kt i=1 W (i/k t , t) , (9) 
where W (., t) is a weight function defined on (0, 1) and integrating to one. Basing on (9) and considering β m,t = k t /m t , the conditional extreme quantile estimator (3) can be written as

q2 (α mt , t, W ) = Z mt-kt+1,mt (t) k t m t α mt γn(t,W )
.

From [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF], Theorem 2, under some conditions on the weight function, γn (t, W ) is asymptotically Gaussian:

k 1/2 t (γ n (t, W ) -γ(t)) d → N (0, γ 2 (t)AV(t, W )),
where

AV(t, W ) = 1 0 W 2 (s, t)ds. Letting υ n (t) = k 1/2 t , we obtain ζ mt υ -1 n (t) = log k t m t α mt → ∞,
in situation (S.2) or (S.3), which means that condition ( 5) cannot be satisfied. Thus, only situation (ii) of Theorem 3 may arise leading to the following corollary.

Corollary 1 Suppose the assumptions of [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF], Theorem 2 hold. Let

k t → ∞ such that k 1/2 t ∆(k t /m t , t) → 0 and (10) 
k 2 t ω n (m -(1+δ) t ) → 0 for some δ > 0. (11) 
Let (α mt ) be a sequence satisfying (S.2) or (S.3). Then,

k 1/2 t log(k t /(m t α mt )) q2 (α mt , t, W ) q(α mt , t) -1 d → N (0, γ 2 (t)AV(t, W )).
As an example, one can use constant weights W H (s, t) = 1 to obtain the so-called conditional Hill estimator with AV(t, W H ) = 1 or logarithmic weights W Z (s, t) = -log(s) leading to the conditional Zipf estimator with AV(t, W Z ) = 2. We refer to [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF], Section 4, for further details.

Illustration on some heavy-tailed distributions

Standard Pareto distribution is the simplest example of heavy-tailed distribution. Its conditional quantile of order 1 -α decreases as a power function of α since, in this case, q(α, t) = α -γ(t) . Therefore ∆(α, t) = 0 for all α ∈ (0, 1) and condition [START_REF] Diebolt | Bias-reduced extreme quantiles estimators of Weibull distributions[END_REF] of Corollary 1 vanishes. Another example is Fréchet distribution for which

q(α, t) = α -γ(t) 1 α log 1 1 -α -γ(t)
.

Here, the conditional quantile approximatively decreases as a power function of α since, in this case, q(α, t) ∼ α -γ(t) , the quality of this approximation being controlled by

∆(α, t) = - γ(t) 2 α(1 + O(α)) as α → 0.
A similar example is given by Burr distributions for which

q(α, t) = α -γ(t) 1 -α -ρ(t) -γ(t)/ρ(t) and ∆(α, t) = -γ(t)α -ρ(t) (1 + O(α -ρ(t) )),
with ρ(t) < 0. These results are collected in Table 1. In both Fréchet and Burr cases, ∆(α, t) is asymptotically proportional to α -ρ(t) as α → 0 with the convention ρ(t) = -1 for the Fréchet distribution. Note that ρ(t) is known as the second-order parameter in the extreme-value theory. It drives the quality of the approximation of the conditional quantile q(α, t) by the power function α -γ(t) . Furthermore, it is easily seen, that for these two distributions, the function |∆(., t)| is increasing. Thus, condition [START_REF] Diebolt | Bias-reduced extreme quantiles estimators of Weibull distributions[END_REF] of Corollary 1 can be simplified as m

2ρ(t) t k 1-2ρ(t) t
→ 0 which shows that, the smaller ρ(t) is, the larger k t can be. Finally, if γ and ρ are Lipschitzian, i.e. if there exist constants c γ > 0 and c ρ > 0 such that

|γ(x) -γ(x )| ≤ c γ d(x, x ) and |ρ(x) -ρ(x )| ≤ c ρ d(x, x ) for all (x, x ) ∈ B(t, h t ) 2 ,
then the oscillation can be bounded by ω n (a) = O(h t log(1/a)) as a → 0 and thus condition [START_REF] Dekkers | On the estimation of the extremevalue index and large quantile estimation[END_REF] of Corollary 1 can be simplified as k 2 t h t log m t → 0.

