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Abstract − We address the estimation of quantiles from heavy-tailed dis-
tributions when functional covariate information is available and in the case
where the order of the quantile converges to one as the sample size increases.
Such ”extreme” quantiles can be located in the range of the data or near and
even beyond the boundary of the sample, depending on the convergence rate
of their order to one. Nonparametric estimators of these functional extreme
quantiles are introduced, their asymptotic distributions are established and
their finite sample behavior is investigated.
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1 Introduction

An important literature is dedicated to the estimation of extreme quantiles,
i.e. quantiles of order 1 − α with α tending to zero. The most popular
estimator was proposed by Weissman [28], in the context of heavy-tailed
distributions, and adapted to Weibull-tail distributions in [10, 19]. We also
refer to [11] for the general case.
In a lot of applications, some covariate information is recorded simultane-
ously with the quantity of interest. For instance, in climatology one may
be interested in the estimation of return periods associated to extreme rain-
fall as a function of the geographical location. The extreme quantile thus
depends on the covariate and is referred in the sequel to as the conditional
extreme quantile. Parametric models for conditional extremes are proposed
in [9, 27] whereas semi-parametric methods are considered in [1, 22]. Fully
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non-parametric estimators have been first introduced in [8], where a local
polynomial modelling of the extreme observations is used. Similarly, spline
estimators are fitted in [7] through a penalized maximum likelihood method.
In both cases, the authors focus on univariate covariates and on the finite
sample properties of the estimators. These results are extended in [2] where
local polynomials estimators are proposed for multivariate covariates and
where their asymptotic properties are established.

Besides, covariates may be curves in many situations coming from ap-
plied sciences such as chemometrics (see Section 5 for an illustration) or
astrophysics [3]. However, the estimation of conditional extreme quantiles
with functional covariates has not been addressed yet. Two statistical fields
are involved in this study. In the one hand, nonparametric smoothing tech-
niques adapted to functional data are required in order to deal with the
covariate. We refer to [6, 17, 24, 25] for overviews on this literature. We
propose here to select the observations to be used in the conditional quan-
tile estimator by a moving window approach. In the second hand, once this
selection is achieved, extreme-value methods are used to estimate the con-
ditional quantile, see [13] for a comprehensive treatment of extreme-value
methodology in various frameworks.

Whereas no parametric assumption is made on the functional covari-
ate, we assume that the conditional distribution is heavy-tailed. This semi-
parametric assumption amounts to supposing that the conditional survival
function decreases at a polynomial rate. To estimate the conditional quan-
tile, we focus on three different situations. In the first one, the convergence
of α to zero is slow enough so that the quantile is located in the range of
the data. In the second situation, the quantile is located near the boundary
of the sample. Finally, in the third situation, the convergence of α to zero
is sufficiently fast so that the quantile may be beyond the boundary of the
sample. This situation is clearly the most difficult one since an extrapolation
outside the range of the sample is needed to achieve the estimation.

Nonparametric estimators are defined in Section 2 for each situation.
Their asymptotic distributions are derived in Section 3. Some examples are
provided in Section 4 and an illustration on spectrometric data is given in
Section 5. Proofs are postponed to Section 6.

2 Estimators of conditional extreme quantiles

Let E be a (finite or infinite dimensional) metric space associated to a metric
d. Let us denote by F (., x) the conditional cumulative distribution function
of a real random variable Y given x ∈ E and by q(α, x) the associated
conditional quantile of order 1 − α defined by

F (q(α, x), x) = 1 − α,
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for all x ∈ E and α ∈ (0, 1). In this paper, we focus on the case where, for
all x ∈ E, F (., x) is the cumulative distribution function of a heavy-tailed
distribution. In such a situation, the conditional quantile q(., x) satisfies, for
all λ > 0,

lim
α→0

q(λα, x)

q(α, x)
= λ−γ(x), (1)

where γ(.) is an unknown positive function of the covariate x referred to as
the conditional tail index. Loosely speaking, the conditional quantile q(., x)
decreases towards 0 at a polynomial rate driven by γ(x). The conditional
quantile is said to be regularly varying at 0 with index −γ(x), and this prop-
erty characterizes heavy-tailed distributions. We refer to [5] for a general
account on regular variation theory and to paragraph 4.2 for some examples
of distributions satisfying (1).

Given a sample (Y1, x1), . . . , (Yn, xn) of independent observations, our
aim is to build point-wise estimators of conditional quantiles. More precisely,
for a given t ∈ E, we want to estimate q(α, t), focusing on the case where
the design points x1, . . . , xn are non random. To this end, for all r > 0, let
us denote by B(t, r) the ball centered at point t and with radius r defined
by

B(t, r) = {x ∈ E, d(x, t) ≤ r}

and let hn,t = ht be a positive sequence tending to zero as n goes to infinity.
The proposed estimator uses a moving window approach since it is based on
the response variables Y ′i s for which the associated covariates x′is belong to
the ball B(t, ht). The proportion of such design points is thus defined by

ϕ(ht) =
1

n

n
∑

i=1

I{xi ∈ B(t, ht)}

and plays an important role in this study. It describes how the design points
concentrate in the neighborhood of t when ht goes to zero, similarly to the
small ball probability does, see for instance the monograph on functional
data analysis [17]. Thus, the nonrandom number of observations in the slice
St = (0,∞) × B(t, ht) is given by mn,t = mt = nϕ(ht). Let {Zi(t), i =
1, . . . ,mt} be the response variables Y ′i s for which the associated covariates
x′is belong to the ball B(t, ht) and let Z1,mt

(t) ≤ . . . ≤ Zmt,mt
(t) be the

corresponding order statistics.
In this paper, we focus on the estimation of conditional ”extreme” quan-

tile of order 1 − αmt
. Here, the word ”extreme” means that αmt

tends to
zero as n goes to infinity, making kernel based estimators [15] non adapted.
In the sequel, three situations are considered:

