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How to Well Pose a Magnetization
Identification Problem

Olivier Chadebec, Jean-Louis Coulomb, Gilles Cauffet, and Jean-Paul Bongiraud

Abstract—This paper presents an original approach for deter-
mining the unknown magnetization of a ferromagnetic shell. Mag-
netic measurements using sensors close from the device under test
are used to rebuild distributions located on the shell. These dis-
tributions are representative of the magnetization and tangential
moments or charges can be used. This identification problem is a
particular case of an inverse problem and is generally ill posed. In-
stead of using classical mathematical tools to solve such a problem,
we preferred to change it in a better posed one by adding our phys-
ical knowledge of the problem. All our results have been validated
on a mockup with real measurements.

Index Terms—Charges identification, inverse problems, magne-
tization identification, magnetostatic, thin shell.

I. INTRODUCTION

M OST SHIPS’ hulls are built with ferromagnetic materials
(steel, etc.). A ship, placed in the earth’s magnetic field,

then gets a magnetization and creates a local anomaly of it. For
military vessels, this anomaly can lead to their destruction by
magnetic mines or their localization (submarine). The goal of
this work is to develop a tool that allows the ship to predict its
own magnetization and then its own magnetic risk.

A hull’s magnetization has two kinds of components. The
first one is the induced magnetization and is due to the reac-
tion of the material when it is placed in an inductor field
(i.e., earth’s magnetic field). The calculus of this magnetization
is now well-known and easy to compute [1], [2]. The second
magnetization is the remanent one and depends on the magnetic
history of the device (combination of mechanical and thermal
constraints, magnetostriction, etc.). Because we have no idea of
this magnetic history, a deterministic calculus is not possible. It
is then necessary to use static magnetic measurements to deter-
mine it. In our application, sensors are necessarily placed on-
board the ship. The goal of our work is, from these measure-
ments, to reconstruct a model of the shell’s magnetization. Once
it is obtained, it will be easy to calculate the field outboard,
where sensors cannot be placed.

II. TWO KINDS OF DISTRIBUTIONS

We consider a ferromagnetic shell placed in an external in-
ductor field . This device creates a local perturbation of the
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field which can then be expressed in term of reduced po-
tential

(1)

A. Moments Distribution

The hull has a magnetization which is equal to the sum of
the induced magnetization and the remanent one

(2)

If the thickness of the sheet is small and relative permeability
high, we can consider that induced magnetization is

parallel to the shell and constant through it [1]. We assume that
it is the case for the remanent magnetization too. We can
then model the plate by a median surface, where a distribution
of the tangential magnetization is located. It is directly linked
to the reduced field (i.e., the field created by the shell) in the air
region by the following [3]:

(3)

where is the vector between a point of the air region and the
integration point of the median surface S.

B. Charges Distribution

If we consider that

(4)

and

(5)

we obtain

as div

Equation (7) is equivalent to Poisson’s equation; the magnetiza-
tion of the shell can then be considered as equivalent to a distri-
bution of charges located on S. Thus, the relation between this
distribution and the tangential magnetization is

(8)
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where is the standard divergence operator applied only on
the tangential components of S. Field perturbation can then be
expressed by

(9)

We notice that the charge distributionis a mathematical ab-
straction but represents the flux of induction entering the shell
form the air region [4]. The advantage of (3) and (9) is their va-
lidity everywhere in the air region (i.e., outboard and onboard
the device).

III. I NVERSEPROBLEM

The aim of our work is, starting from measurements of the
field in the air, to determine these moments or charges distribu-
tions. We have written (3) and (9) which can link a measured
field (in fact the reduced measured field) to theses distributions.
The goal of our work is to invert them. We meshinto sur-
face elements and nodes. It remains to find shapes func-
tion with respect to each distribution and its variation on the
elements.

A. Shape’s Functions

1) Moments Shapes Functions:We can assume that varia-
tions of magnetization on each element are not significant. It
seems sufficient to consider that magnetization is constant on
each element (zeroth-order approximation). We notice that (3)
is analytically convergent but its numerical integration can lead
to divergence ( field variation at the proximity of the shell).
Moreover, we would like to place sensors close to the shell (and
the sources), it is then more efficient to use a classical diver-
gence theorem

(10)

where is a volume with a constant magnetization, delimited
by and with an external normal. By combining (3) and (10)
reduced to a surface element, we obtain

(11)
where is the measured field, is the edge of element i,
and the external normal of tangential to S. Integrations
are now realized on edges of the mesh. We can then notice that
a constant magnetization on each elementis strictly equiv-
alent to a constant line distribution of charge located of
the edge of element i. We have then found a relation between
the measured field and a constant distribution of magnetization
per element. This relation has been written in terms of constant
charge distribution per edge to limit the singularity ( sin-
gularity near the shell). We notice that unknowns of (11) are
still .