Finite sample behaviour

In this section, we propose to illustrate the behaviour of our conditional extreme quantiles estimators on functional spectrometric data. A question of interest for the planetologist is the following: Given a spectrum collected by the OMEGA instrument onboard the European spacecraft Mars Express in orbit around Mars, how to estimate the associated physical properties of the ground (grain size of CO 2 , proportions of water, dust and CO 2 , etc . . . )? To answer this question, a learning dataset can be constructed using radiative transfer models. Here, we focus on the CO 2 proportion. Given different values y i , i = 1, . . . , 16 of this proportion, a radiative transfer model provides us the corresponding spectra x i , i = 1, . . . , 16 (see Figure 1). Clearly, the obtained spectra are non random. They are functions of the wavelength and we consider here their discretized version on 256 wavelengths x i,l . Using this learning dataset, a lot of methods can be found in the literature to estimate the CO 2 proportion associated to an observed spectrum. One can mention Support Vector Machine, Sliced Inverse Regression, nearest neighbor approach, . . . (see for instance [START_REF] Bernard-Michel | Retrieval of Mars surface physical properties from OMEGA hyperspectral images using Regularized Sliced Inverse Regression[END_REF] for an overview of these approaches). For all these methods, the estimation of the CO 2 proportion is perturbed by a random error term. We propose to modelize this perturbation by:

Y i,j = log(1/y i ) + σ( j (x i ) -Γ(1 -γ(x i ))), j = 1, . . . , n i , i = 1, . . . , 16,
where

γ(x i ) = 0.3 x i 2 2 -min l x l 2 2 max l x l 2 2 -min l x l 2 2 + 0.2, σ = min i log(1/y i ) Γ(1 -γ(x i )) ,
and j (x i ), j = 1, . . . , n i are independent and identically distributed random values from a Fréchet distribution with tail index γ(x i ) (see Table 1). Note that x i 2 2 is an approximation of the total energy of the spectrum x i . The above definitions ensure that γ(x i ) ∈ [0.2, 0.5] and that Y i,j > 0 for all i = 1, . . . , 16 and j = 1, . . . , n i . Furthermore, since the expectation of j (x i ) is given by Γ(1 -γ(x i )), the random variables Y i,j are centered on the value log(1/y i ). Our aim is to estimate the conditional quantile

q(α, x i ) = F ← (α, x i ), for i = 1, . . . , 16,
where F (., x i ) is the survival distribution function of Y i,1 . To this end, the estimator q2 (α, x i , W Z ) defined in paragraph 4.1 is considered. The semimetric distance based on the second derivative is adopted, as advised in [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF], Chapter 9:

d 2 (x i , x j ) = x (2) i (t) -x (2) 
j (t) 2 dt,
where x (2) denotes the second derivative of x. To compute this semi-metric, one can use an approximation of the functions x i and x j based on B-splines as proposed in [START_REF] Ferraty | Nonparametric Functional Data Analysis: Theory and Practice[END_REF], Chapter 3. Here, we limit ourselves to a discretized version d of d:

d2 (x i , x j ) = 255 l=2 {(x i,l+1 -x j,l+1 ) + (x i,l-1 -x j,l-1 ) -2(x i,l -x j,l )} 2 .
The finite sample performance of the estimator in assessed on N = 100 replications of the sample {(x i , Y i,j ), i = 1, . . . , 16, j = 1, . . . , n i } with n 1 = . . . = n 16 = 100. Two values of α are considered: 1/300 and 1/500. In the following, we assume that the hyperparameters h t and k t does not depend on the spectrum (we thus omit the index t). These parameters are selected thanks to the heuristics proposed in [START_REF] Gardes | A moving window approach for nonparametric estimation of the conditional tail index[END_REF] which consists in minimizing the distance between two different estimators of the conditional extreme quantile:

( ĥselect , kselect ) = arg min h,k ∆(q 2 (α, ., W H ), q2 (α, ., W Z ),
where for two functions f and g,

∆(f, g) = 16 i=1 (f (x i ) -g(x i )) 2 1/2 .
The estimator associated to these parameters is denoted by qselect . We also compute ĥoracle and koracle defined as:

( ĥoracle , koracle ) = arg min h,k ∆(q 2 (α, ., W H ), q(α, .)).