(S.1) αmt
→ 0 and mtαmt

→ ∞,

(S.2) αmt
→ 0, mtαmt

→ c ∈ [1,∞) and ⌊mtαmt
⌋ → ⌊c⌋.
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(S.3) αmt
→ 0 and mtαmt

→ c ∈ [0, 1),

where ⌊x⌋ denotes the largest integer smaller than x. Let us highlight that,
in the unconditional case, situations (S.1) and (S.3) with c 6= 0 have al-
ready been examined by Dekkers and de Haan [11], the extreme case c = 0
being considered in [21], Theorem 5.1. A summary of their results can be
found in [13], Theorem 6.4.14 and Theorem 6.4.15. In situation (S.1), αmt

goes to 0 slower than 1/mt and the point-wise estimation of the conditional
extreme quantile relies on an interpolation inside the sample, since, from
Proposition 2 below, q(αmt

, t) is eventually almost surely smaller that the
maximal observation Zmt,mt

(t) in the slice St. In such a situation, we pro-
pose to estimate q(αmt

, t) by:

q̂1(αmt
, t) = Zmt−⌊mtαmt⌋+1,mt

(t). (2)

In the intermediate situation (S.2), estimator (2) can still be used, since
for n large enough, ⌊mtαmt

⌋ = ⌊c⌋ > 0 and thus the estimation relies on
a conditional extreme value of the sample. Let us note that, if c is not
an integer, then mtαmt

→ c implies ⌊mtαmt
⌋ → ⌊c⌋. Otherwise, if c is an

integer, then condition ⌊mtαmt
⌋ → ⌊c⌋ is necessary to prevent the sequence

⌊mtαmt
⌋ from having two adherence values and q̂1(αmt

, t) from oscillating.
In situation (S.3), αmt

goes to 0 at the same speed or faster than 1/mt and
the conditional extreme quantile is eventually larger than Zmt,mt

(t) with
positive probability e−c ≥ e−1. Thus, its estimation is more difficult since
it requires an estimation outside the sample. We propose in this case to
estimate q(αmt

, t) by:

q̂2(αmt
, t) = q̂1(βmt

, t) (βmt
/αmt

)γ̂n(t)

= Zmt−⌊mtβmt⌋+1,mt
(t) (βmt

/αmt
)γ̂n(t) , (3)

where βmt
satisfies (S.1) and γ̂n(t) is a point-wise estimator of the condi-

tional tail index γ(t). Such estimators have been proposed both in the finite
dimensional setting [2] and in the general case [20], see also paragraph 4.1 for
some examples. Note that (3) is an adaptation of Weissman estimator [28]
in the case where covariate information is available. The extrapolation is
achieved thanks to the multiplicative term (βmt

/αmt
)γ̂n(t) which magnitude

is driven by the estimated tail index γ̂n(t). As expected, the extrapolation
is all the more important as the tail is heavy.

3 Main results

We first give some notations and conditions useful to establish the asymp-
totic distributions of our estimators. In the sequel, we fix t ∈ E and we
assume:
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(A) The conditional quantile function

α ∈ (0, 1) 7→ q(α, t) ∈ (0,+∞)

is differentiable, the function defined by

α ∈ (0, 1) 7→ ∆(α, t) = γ(t) + α
∂ log q

∂α
(α, t) ∈ (0,+∞)

is continuous and such that lim
α→0

∆(α, t) = 0.

Assumption (A) controls the behavior of the log-quantile function with re-
spect to its first variable. It is a sufficient condition to obtain the heavy-tail
property (1), see for instance [5], Chapter 1. For all a ∈ (0, 1), let us intro-
duce

∆̄(a, t) = sup
α∈(0,a)

|∆(α, t)|.

The largest oscillation of the log-quantile function with respect to its second
variable is defined for all a ∈ (0, 1/2) as

ωn(a) = sup

{
∣

∣

∣

∣

log
q(α, x)

q(α, x′)

∣

∣

∣

∣

, α ∈ (a, 1 − a) , (x, x′) ∈ B(t, ht)
2

}

.

Finally, let kt ∈ {1, . . . ,mt} and Jkt
= {1, . . . , kt}. Our first result estab-

lishes a representation in distribution of the largest random variables of the
sample Zi(t), i ∈ {1, . . . ,mt}.

Proposition 1 If kt/mt → 0 and k2
tωn(m

−(1+δ)
t ) → 0 for some δ > 0, then,

there exists an event An with P(An) → 1 as n→ ∞ such that

{(logZmt−i+1,mt
, i ∈ Jkt

) |An}
d
= {(log q(Vi,mt

, Ti), i ∈ Jkt
) |An} ,

where V1,mt
≤ . . . ≤ Vmt,mt

are the order statistics associated to the sample
{V1, . . . , Vmt

} of independent uniform variables and {T1, . . . , Tkt
} are ran-

dom variables in the ball B(t, ht).

Note that this result is implicitly used in [20], proof of Theorem 1. We also
refer to [14], Theorem 3.5.2, for the approximation of the nearest neighbors
distribution using the Hellinger distance and to [18] for the study of their

asymptotic distribution. Here, condition k2
t ωn(m

−(1+δ)
t ) → 0 shows that,

the smoother the quantile function is on the slice St, i.e. the smaller its
oscillation is, the easier the control of the uppest observations is, i.e the
larger kt can be.

The next proposition is dedicated to the study of the position of the
conditional extreme quantile q(α, t) with respect to the largest observation
in the slice St.
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Proposition 2 If ωn(m
−(1+δ)
t ) → 0 for some δ > 0, then

• under (S.1), P(Zmt,mt
< q(αmt

, t)) → 0,

• under (S.2) or (S.3), P(Zmt,mt
< q(αmt

, t)) → e−c.

Let us first focus on situation (S.1) where the estimation of the conditional
extreme quantile is addressed using q̂1(αmt

, t), an upper order statistic cho-
sen in the considered slice.

Theorem 1 Let (αmt
) be a sequence satisfying (S.1).

If (mtαmt
)2ωn(m

−(1+δ)
t ) → 0 for some δ > 0 then,

(mtαmt
)1/2

(

q̂1(αmt
, t)

q(αmt
, t)

− 1

)

d
→ N (0, γ2(t)).