2) Charges Shape’s Functions:We remember that a charge
distribution represents the flux of induction entering the shell
form the outside and the inside air regions. It then seems natural

Fig. 1. Sensor location in front of element’s barycenter with line uniform
charge distributions and punctual distributions.

to locate charges where this flux could have a high value, in par-
ticular, on edges or corners of the device. So, we have decided
to locate punctual charges on each node of the mesh. Then,
we obtain the following:

(12)

Equation (12) is a less good approximation of the distribution
than (11) (line integration of charges against punctual charges).
We will see the reasons for this choice in a following section.

B. Sensors Location

We have seen that (11) and (12) presents a numerical
singularity near the shell. It is then necessary to place sensors far
from these distributions. Our choice is to locate them directly in
front of the barycenter of each element. Integration would then
be done with quite good accuracy (see Fig. 1).

C. Writing of the Inverse Linear System

We now place magnetic triaxial sensors inside the hull and
close to it. We can then build a system where the unknowns are
the sum of remanent and induced moments or charges.

(13)

where is a matrix for the moments case and a
matrix for the charges one. The goal is now to find

so to solve an inverse problem. corresponds to moments
identification and to the charges one.

D. Rank-Deficient and Ill-Posed Problems

Most inverse problems are said to be ill posed and their solu-
tions are not unique. It is the case for our application too. Two
different causes could lead to an ill-posed problem [5].

1) Rank-Deficient Problem:We consider that we have few
sensors and that they are far from each other. We then have fewer
equations than unknowns and (13) is purely underdetermined.
Indeed, every linear combination of vectors from the kernel of
is not observable and an infinite number of solutionsexactly
fit the data. The problem is then said to be rank deficient. An
example of sensors location which leads to such a system is
shown in Fig. 2.

To solve these kinds of systems, single-value decomposition
(SVD) is usually used. The SVD then returns the solution
which fits the measurements and has the minimal norm. We have
tried to solve (12) and (13) for rank-deficient systems. Our ex-
perience can be resumed by the two following points.
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Fig. 2. Typical case of rank-deficient problem (N = 9, 6 equations—18
unknowns for moments identification).

Fig. 3. Typical case of problem with bad condition number (N = 9, 27
equations—18 unknowns for moments identification).

— Charges identification:The solution may be accept-
able. Indeed, SVD naturally minimizes the flux en-
tering the shell. However, we think that inversions on
geometries where the flux has high variations can fail.

— Moments identification:The solution with the minimal
norm is not acceptable. In particular, elements far from
sensor get a magnetization that is too small.

2) Problem With Poor Condition Number:We now consider
that we have lots of sensors close to each other. Several dif-
ferent distributions of sources can create a field very close to
the measured one. It is then very difficult to favor a solution,
the measurements being noisy. In that sense, the solution is not
unique either. This fact is due to the presence of quasicontradic-
tory equations in the system. The resolution of (13) leads then
to an unacceptable divergent solution. The parallelism between
equations can be evaluated by the condition number of matrix

(ratio between the highest and smallest single values of ma-
trix ). If the condition number is close to one, equations are
strongly independent; on the contrary, a high condition number
leads to amplification of measurement inaccuracies and to an
unstable solution. Let us note that a high number of measure-
ments increases the phenomena, by increasing the number of
equations and then increasing the condition number too, espe-
cially for the case of more equations than unknowns (Fig. 3).

The inverse problem needs then to be regularized. The most
used regularization method has been developed by Tikhonov [6]
and consists of solving the following by SVD:

(14)

where is a weighted parameter. If equal (i.e., the identity
matrix), the method tries to fit the distribution to the magnetic
measurements by keeping a minimal norm for(zeroth-order
regularization) and avoiding then divergence of the solution.
can also be chosen as the derivative operator, the solution re-
turned is then the most regular.

— Charges identification:Zeroth-order regularization
succeeds (flux minimization) but the choice of the
weighted parameter still remains a difficulty.