The conditional quantile estimator associated to these parameters is denoted by qoracle . Note that ĥselect , kselect , ĥoracle and koracle do not depend on α. Of course, the oracle method cannot be applied in practical situations where q(α, .) is unknown. However, it provides us the lower bound on the distance ∆ that can be reached with our estimator. In order to validate our choice of ĥselect and kselect , the histograms of ∆(q select (α, ., W Z ), q(α, .)) and ∆(q oracle (α, ., W Z ), q(α, .)), computed for the N = 100 replications, are superimposed on Figure 2. It appears that the mean errors are approximatively equal. Let us also remark that the heuristics errors seem to have a heavier right-tail than the oracle errors. For each spectrum x i the empirical 90%confidence interval of qopt (α, x i , W Z ) is represented on Figure 3 for α = 1/300 and on Figure 4 for α = 1/500. The confidence intervals are ranked by ascending order of the tail index. The larger the tail index is, the larger the confidence intervals are. This is in adequation with the result presented in Corollary 1. Finally, on Figure 5 (α = 1/300) and Figure 6 (α = 1/500), we draw estimators qselect (α, x i , W Z ) and qoracle (α,

x i , W Z ) as a function of x i 2 2
on the replication giving rise to the median error ∆(q select (α, ., W Z ), q(α, .)).

It appears that the oracle estimator is only slightly better than the heuristics one. As noticed previously, the estimation error increases with the tail index.

6 Proofs

Preliminary results

Our first auxiliary lemma is a simple unconditioning tool for determining the asymptotic distribution of a random variable.

Lemma 1 Let (X n ) and (Y n ) be two sequences of real random variables.

Suppose there exists an event A n such that

(X n |A n ) d = (Y n |A n ) with P(A n ) → 1. Then, Y n d → Y implies X n d → Y .
Proof of Lemma 1 -For all x ∈ R, the well-known expansion

P(X n ≤ x) = P({X n ≤ x}|A n )P(A n ) + P({X n ≤ x}|A C n )P(A C n ),
where A C n is the complementary event associated to A n , leads to the following inequalities:

P({X n ≤ x}|A n )P(A n ) ≤ P(X n ≤ x) ≤ P({X n ≤ x}|A n )P(A n ) + P(A C n ). Since (X n |A n ) d = (Y n |A n )
, it follows that:

P({Y n ≤ x} ∩ A n ) ≤ P(X n ≤ x) ≤ P({Y n ≤ x} ∩ A n ) + P(A C n ). Taking into account of P(Y n ≤ x) -P(A C n ) ≤ P({Y n ≤ x} ∩ A n ) ≤ P(Y n ≤ x) leads to: P(Y n ≤ x) -P(A C n ) ≤ P(X n ≤ x) ≤ P(Y n ≤ x) + P(A C n ). The conclusion is then straightforward since P(Y n ≤ x) → P(Y ≤ x) and P(A C n ) → 0.
The next lemma provides the asymptotic distribution of extreme quantile estimators from an uniform distribution in a situation analogous to (S.1) in the unconditional case.

Lemma 2 Let V 1 , . . . , V M be independent uniform random variables. For any sequence (θ M ) ⊂ (0, 1) such that θ M → 0 and M θ M → ∞, M θ M 1/2 (V M θ M ,M -θ M ) d → N (0, 1).
Proof of Lemma 2 -For the sake of simplicity, let us introduce k M = M θ M . From Rényi's representation theorem,

V k M ,M d = k M i=1 E i M +1 i=1 E i
where E 1 , . . . , E M +1 are independent random variables from a standard exponential distribution. Thus,

ξ M def = M θ M 1/2 (V k M ,M -θ M ) d = 1 M M +1 i=1 E i -1 M θ M 1/2 × 1 k M k M i=1 E i k M M -θ M + θ M 1 k M k M i=1 E i -1 -θ M 1 M M +1 i=1 E i -1 ,
and, in view of the law of large numbers, we have

ξ M P ∼ M θ M 1/2 k M M -θ M (1 + o P (1)) + (M θ M ) 1/2 1 k M k M i=1 E i -1 -(M θ M ) 1/2 1 M M +1 i=1 E i -1 def = ξ 1,M + ξ 2,M -ξ 3,M .
Let us consider the three terms separately. First, writing k M = M θ M -τ M with τ M ∈ [0, 1), we have

ξ 1,M P ∼ M θ M 1/2 τ M M = τ M (M θ M ) 1/2 → 0, (12) 
since M θ M → ∞. Second, since k M ∼ M θ M , the central limit theorem entails

ξ 2,M ∼ k 1/2 M 1 k M k M i=1 E i -1 d → N (0, 1). ( 13 
)
Similarly, it is easy to check that

ξ 3,M = O P (θ 1/2 M ) = o P (1), (14) 
since θ M → 0. Collecting ( 12), ( 13) and ( 14) concludes the proof.