It appears that the estimator is asymptotically Gaussian, with asymptotic
variance proportional to γ2(t)/(mtαmt

). Thus, the heavier is the tail, the
larger is γ(t), and the larger is the variance. Besides, the asymptotic vari-
ance being inversely proportional to αmt

, the estimation remains more stable
when the extreme quantile is far from the boundary of the sample. Con-
sidering now situation (S.2), an asymptotically Gaussian behavior cannot
be expected since, in this case, the estimator is based on the ⌊c⌋th uppest
order statistic in the considered slice.

Theorem 2 Let (αmt
) be a sequence satisfying (S.2).

If ωn(m
−(1+δ)
t ) → 0 for some δ > 0 then,

(

q̂1(αmt
, t)

q(αmt
, t)

− 1

)

d
→ E(c, γ(t)),

where E(c, γ(t)) is a non-degenerated distribution.

The asymptotic distribution E(c, γ(t)) could be explicitly deduced from the
proof of the result. It is omitted here for the sake of simplicity. Situation
(S.3) is more complex since the asymptotic distribution of q̂2 may depend
both on the behavior of q̂1 and γ̂n. In the next theorem, two cases are
investigated. In situation (i), the asymptotic distribution of q̂2 is driven by
q̂1. At the opposite, in situation (ii), q̂2 inherits its asymptotic distribution
from γ̂n.

Theorem 3 Let (βmt
) be a sequence satisfying (S.1) and let (αmt

) be a se-
quence eventually smaller than (βmt

). Define ζmt
= (mtβmt

)1/2 log(βmt
/αmt

).

If (mtβmt
)2ωn(m

−(1+δ)
t ) → 0 for some δ > 0 and there exists a positive se-

quence υn(t) and a distribution D such that

υn(t)(γ̂n(t) − γ(t))
d
→ D, (4)

then, two situations arise:
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(i) Under the additional condition

ζmt
max

{

υ−1
n (t), ∆̄(βmt

, t)
}

→ 0, (5)

we have

(mtβmt
)1/2

(

q̂2(αmt
, t)

q(αmt
, t)

− 1

)

d
→ N (0, γ2(t)). (6)

(ii) Otherwise, under the additional condition

υn(t)max
{

ζ−1
mt
, ∆̄(βmt

, t)
}

→ 0, (7)

we have
υn(t)

log (βmt
/αmt

)

(

q̂2(αmt
, t)

q(αmt
, t)

− 1

)

d
→ D. (8)

Note that, even though the main interest of this result is to tackle the case
where (αmt

) is a sequence satisfying (S.3), it can also be applied in the more
general situation where αmt

is eventually smaller than βmt
. For instance,

it appears that, in situation (S.2), q̂2(αmt
, t) is a consistent estimator of

q(αmt
, t) in the sense that the ratio converges to one in probability whereas,

in view of Theorem 2, q̂1(αmt
, t) is not consistent. Some applications of

Theorem 3 are provided in the next section.

4 Examples

In paragraph 4.1, the above theorem is illustrated with a particular family
of conditional tail index estimators. The corresponding assumptions are
simplified in paragraph 4.2 for some classical heavy-tailed distributions.

4.1 Some conditional tail-index estimators

In [20], a family of conditional tail index estimators is introduced. They are
based on a weighted sum of the log-spacings between the kt largest order
statistics Zmt−kt+1,mt

, . . . , Zmt,mt
. The family is defined by

γ̂n(t,W ) =
kt
∑

i=1

i log

(

Zmt−i+1,mt
(t)

Zmt−i,mt
(t)

)

W (i/kt, t)

/

kt
∑

i=1

W (i/kt, t) , (9)

where W (., t) is a weight function defined on (0, 1) and integrating to one.
Basing on (9) and considering βm,t = kt/mt, the conditional extreme quan-
tile estimator (3) can be written as

q̂2(αmt
, t,W ) = Zmt−kt+1,mt

(t)

(

kt
mtαmt

)γ̂n(t,W )

.
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From [20], Theorem 2, under some conditions on the weight function, γ̂n(t,W )
is asymptotically Gaussian:

k
1/2
t (γ̂n(t,W ) − γ(t))

d
→ N (0, γ2(t)AV(t,W )),

where AV(t,W ) =
∫ 1
0 W

2(s, t)ds. Letting υn(t) = k
1/2
t , we obtain

ζmt
υ−1
n (t) = log

(

kt
mtαmt

)

→ ∞,

in situation (S.2) or (S.3), which means that condition (5) cannot be satis-
fied. Thus, only situation (ii) of Theorem 3 may arise leading to the following
corollary.

Corollary 1 Suppose the assumptions of [20], Theorem 2 hold. Let kt → ∞
such that

k
1/2
t ∆̄(kt/mt, t) → 0 and (10)

k2
t ωn(m

−(1+δ)
t ) → 0 for some δ > 0. (11)

Let (αmt
) be a sequence satisfying (S.2) or (S.3). Then,

k
1/2
t

log(kt/(mtαmt
))

(

q̂2(αmt
, t,W )

q(αmt
, t)

− 1

)

d
→ N (0, γ2(t)AV(t,W )).

As an example, one can use constant weights WH(s, t) = 1 to obtain the
so-called conditional Hill estimator with AV(t,WH) = 1 or logarithmic
weights W Z(s, t) = − log(s) leading to the conditional Zipf estimator with
AV(t,W Z) = 2. We refer to [20], Section 4, for further details.

4.2 Illustration on some heavy-tailed distributions

Standard Pareto distribution is the simplest example of heavy-tailed distri-
bution. Its conditional quantile of order 1 − α decreases as a power func-
tion of α since, in this case, q(α, t) = α−γ(t). Therefore ∆(α, t) = 0 for all
α ∈ (0, 1) and condition (10) of Corollary 1 vanishes. Another example is
Fréchet distribution for which

q(α, t) = α−γ(t)
{

1

α
log

(

1

1 − α

)}−γ(t)

.