— Moments identification:Inversion fails. Indeed, as we
already said for magnetization, a solution with a small
norm is not satisfactory. It is then better to find the most
regular solution. must be chosen as the derivative
matrix (first-order regularization). However, this ap-
proach is difficult to apply to three-dimensional prob-
lems. The geometrical complexity of our device and

our vectors basis (for moments distribution) makes ma-
trix very difficult to compute. Moreover, the choice
of the weighted parameter remains a difficulty.

We notice that a magnetization identification problem can
have both difficulties (for example, if few sensors are close to
each other).

IV. STRATEGY FOR SOLVING IDENTIFICATION

MAGNETIZATION PROBLEM

Classical approaches favor applications with lots of measure-
mentsand thenuse regularization theory [3].However,wedecide
not to follow this way. There are several reasons: first, devices
with lots of sensors are expensive and difficult to manage. Then
the choice of the regularization parameter is difficult and mea-
surementdependant. Finally, wewould like tosolve the moments
inversion to have a physical representation of the magnetization.

We decided then to use only few sensors and then to solve a
severely rank-deficient system. The sensor location is chosen to
ensure good condition number. In particular, they are far from
each other to obtain strong decoupled equations. The kernel of
the system has then a high dimension, and a high number of dis-
tributions fit measurements. To obtain a pertinent solution, the
new solution that we propose is to reduce its dimension. It can
be done by adding some other equations. In fact, our applica-
tion is really specific and a fundamental aspect of the problem
can be taken into account: The shell channels the flux of in-
duction by following Maxwell’s laws. We consider a model for
the ferromagnetic material which takes into account remanent
magnetization

(15)

where is reversible linear permeability. We also have

(16)

and then, by combining (15) and (16)

(17)

where is the reduced reversible permeability of the material.
With (1), an equation similar to (11) and (17), we get with a
collocation method at the barycenter on elementof the mesh
[7]

(18)

A similar approach can be applied with the charges approach
and a flux balance equilibrium equation [2]

(19)
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Fig. 4. Mesh and sensors location (28 sensors, 271 elements, 273 nodes).

By writing (18) or (19) on each element of the mesh, we obtain
two new square systems valid inside the shell. We notice that
these systems do not deal with measurements but only with the
inductor field and the relative permeability

(20)

where is the identity matrix.
Other considerations can improve our knowledge of the

problem and leads to one equation more. We remember that a
distribution of charge represents the flux of induction entering
the shell; according to the physic the sum of these charges must
be null. We then get two new equations for moments

(21)

and the punctual charges problem

(22)

It remains now to solve a global system for the two problems

(23)

The solution returned by these resolutions is now the distri-
bution that fits the measurements and moreover that takes into
account the behavior of the material (according to Maxwell’s
laws). Our knowledge of the problem is now much better than
before. Moreover, (18) and (19) have both good condition num-
bers, therefore, it will also be the case for global systems, so it
is then useless to regularize it. Systems are solved with a simple
SVD.

V. NUMERICAL APPLICATION

Our two approaches have been validated on a real mockup
representative of a real ship (4.60 m long). 28 fluxgate mag-
netometers have been placed onboard (Fig. 4). The thickness,
the relative permeability of the shell, and the inductor field are
well-known. The shell is meshed into 271 surface elements, in
both cases, systems (13) obtained are then severely rank defi-
cient. It is then indispensable to solve system (23) to get a perti-
nent solution. Distributions obtained are shown in Figs. 5 and 6.

Once solutions have been obtained, is it easy to compute the
field everywhere in the air region, with the help of (11) and (12).
This field, predicted outboard, has been compared to a measured
one. Results for two kinds of distributions present a difference
fewer than 5% of differences [7]. We can then conclude that the
identification has been done with good accuracy.

Fig. 5. Moments distribution obtained by identification with 28 sensors on a
real mockup. Measurements system: 96 equations for 1024 unknowns. Internal
system: 543 equations added.

Fig. 6. Charge distribution obtained by identification with 28 sensors on a
real mockup. Measurements systems: 96 equations for 546 unknowns. Internal
system: 274 equations added.

VI. CONCLUSION

In this paper, we have explained a methodology to change
an ill-posed problem to a better posed one. This approach con-
sists of favoring the knowledge of the behavior of sources to
the detriment of the measurement. Instead of using numerical
tools to solve an ill-posed problem, we have preferred to pose
a better one. This approach has many advantages. First no em-
pirical parameters are needed. Then fewer sensors are used and
the approach seems to be very stable by ensuring a coherent
distribution of sources. According to our experience the punc-
tual charge distribution identification seems to be the most reli-
able but does not lead to a representation of the magnetization
in terms of moments.
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