Proofs of main results

Proof of Proposition 1 -Under (A) and since the random values {Z i (t), i = 1, . . . , m t } are independent, we have:

{log Z i (t), i = 1, . . . , m t } d = {log q(V i , x i ) i = 1, . . . , m t },
where x i is the covariate associated to Z i (t). Denoting by ψ(i) the random index of the covariate associated to the observation Z mt-i+1,mt (t), we obtain

{log Z mt-i+1,mt (t), i = 1, . . . , m t } d = {log q(V ψ(i) , x ψ(i) ) i = 1, . . . , m t }.
Let us consider the event

A n = A 1,n ∩ A 2,n
where

A 1,n = min i=1,...,kt-1 log q(V i,mt , u i ) q(V i+1,mt , u i+1 ) > 0, ∀(u 1 , . . . , u kt ) ⊂ B(t, h t ) and A 2,n = min i=kt+1,...,mt log q(V kt,mt , u kt ) q(V i,mt , u i ) > 0, ∀(u kt+1 , . . . , u mt ) ⊂ B(t, h t ) .
Conditionally to A 1,n , the random variables q(V i,mt , u i ), i = 1, . . . , k t are ordered as

q(V kt,mt , u kt ) ≤ q(V kt-1,mt , u kt-1 ) ≤ • • • ≤ q(V 1,mt , u 1 ),
and, conditionally to A 2,n , the remaining random variables q(V i,mt , u i ), i = k t + 1, . . . , m t are smaller since max i=kt+1,...,mt q(V i,mt , u i ) ≤ q(V kt,mt , u kt ).

Thus, conditionally to A n , the k t largest random values taken from the set {log q(V ψ(i) , x ψ(i) ), i = 1, . . . , m t } are {log q(V i,mt , x ψ(i) ), i = 1, . . . , k t }.

Consequently, for J kt = {1, . . . , k t } and letting T i def = x ψ(i) , we have:

{log Z mt-i+1,mt (t), i ∈ J kt |A n } d = {log q(V i,mt , T i ), i ∈ J kt |A n } .
To conclude the proof, it remains to show that

P(A n ) → 1 as n → ∞. Let us define δ mt = m -(1+δ) t
and consider the events

A 3,n = {V 1,mt > δ mt } ∩ {V mt,mt < 1 -δ mt } A 4,n = min i=1,...,kt log q(V i,mt , t) q(V i+1,mt , t) > 2ω n (δ mt ) .
Under A 3,n , we have δ mt < V i,mt < 1 -δ mt for all i = 1, . . . , m t . Hence, for all (u i , u j ) ∈ B(t, h t ) 2 , it follows that, on the one hand log q(V j,mt , u j ) q(V i,mt , u i ) = log q(V j,mt , t) q(V i,mt , t) + log q(V j,mt , u j ) q(V j,mt , t)

+ log q(V i,mt , t) q(V i,mt , u i ) ≥ log q(V j,mt , t) q(V i,mt , t) -2ω n (δ mt ),
and on the other hand, min i=kt+1,...,mt log q(V kt,mt , u kt ) q(V i,mt , u i ) ≥ min i=kt+1,...,mt log q(V kt,mt , t) q(V i,mt , t) -2ω n (δ mt )

≥ log q(V kt,mt , t) q(V kt+1,mt , t) -2ω n (δ mt ).

Consequently A 3,n ∩ A 4,n ⊂ A n . Remarking that

P(A 3,n ) ≥ P(V 1,mt > δ mt )+P(V mt,mt < 1-δ mt )-1 = 2P(V 1,mt > δ mt )-1 → 1, since V mt,mt d = 1 -V 1,mt and P(V 1,mt > δ mt ) = (1 -δ mt ) mt → 1, it thus remains to prove that P(A 4,n ) → 1. From [5], paragraph 1.3.1, condition ( 
A) implies that there exists c(t) > 0, depending only on t such that, for all α ∈ (0, 1),

q(α, t) = c(t) exp 1 α γ(t) + ∆(u, t) u du ,
which is the so-called Karamata representation for normalised regularly varying functions. Hence, for all i ∈ J kt , log q(V i,mt , t) q(V i+1,mt , t)

= V i+1,m t V i,m t γ(t) + ∆(u, t) u du,
and it follows that log q(V i,mt , t) q(V i+1,mt , t) ≥ (γ(t) -∆(V kt+1,mt , t)) log V i+1,mt V i,mt , leading to