Here, the conditional quantile approximatively decreases as a power function
of α since, in this case, q(α, t) ∼ α−γ(t), the quality of this approximation
being controlled by

∆(α, t) = −
γ(t)

2
α(1 +O(α)) as α→ 0.
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A similar example is given by Burr distributions for which

q(α, t) = α−γ(t)
(

1 − α−ρ(t)
)−γ(t)/ρ(t)

and
∆(α, t) = −γ(t)α−ρ(t)(1 +O(α−ρ(t))),

with ρ(t) < 0. These results are collected in Table 1. In both Fréchet and
Burr cases, ∆(α, t) is asymptotically proportional to α−ρ(t) as α → 0 with
the convention ρ(t) = −1 for the Fréchet distribution. Note that ρ(t) is
known as the second-order parameter in the extreme-value theory. It drives
the quality of the approximation of the conditional quantile q(α, t) by the
power function α−γ(t). Furthermore, it is easily seen, that for these two
distributions, the function |∆(., t)| is increasing. Thus, condition (10) of

Corollary 1 can be simplified as m
2ρ(t)
t k

1−2ρ(t)
t → 0 which shows that, the

smaller ρ(t) is, the larger kt can be. Finally, if γ and ρ are Lipschitzian, i.e.
if there exist constants cγ > 0 and cρ > 0 such that

|γ(x) − γ(x′)| ≤ cγd(x, x
′) and |ρ(x) − ρ(x′)| ≤ cρd(x, x

′)

for all (x, x′) ∈ B(t, ht)
2, then the oscillation can be bounded by ωn(a) =

O(ht log(1/a)) as a → 0 and thus condition (11) of Corollary 1 can be
simplified as k2

t ht logmt → 0.

5 Finite sample behaviour

In this section, we propose to illustrate the behaviour of our conditional ex-
treme quantiles estimators on functional spectrometric data. A question of
interest for the planetologist is the following: Given a spectrum collected by
the OMEGA instrument onboard the European spacecraft Mars Express in
orbit around Mars, how to estimate the associated physical properties of the
ground (grain size of CO2, proportions of water, dust and CO2, etc . . . )? To
answer this question, a learning dataset can be constructed using radiative
transfer models. Here, we focus on the CO2 proportion. Given different
values yi, i = 1, . . . , 16 of this proportion, a radiative transfer model pro-
vides us the corresponding spectra xi, i = 1, . . . , 16 (see Figure 1). Clearly,
the obtained spectra are non random. They are functions of the wavelength
and we consider here their discretized version on 256 wavelengths xi,l. Us-
ing this learning dataset, a lot of methods can be found in the literature to
estimate the CO2 proportion associated to an observed spectrum. One can
mention Support Vector Machine, Sliced Inverse Regression, nearest neigh-
bor approach, . . . (see for instance [4] for an overview of these approaches).
For all these methods, the estimation of the CO2 proportion is perturbed
by a random error term. We propose to modelize this perturbation by:

Yi,j = log(1/yi) + σ(ǫj(xi) − Γ(1 − γ(xi))), j = 1, . . . , ni, i = 1, . . . , 16,
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where

γ(xi) = 0.3
‖xi‖

2
2 − min

l
‖xl‖

2
2

max
l

‖xl‖2
2 − min

l
‖xl‖2

2

+ 0.2, σ = min
i

log(1/yi)

Γ(1 − γ(xi))
,

and ǫj(xi), j = 1, . . . , ni are independent and identically distributed random
values from a Fréchet distribution with tail index γ(xi) (see Table 1). Note
that ‖xi‖

2
2 is an approximation of the total energy of the spectrum xi. The

above definitions ensure that γ(xi) ∈ [0.2, 0.5] and that Yi,j > 0 for all
i = 1, . . . , 16 and j = 1, . . . , ni. Furthermore, since the expectation of ǫj(xi)
is given by Γ(1− γ(xi)), the random variables Yi,j are centered on the value
log(1/yi). Our aim is to estimate the conditional quantile

q(α, xi) = F̄←(α, xi), for i = 1, . . . , 16,

where F̄ (., xi) is the survival distribution function of Yi,1. To this end, the
estimator q̂2(α, xi,W

Z) defined in paragraph 4.1 is considered. The semi-
metric distance based on the second derivative is adopted, as advised in [17],
Chapter 9:

d2(xi, xj) =

∫

(

x
(2)
i (t) − x

(2)
j (t)

)2
dt,

where x(2) denotes the second derivative of x. To compute this semi-metric,
one can use an approximation of the functions xi and xj based on B-splines
as proposed in [17], Chapter 3. Here, we limit ourselves to a discretized
version d̃ of d:

d̃2(xi, xj) =

255
∑

l=2

{(xi,l+1 − xj,l+1) + (xi,l−1 − xj,l−1) − 2(xi,l − xj,l)}
2 .

The finite sample performance of the estimator in assessed on N = 100
replications of the sample {(xi, Yi,j), i = 1, . . . , 16, j = 1, . . . , ni} with
n1 = . . . = n16 = 100. Two values of α are considered: 1/300 and 1/500.
In the following, we assume that the hyperparameters ht and kt does not
depend on the spectrum (we thus omit the index t). These parameters are
selected thanks to the heuristics proposed in [20] which consists in minimiz-
ing the distance between two different estimators of the conditional extreme
quantile:

(ĥselect, k̂select) = arg min
h,k

∆(q̂2(α, .,W
H), q̂2(α, .,W

Z),

where for two functions f and g,

∆(f, g) =

{

16
∑

i=1

(f(xi) − g(xi))
2

}1/2

.
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The estimator associated to these parameters is denoted by q̂select. We also
compute ĥoracle and k̂oracle defined as:

(ĥoracle, k̂oracle) = arg min
h,k

∆(q̂2(α, .,W
H), q(α, .)).

The conditional quantile estimator associated to these parameters is denoted
by q̂oracle. Note that ĥselect, k̂select, ĥoracle and k̂oracle do not depend on α. Of
course, the oracle method cannot be applied in practical situations where
q(α, .) is unknown. However, it provides us the lower bound on the dis-
tance ∆ that can be reached with our estimator. In order to validate our
choice of ĥselect and k̂select, the histograms of ∆(q̂select(α, .,W

Z), q(α, .)) and
∆(q̂oracle(α, .,W

Z), q(α, .)), computed for the N = 100 replications, are su-
perimposed on Figure 2. It appears that the mean errors are approximatively
equal. Let us also remark that the heuristics errors seem to have a heavier
right-tail than the oracle errors. For each spectrum xi the empirical 90%-
confidence interval of q̂opt(α, xi,W

Z) is represented on Figure 3 for α = 1/300
and on Figure 4 for α = 1/500. The confidence intervals are ranked by as-
cending order of the tail index. The larger the tail index is, the larger the
confidence intervals are. This is in adequation with the result presented in
Corollary 1. Finally, on Figure 5 (α = 1/300) and Figure 6 (α = 1/500), we
draw estimators q̂select(α, xi,W

Z) and q̂oracle(α, xi,W
Z) as a function of ‖xi‖

2
2

on the replication giving rise to the median error ∆(q̂select(α, .,W
Z), q(α, .)).

It appears that the oracle estimator is only slightly better than the heuris-
tics one. As noticed previously, the estimation error increases with the tail
index.

6 Proofs

6.1 Preliminary results

Our first auxiliary lemma is a simple unconditioning tool for determining
the asymptotic distribution of a random variable.

Lemma 1 Let (Xn) and (Yn) be two sequences of real random variables.

Suppose there exists an event An such that (Xn|An)
d
= (Yn|An) with P(An) →

1. Then, Yn
d
→ Y implies Xn

d
→ Y .

Proof of Lemma 1 − For all x ∈ R, the well-known expansion

P(Xn ≤ x) = P({Xn ≤ x}|An)P(An) + P({Xn ≤ x}|AC
n )P(AC

n ),

where AC
n is the complementary event associated to An, leads to the follow-

ing inequalities:

P({Xn ≤ x}|An)P(An) ≤ P(Xn ≤ x) ≤ P({Xn ≤ x}|An)P(An) + P(AC
n ).

11



Since (Xn|An)
d
= (Yn|An), it follows that:

P({Yn ≤ x} ∩ An) ≤ P(Xn ≤ x) ≤ P({Yn ≤ x} ∩ An) + P(AC
n ).

Taking into account of

P(Yn ≤ x) − P(AC
n ) ≤ P({Yn ≤ x} ∩ An) ≤ P(Yn ≤ x)

leads to:

P(Yn ≤ x) − P(AC
n ) ≤ P(Xn ≤ x) ≤ P(Yn ≤ x) + P(AC

n ).

The conclusion is then straightforward since P(Yn ≤ x) → P(Y ≤ x) and
P(AC

n ) → 0.

The next lemma provides the asymptotic distribution of extreme quantile
estimators from an uniform distribution in a situation analogous to (S.1)
in the unconditional case.

Lemma 2 Let V1, . . . , VM be independent uniform random variables. For
any sequence (θM ) ⊂ (0, 1) such that θM → 0 and MθM → ∞,

(

M

θM

)1/2

(V⌊MθM ⌋,M − θM)
d
→ N (0, 1).

Proof of Lemma 2 − For the sake of simplicity, let us introduce kM =
⌊MθM⌋. From Rényi’s representation theorem,

VkM ,M
d
=

kM
∑

i=1

Ei

/

M+1
∑

i=1

Ei

where E1, . . . , EM+1 are independent random variables from a standard ex-
ponential distribution. Thus,

ξM
def
=

(

M

θM

)1/2

(VkM ,M − θM)
d
=

(

1

M

M+1
∑

i=1

Ei

)−1
(

M

θM

)1/2

×

[

1

kM

kM
∑

i=1

Ei

(

kM
M

− θM

)

+ θM

(

1

kM

kM
∑

i=1

Ei − 1

)

− θM

(

1

M

M+1
∑

i=1

Ei − 1

)]

,

and, in view of the law of large numbers, we have

ξM
P
∼

(

M

θM

)1/2(kM
M

− θM

)

(1 + oP (1)) + (MθM )1/2

(

1

kM

kM
∑

i=1

Ei − 1

)

− (MθM )1/2

(

1

M

M+1
∑

i=1

Ei − 1

)

def
= ξ1,M + ξ2,M − ξ3,M .

12



Let us consider the three terms separately. First, writing kM = MθM − τM
with τM ∈ [0, 1), we have

ξ1,M
P
∼

(

M

θM

)1/2 τM
M

=
τM

(MθM )1/2
→ 0, (12)

since MθM → ∞. Second, since kM ∼ MθM , the central limit theorem
entails

ξ2,M ∼ k
1/2
M

(

1

kM

kM
∑

i=1

Ei − 1

)

d
→ N (0, 1). (13)

Similarly, it is easy to check that

ξ3,M = OP(θ
1/2
M ) = oP(1), (14)

since θM → 0. Collecting (12), (13) and (14) concludes the proof.

6.2 Proofs of main results

Proof of Proposition 1 − Under (A) and since the random values {Zi(t), i =
1, . . . ,mt} are independent, we have:

{logZi(t), i = 1, . . . ,mt}
d
= {log q(Vi, xi) i = 1, . . . ,mt},

where xi is the covariate associated to Zi(t). Denoting by ψ(i) the random
index of the covariate associated to the observation Zmt−i+1,mt

(t), we obtain

{logZmt−i+1,mt
(t), i = 1, . . . ,mt}

d
= {log q(Vψ(i), xψ(i)) i = 1, . . . ,mt}.

Let us consider the event An = A1,n ∩A2,n where

A1,n =

{

min
i=1,...,kt−1

log
q(Vi,mt

, ui)

q(Vi+1,mt
, ui+1)

> 0,∀(u1, . . . , ukt
) ⊂ B(t, ht)

}

and

A2,n =

{

min
i=kt+1,...,mt

log
q(Vkt,mt

, ukt
)

q(Vi,mt
, ui)

> 0,∀(ukt+1, . . . , umt
) ⊂ B(t, ht)

}

.