P(A 4,n ) ≥ P (γ(t) -∆(V kt+1,mt , t)) min i=1,...,kt log V i+1,mt V i,mt > 2ω n (δ mt ) ≥ P min i=1,...,kt log V i+1,mt V i,mt ≥ 4ω n (δ mt ) γ(t) ∩ ∆(V kt+1,mt , t) < γ(t)/2 ≥ P min i=1,...,kt log V i+1,mt V i,mt ≥ 4ω n (δ mt ) γ(t) + P ∆(V kt+1,mt , t) < γ(t)/2 -1 def = P 1,mt + P 2,mt -1.
In view of Rényi representation for uniform ordered random variables,

{i log(V -1 i,mt /V -1 i+1,mt ), i ∈ J kt } d = {F i , i ∈ J kt },
where F 1 , . . . , F kt are independent random variables from a standard exponential distribution, we have

P 1,mt = P min i=1,...,kt F i i ≥ 4ω n (δ mt ) γ(t) = kt i=1 exp - 4iω n (δ mt ) γ(t) = exp - 2 γ(t) k t (k t + 1)ω n (δ mt ) → 1, since k 2 t ω n (δ mt ) → 0. Furthermore, V kt+1,mt = (k t /m t )(1 + o P ( 1)) 
P → 0 and ∆(α, t) → 0 as α → 0 entail P 2,mt → 1. The conclusion follows.

Proof of Proposition 2 -From Proposition 1, there exists an event A n with P

(A n ) → 1 such that (Z mt,mt (t)|A n ) d = (q(V 1,mt , T 1 )|A n ) and thus, P(Z mt,mt (t) < q(α mt , t)) = P log q(V 1,mt , T 1 ) q(α mt , t) < 0 ∩ A n + P log Z mt,mt (t) q(α mt , t) < 0 ∩ A C n def = P 3,mt + P 4,mt . (15) 
Clearly, P 4,mt ≤ P(A C n ) → 0. Let us now consider the term P 3,mt . Introducing δ mt = m -(1+δ) t and A 5,n = {V 1,mt ∈ [δ mt , 1 -δ mt ]}, we have

P 3,mt = P log q(V 1,mt , T 1 ) q(α mt , t) < 0 ∩ A n ∩ A 5,n + P log q(V 1,mt , T 1 ) q(α mt , t) < 0 ∩ A n ∩ A C 5,n
and standard calculations lead to:

P log q(V 1,mt , T 1 ) q(α mt , t) < 0 ∩ A 5,n + P(A n ) -1 ≤ P 3,mt ≤ P log q(V 1,mt , T 1 ) q(α mt , t) < 0 ∩ A 5,n + P(A C 5,n ). Furthermore, A 5,n implies log q(V 1,mt , T 1 ) q(V 1,mt , t) ≤ ω n (δ mt ),
and thus

P log q(V 1,mt , t) q(α mt , t) < -ω n (δ mt ) ∩ A 5,n + P(A n ) -1 ≤ P 3,mt ≤ P log q(V 1,mt , t) q(α mt , t) < ω n (δ mt ) ∩ A 5,n + P(A C 5,n ),
which entails

P log q(V 1,mt , t) q(α mt , t) < -ω n (δ mt ) + P(A 5,n ) + P(A n ) -2 ≤ P 3,mt ≤ P log q(V 1,mt , t) q(α mt , t) < ω n (δ mt ) + P(A C 5,n ). ( 16 
)
Let us now focus on the quantity

P 5,mt def = P log q(V 1,mt , t) q(α mt , t) < ±ω n (δ mt ) = P log q(V 1 , t) q(α mt , t) < ±ω n (δ mt ) mt = P q(V 1 , t) < e ±ωn(δm t ) q(α mt , t) mt = P 1 -V 1 < F e ±ωn(δm t ) q(α mt , t), t mt = exp m t log F e ±ωn(δm t ) q(α mt , t), t .
Since e ±ωn(δm t ) q(α mt , t) → ∞ and introducing the conditional survival function F (., t) = 1 -F (., t), we have m t log F e ±ωn(δm t ) q(α mt , t), t = -m t F e ±ωn(δm t ) q(α mt , t), t (1 + o(1))

= -m t α mt F e ±ωn(δm t ) q(α mt , t), t F (q(α mt , t), t)

(1 + o(1)).
As already mentioned, (A) implies (1) which, in turn, shows that F (., t) is a regularly function at infinity with index -1/γ(t). Hence, since e ±ωn(δm t ) → 1, we thus have (see [START_REF] Bingham | Regular variation, Encyclopedia of Mathematics and its Applications[END_REF], Theorem 1.5.2), F e ±ωn(δm t ) q(α mt , t), t F (q(α mt , t), t) → 1.