Conditionally to A1,n, the random variables q(Vi,mt
, ui), i = 1, . . . , kt are

ordered as

q(Vkt,mt
, ukt

) ≤ q(Vkt−1,mt
, ukt−1) ≤ · · · ≤ q(V1,mt

, u1),

and, conditionally to A2,n, the remaining random variables q(Vi,mt
, ui), i =

kt + 1, . . . ,mt are smaller since

max
i=kt+1,...,mt

q(Vi,mt
, ui) ≤ q(Vkt,mt

, ukt
).

13



Thus, conditionally to An, the kt largest random values taken from the
set {log q(Vψ(i), xψ(i)), i = 1, . . . ,mt} are {log q(Vi,mt

, xψ(i)), i = 1, . . . , kt}.

Consequently, for Jkt
= {1, . . . , kt} and letting Ti

def
= xψ(i), we have:

{logZmt−i+1,mt
(t), i ∈ Jkt

|An}
d
= {log q(Vi,mt

, Ti), i ∈ Jkt
|An} .

To conclude the proof, it remains to show that P(An) → 1 as n → ∞. Let

us define δmt
= m

−(1+δ)
t and consider the events

A3,n = {V1,mt
> δmt

} ∩ {Vmt,mt
< 1 − δmt

}

A4,n =

{

min
i=1,...,kt

log
q(Vi,mt

, t)

q(Vi+1,mt
, t)

> 2ωn(δmt
)

}

.

Under A3,n, we have δmt
< Vi,mt

< 1 − δmt
for all i = 1, . . . ,mt. Hence, for

all (ui, uj) ∈ B(t, ht)
2, it follows that, on the one hand

log
q(Vj,mt

, uj)

q(Vi,mt
, ui)

= log
q(Vj,mt

, t)

q(Vi,mt
, t)

+ log
q(Vj,mt

, uj)

q(Vj,mt
, t)

+ log
q(Vi,mt

, t)

q(Vi,mt
, ui)

≥ log
q(Vj,mt

, t)

q(Vi,mt
, t)

− 2ωn(δmt
),

and on the other hand,

min
i=kt+1,...,mt

log
q(Vkt,mt

, ukt
)

q(Vi,mt
, ui)

≥ min
i=kt+1,...,mt

log
q(Vkt,mt

, t)

q(Vi,mt
, t)

− 2ωn(δmt
)

≥ log
q(Vkt,mt

, t)

q(Vkt+1,mt
, t)

− 2ωn(δmt
).

Consequently A3,n ∩ A4,n ⊂ An. Remarking that

P(A3,n) ≥ P(V1,mt
> δmt

)+P(Vmt,mt
< 1−δmt

)−1 = 2P(V1,mt
> δmt

)−1 → 1,

since Vmt,mt

d
= 1 − V1,mt

and P(V1,mt
> δmt

) = (1 − δmt
)mt → 1, it thus

remains to prove that P(A4,n) → 1. From [5], paragraph 1.3.1, condition
(A) implies that there exists c(t) > 0, depending only on t such that, for all
α ∈ (0, 1),

q(α, t) = c(t) exp

{
∫ 1

α

γ(t) + ∆(u, t)

u
du

}

,

which is the so-called Karamata representation for normalised regularly
varying functions. Hence, for all i ∈ Jkt

,

log
q(Vi,mt

, t)

q(Vi+1,mt
, t)

=

∫ Vi+1,mt

Vi,mt

γ(t) + ∆(u, t)

u
du,

14



and it follows that

log
q(Vi,mt

, t)

q(Vi+1,mt
, t)

≥ (γ(t) − ∆̄(Vkt+1,mt
, t)) log

Vi+1,mt

Vi,mt

,

leading to

P(A4,n) ≥ P

(

(γ(t) − ∆̄(Vkt+1,mt
, t)) min

i=1,...,kt

log
Vi+1,mt

Vi,mt

> 2ωn(δmt
)

)

≥ P

({

min
i=1,...,kt

log
Vi+1,mt

Vi,mt

≥
4ωn(δmt

)

γ(t)

}

∩
{

∆̄(Vkt+1,mt
, t) < γ(t)/2

}

)

≥ P

(

min
i=1,...,kt

log
Vi+1,mt

Vi,mt

≥
4ωn(δmt

)

γ(t)

)

+ P
(

∆̄(Vkt+1,mt
, t) < γ(t)/2

)

− 1

def
= P1,mt

+ P2,mt
− 1.

In view of Rényi representation for uniform ordered random variables,

{i log(V −1
i,mt

/V −1
i+1,mt

), i ∈ Jkt
}
d
= {Fi, i ∈ Jkt

},

where F1, . . . , Fkt
are independent random variables from a standard expo-

nential distribution, we have

P1,mt
= P

(

min
i=1,...,kt

Fi
i

≥
4ωn(δmt

)

γ(t)

)

=
kt
∏

i=1

exp

(

−
4iωn(δmt

)

γ(t)

)

= exp

(

−
2

γ(t)
kt(kt + 1)ωn(δmt

)

)

→ 1,

since k2
t ωn(δmt

) → 0. Furthermore, Vkt+1,mt
= (kt/mt)(1 + oP(1))

P
→ 0 and

∆(α, t) → 0 as α→ 0 entail P2,mt
→ 1. The conclusion follows.