As a conclusion,

P 5,mt = [1 -α mt (1 + o(1))] mt , (17) 
and collecting ( 16) and ( 17) leads to:

[1 -α mt (1 + o(1))] mt + P(A 5,n ) + P(A n ) -2 ≤ P 3,mt ≤ [1 -α mt (1 + o(1))] mt + P(A C 5,n ).
Since P(A 5,n ) → 1 and P(A n ) → 1, it is then straightforward that P 3,mt → 0 under (S.1) and P 3,mt → e -c under (S.2) or (S.3). Equation ( 15) concludes the proof.

Proof of Theorem 1 -Let us introduce, for the sake of simplicity, k t = m t α mt . From Proposition 1, there exists an event A n such that:

(m t α mt ) 1/2 log q1 (α mt , t) q(α mt , t) A n d = (m t α mt ) 1/2 log q(V kt,mt , T kt ) q(α mt , t) A n ,
where P(A n ) → 1. From Lemma 1, the convergence in distribution (m t α mt ) 1/2 log q(V kt,mt , T kt ) q(α mt , t)

d → N (0, γ 2 (t)), ( 18 
)
is a sufficient condition to obtain

(m t α mt ) 1/2 log q1 (α mt , t) q(α mt , t) d → N (0, γ 2 (t)).
A straightforward application of the δ-method will then conclude the proof.

Let us prove the convergence in distribution [START_REF] Gangopadhyay | A note on the asymptotic behavior of conditional extremes[END_REF]. To this end, consider

R n = log q(V kt,mt , T kt ) q(V kt,mt , t)
and let

δ mt = m -(1+δ) t
. Remark that, under (S.1),

P(R n ≤ ω n (δ mt )) ≥ P(V kt,mt ∈ [δ mt , 1 -δ mt ]) → 1.
Thus, R n = O P (ω n (δ mt )) and we have log q(V kt,mt , T kt ) q(α mt , t) = log q(V kt,mt , t) q(α mt , t)

+ O P (ω n (δ mt )). ( 19 
)
Let us introduce the log-quantile function g(.) = log q(., t). Clearly, for all α ∈ (0, 1),

g (α) = ∆(α, t) -γ(t)
α and a first-order Taylor expansion leads to:

(m t α mt ) 1/2 log q(V kt,mt , t) q(α mt , t) = (m t α mt ) 1/2 g (θ mt )(V kt,mt -α mt ) = α mt g (θ mt ) m t α mt 1/2 (V kt,mt -α mt ),
where

θ mt ∈ [min(α mt , V kt,mt ), max(α mt , V kt,mt )]. Now, V kt,mt P ∼ α mt entails θ mt P ∼ α mt → 0 and, from (A), α mt g (θ mt ) P ∼ θ mt g (θ mt ) = ∆(θ mt , t) -γ(t) P → -γ(t).
Then, Lemma 2 implies that

(m t α mt ) 1/2 log q(V kt,mt , t) q(α mt , t) d → N (0, γ(t) 2 ). (20) 
Collecting ( 19) and ( 20) concludes the proof after remarking that condition

(m t α mt ) 2 ω n (δ mt ) → 0 implies (m t α mt ) 1/2 ω n (δ mt ) → 0.
Proof of Theorem 2 -Since q(., t) is regularly varying with index -γ(t), we have under (S.2) that q(1/m t , t)/q(α mt , t) ∼ (m t α mt ) γ(t) → c γ(t) and the following asymptotic expansion holds log q1 (α mt , t) q(α mt , t) = log q1 (α mt , t) q(1/m t , t) + log q(1/m t , t) q(α mt , t)

= log q1 (α mt , t) q(1/m t , t) + γ(t) log(c) + o(1).
Now, recall that in situation (S.2), for n large enough, m t α mt = c . Thus, from Proposition 1, there exists an event A n such that P(A n ) → 1 and log q1 (α mt , t) q(1/m t , t)

A n d = log q(V c ,mt , T c ) q(1/m t , t) A n .
Mimicking the proof of Theorem 1, we obtain

log q(V c ,mt , T c ) q(1/m t , t) = log q(V c ,mt , t) q(1/m t , t) + O P (ω n (δ mt )).
To conclude, one can remark that q(V c ,mt , t) is the c th uppest order statistics associated to a heavy-tailed distribution. In such a case, Corollary 4.2.4 of [START_REF] Embrechts | Modelling extremal events[END_REF] states that q(V c ,mt , t)/q(1/m t , t) converges to a nondegenerated distribution. This asymptotic distribution is explicit even though it is not reproduced here.