Proof of Proposition 2 − From Proposition 1, there exists an event An

with P(An) → 1 such that (Zmt,mt
(t)|An)

d
= (q(V1,mt

, T1)|An) and thus,

P(Zmt,mt
(t) < q(αmt

, t)) = P

({

log
q(V1,mt

, T1)

q(αmt
, t)

< 0

}

∩ An

)

+ P

({

log
Zmt,mt

(t)

q(αmt
, t)

< 0

}

∩ AC
n

)

def
= P3,mt

+ P4,mt
. (15)

Clearly, P4,mt
≤ P(AC

n ) → 0. Let us now consider the term P3,mt
. Introduc-

ing δmt
= m

−(1+δ)
t and A5,n = {V1,mt

∈ [δmt
, 1 − δmt

]}, we have

P3,mt
= P

({

log
q(V1,mt

, T1)

q(αmt
, t)

< 0

}

∩ An ∩ A5,n

)

+ P

({

log
q(V1,mt

, T1)

q(αmt
, t)

< 0

}

∩ An ∩ AC
5,n

)
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and standard calculations lead to:

P

({

log
q(V1,mt

, T1)

q(αmt
, t)

< 0

}

∩ A5,n

)

+ P(An) − 1 ≤ P3,mt

≤ P

({

log
q(V1,mt

, T1)

q(αmt
, t)

< 0

}

∩ A5,n

)

+ P(AC
5,n).

Furthermore, A5,n implies

∣

∣

∣

∣

log
q(V1,mt

, T1)

q(V1,mt
, t)

∣

∣

∣

∣

≤ ωn(δmt
),

and thus

P

({

log
q(V1,mt

, t)

q(αmt
, t)

< −ωn(δmt
)

}

∩ A5,n

)

+ P(An) − 1 ≤ P3,mt

≤ P

({

log
q(V1,mt

, t)

q(αmt
, t)

< ωn(δmt
)

}

∩A5,n

)

+ P(AC
5,n),

which entails

P

(

log
q(V1,mt

, t)

q(αmt
, t)

< −ωn(δmt
)

)

+ P(A5,n) + P(An) − 2 ≤ P3,mt

≤ P

(

log
q(V1,mt

, t)

q(αmt
, t)

< ωn(δmt
)

)

+ P(AC
5,n). (16)

Let us now focus on the quantity

P5,mt

def
= P

(

log
q(V1,mt

, t)

q(αmt
, t)

< ±ωn(δmt
)

)

=

[

P

(

log
q(V1, t)

q(αmt
, t)

< ±ωn(δmt
)

)]mt

=
[

P

(

q(V1, t) < e±ωn(δmt )q(αmt
, t)
)]mt

=
[

P

(

1 − V1 < F
(

e±ωn(δmt )q(αmt
, t), t

))]mt

= exp
[

mt logF
(

e±ωn(δmt )q(αmt
, t), t

)]

.

Since e±ωn(δmt )q(αmt
, t) → ∞ and introducing the conditional survival func-

tion F̄ (., t) = 1 − F (., t), we have

mt logF
(

e±ωn(δmt )q(αmt
, t), t

)

= −mtF̄
(

e±ωn(δmt )q(αmt
, t), t

)

(1 + o(1))

= −mtαmt

F̄
(

e±ωn(δmt )q(αmt
, t), t

)

F̄ (q(αmt
, t), t)

(1 + o(1)).
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As already mentioned, (A) implies (1) which, in turn, shows that F̄ (., t) is a
regularly function at infinity with index −1/γ(t). Hence, since e±ωn(δmt ) →
1, we thus have (see [5], Theorem 1.5.2),

F̄
(

e±ωn(δmt )q(αmt
, t), t

)

F̄ (q(αmt
, t), t)

→ 1.

As a conclusion,
P5,mt

= [1 − αmt
(1 + o(1))]mt , (17)

and collecting (16) and (17) leads to:

[1 − αmt
(1 + o(1))]mt + P(A5,n) + P(An) − 2

≤ P3,mt
≤ [1 − αmt

(1 + o(1))]mt + P(AC
5,n).

Since P(A5,n) → 1 and P(An) → 1, it is then straightforward that P3,mt
→ 0

under (S.1) and P3,mt
→ e−c under (S.2) or (S.3). Equation (15) concludes

the proof.

Proof of Theorem 1 − Let us introduce, for the sake of simplicity, kt =
⌊mtαmt

⌋. From Proposition 1, there exists an event An such that:

(

(mtαmt
)1/2 log

q̂1(αmt
, t)

q(αmt
, t)

∣

∣

∣

∣

An

)

d
=

(

(mtαmt
)1/2 log

q(Vkt,mt
, Tkt

)

q(αmt
, t)

∣

∣

∣

∣

An

)

,

where P(An) → 1. From Lemma 1, the convergence in distribution

(mtαmt
)1/2 log

q(Vkt,mt
, Tkt

)

q(αmt
, t)

d
→ N (0, γ2(t)), (18)

is a sufficient condition to obtain

(mtαmt
)1/2 log

q̂1(αmt
, t)

q(αmt
, t)

d
→ N (0, γ2(t)).

A straightforward application of the δ-method will then conclude the proof.
Let us prove the convergence in distribution (18). To this end, consider

Rn =

∣

∣

∣

∣

log
q(Vkt,mt

, Tkt
)

q(Vkt,mt
, t)

∣

∣

∣

∣

and let δmt
= m

−(1+δ)
t . Remark that, under (S.1),

P(Rn ≤ ωn(δmt
)) ≥ P(Vkt,mt

∈ [δmt
, 1 − δmt

]) → 1.

Thus, Rn = OP(ωn(δmt
)) and we have

log
q(Vkt,mt

, Tkt
)

q(αmt
, t)

= log
q(Vkt,mt

, t)

q(αmt
, t)

+OP(ωn(δmt
)). (19)
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Let us introduce the log-quantile function g(.) = log q(., t). Clearly, for all
α ∈ (0, 1),

g′(α) =
∆(α, t) − γ(t)

α
and a first-order Taylor expansion leads to:

(mtαmt
)1/2 log

q(Vkt,mt
, t)

q(αmt
, t)

= (mtαmt
)1/2g′(θmt

)(Vkt,mt
− αmt

)

= αmt
g′(θmt

)

(

mt

αmt

)1/2

(Vkt,mt
− αmt

),

where θmt
∈ [min(αmt

, Vkt,mt
),max(αmt

, Vkt,mt
)]. Now, Vkt,mt

P
∼ αmt

entails

θmt

P
∼ αmt

→ 0 and, from (A),

αmt
g′(θmt

)
P
∼ θmt

g′(θmt
) = ∆(θmt

, t) − γ(t)
P
→ −γ(t).

Then, Lemma 2 implies that

(mtαmt
)1/2 log

q(Vkt,mt
, t)

q(αmt
, t)

d
→ N (0, γ(t)2). (20)

Collecting (19) and (20) concludes the proof after remarking that condition
(mtαmt

)2ωn(δmt
) → 0 implies (mtαmt

)1/2ωn(δmt
) → 0.

Proof of Theorem 2 − Since q(., t) is regularly varying with index −γ(t),
we have under (S.2) that q(1/mt, t)/q(αmt

, t) ∼ (mtαmt
)γ(t) → cγ(t) and

the following asymptotic expansion holds

log
q̂1(αmt

, t)

q(αmt
, t)

= log
q̂1(αmt

, t)

q(1/mt, t)
+ log

q(1/mt, t)

q(αmt
, t)

= log
q̂1(αmt

, t)

q(1/mt, t)
+ γ(t) log(c) + o(1).

Now, recall that in situation (S.2), for n large enough, ⌊mtαmt
⌋ = ⌊c⌋.

Thus, from Proposition 1, there exists an event An such that P(An) → 1
and

(

log
q̂1(αmt

, t)

q(1/mt, t)

∣

∣

∣

∣

An

)

d
=

(

log
q(V⌊c⌋,mt

, T⌊c⌋)

q(1/mt, t)

∣

∣

∣

∣

An

)

.

Mimicking the proof of Theorem 1, we obtain

log
q(V⌊c⌋,mt

, T⌊c⌋)

q(1/mt, t)
= log

q(V⌊c⌋,mt
, t)

q(1/mt, t)
+OP(ωn(δmt

)).

To conclude, one can remark that q(V⌊c⌋,mt
, t) is the ⌊c⌋th uppest order

statistics associated to a heavy-tailed distribution. In such a case, Corol-
lary 4.2.4 of [13] states that q(V⌊c⌋,mt

, t)/q(1/mt, t) converges to a non-
degenerated distribution. This asymptotic distribution is explicit even though
it is not reproduced here.
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Proof of Theorem 3 − Observing that

log q̂2(αmt
, t) = log q̂1(βmt

, t) + γ̂n(t) log

(

βmt

αmt

)

leads to the following expansion

log
q̂2(αmt

, t)

q(αmt
, t)

= log
q̂1(βmt

, t)

q(βmt
, t)

+ log

(

βmt

αmt

)

(γ̂n(t) − γ(t))

− log
q(αmt

, t)

q(βmt
, t)

+ γ(t) log

(

βmt

αmt

)

def
= ξ4,mt

+ ξ5,mt
− ξ6,mt

.

First remark that, under (A), as already shown in the proof of Proposition 1,

log
q(αmt

, t)

q(βmt
, t)

=

∫ βmt

αmt

γ(t) + ∆(u, t)

u
du,

and thus, ξ6,mt
can be simplified as

ξ6,mt
=

∫ βmt

αmt

∆(u, t)

u
du

which leads to the bound:

|ξ6,mt
| ≤ ∆̄(βmt

, t) log

(

βmt

αmt

)

.

The two additional conditions are now treated separately since, under condi-
tion (5), the asymptotic distribution is imposed by ξ4,mt

whereas, under (7),
the asymptotic distribution is imposed by ξ5,mt

.
(i) Under (5), Theorem 1 entails that

(mtβmt
)1/2ξ4,mt

d
→ N (0, γ2(t)) (21)

and
(mtβmt

)1/2ξ5,mt
= ζmt

υ−1
n (t)υn(t)(γ̂n(t) − γ(t))

P
→ 0, (22)

from (4) and (5). Finally,

(mtβmt
)1/2|ξ6,mt

| ≤ ζmt
∆̄(βmt

, t) → 0, (23)

from (5). Collecting (21), (22) and (23) concludes the proof of (6).

(ii) Under (7), Theorem 1 implies

υn(t)

log(βmt
/αmt

)
ξ4,mt

= υn(t)ζ
−1
mt

(mtβmt
)1/2ξ4,mt

P
→ 0. (24)
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Moreover, from (4),

υn(t)

log(βmt
/αmt

)
ξ5,mt

= υn(t)(γ̂n(t) − γ(t))
d
→ D (25)

and finally,
υn(t)

log(βmt
/αmt

)
|ξ6,mt

| ≤ ∆̄(βmt
, t)υn(t) → 0, (26)

under (7). Collecting (24), (25) and (26) concludes the proof of (8).
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Figure 1: Representation of the 16 spectra as functions of the wavelength.
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Figure 2: Comparison between the error distributions obtained with the
heuristics method (transparent) and the oracle method (gray) on N = 100
samples.
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Figure 5: Comparison of the true quantile of order α = 1/300 (solid line)
with the estimated quantiles by the heuristics strategy (dashed line) and the
oracle strategy (dotted line) on the replication corresponding to the median
error. The associated sample is represented by the points (”×”).
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Figure 6: Comparison of the true quantile of order α = 1/500 (solid line)
with the estimated quantiles by the heuristics strategy (dashed line) and the
oracle strategy (dotted line) on the replication corresponding to the median
error. The associated sample is represented by the points (”×”).
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q(α, t) ∆(α, t)

Pareto α−γ(t) 0

Fréchet α−γ(t)
{

1

α
log

(

1

1 − α

)}−γ(t)

−
γ(t)

2
α(1 +O(α))

Burr α−γ(t)
(

1 − α−ρ(t)
)−γ(t)/ρ(t)

−γ(t)α−ρ(t)(1 +O(α−ρ(t)))

Table 1: Some examples of heavy-tailed distributions. For all distributions,
γ(t) > 0 is the tail-index and ρ(t) < 0 is referred to as the second-order
parameter in extreme-value theory.
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