Proof of Theorem 3 -Observing that log q2 (α mt , t) = log q1 (β mt , t) + γn (t) log β mt α mt leads to the following expansion log q2 (α mt , t) q(α mt , t) = log q1 (β mt , t) q(β mt , t)

+ log β mt α mt (γ n (t) -γ(t)) -log q(α mt , t) q(β mt , t) + γ(t) log β mt α mt def = ξ 4,mt + ξ 5,mt -ξ 6,mt .
First remark that, under (A), as already shown in the proof of Proposition 1, log q(α mt , t) q(β mt , t)

= βm t αm t γ(t) + ∆(u, t) u du,
and thus, ξ 6,mt can be simplified as

ξ 6,mt = βm t αm t ∆(u, t) u du
which leads to the bound:

|ξ 6,mt | ≤ ∆(β mt , t) log β mt α mt .
The two additional conditions are now treated separately since, under condition (5), the asymptotic distribution is imposed by ξ 4,mt whereas, under [START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF], the asymptotic distribution is imposed by ξ 5,mt . (i) Under ( 5), Theorem 1 entails that

(m t β mt ) 1/2 ξ 4,mt d → N (0, γ 2 (t)) (21) 
and

(m t β mt ) 1/2 ξ 5,mt = ζ mt υ -1 n (t)υ n (t)(γ n (t) -γ(t)) P → 0, (22) 
from ( 4) and ( 5). Finally,

(m t β mt ) 1/2 |ξ 6,mt | ≤ ζ mt ∆(β mt , t) → 0, (23) 
from [START_REF] Bingham | Regular variation, Encyclopedia of Mathematics and its Applications[END_REF]. Collecting ( 21), ( 22) and ( 23) concludes the proof of ( 6).

(ii) Under ( 7), Theorem 1 implies

υ n (t) log(β mt /α mt ) ξ 4,mt = υ n (t)ζ -1 mt (m t β mt ) 1/2 ξ 4,mt P → 0. ( 24 
)
Moreover, from (4),

υ n (t) log(β mt /α mt ) ξ 5,mt = υ n (t)(γ n (t) -γ(t)) d → D (25) 
and finally,

υ n (t) log(β mt /α mt ) |ξ 6,mt | ≤ ∆(β mt , t)υ n (t) → 0, (26) 
under [START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF]. Collecting ( 24), ( 25) and ( 26) concludes the proof of ( 8). with the estimated quantiles by the heuristics strategy (dashed line) and the oracle strategy (dotted line) on the replication corresponding to the median error. The associated sample is represented by the points ("×"). q(α, t)

∆(α, t) Pareto α -γ(t) 0 Fréchet α -γ(t) 1 α log 1 1 -α -γ(t) - γ(t) 2 α(1 + O(α))
Burr α -γ(t) 1 -α -ρ(t) -γ(t)/ρ(t) -γ(t)α -ρ(t) (1 + O(α -ρ(t) ))

Table 1: Some examples of heavy-tailed distributions. For all distributions, γ(t) > 0 is the tail-index and ρ(t) < 0 is referred to as the second-order parameter in extreme-value theory.
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 123 Figure 1: Representation of the 16 spectra as functions of the wavelength.
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 4 Figure 4: 90%-Empirical confidence intervals of q2 (1/500, ., W Z ) ranked by ascending order of the tail index.
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 5 Figure5: Comparison of the true quantile of order α = 1/300 (solid line) with the estimated quantiles by the heuristics strategy (dashed line) and the oracle strategy (dotted line) on the replication corresponding to the median error. The associated sample is represented by the points ("×").
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 6 Figure6: Comparison of the true quantile of order α = 1/500 (solid line) with the estimated quantiles by the heuristics strategy (dashed line) and the oracle strategy (dotted line) on the replication corresponding to the median error. The associated sample is represented by the points ("×").
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