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How to Well Pose a Magnetization
|dentification Problem

Olivier Chadebec, Jean-Louis Coulomb, Gilles Cauffet, and Jean-Paul Bongiraud

Abstract—This paper presents an original approach for deter- field H,.q which can then be expressed in term of reduced po-
mining the unknown magnetization of a ferromagnetic shell. Mag-  tential ,q
netic measurements using sensors close from the device under test
are used to rebuild distributions located on the shell. These dis-
tributions are representative of the magnetization and tangential
moments or charges can be used. This identification problem is a
particular case of an inverse problem and is generally ill posed. In-
stead of using classical mathematical tools to solve such a problem,A. Moments Distribution

we preferred to change itin a better posed one by adding our phys- A e
ical knowledge of the problem. All our results have been validated The hull has a magnetizatidvl which is equal to the sum of

on a mockup with real measurements. the induced magnetizatidl "¢ and the remanent orel**™

H=H, + H,.q = Hp — grad ycq. )

Index Terms—Charges identification, inverse problems, magne- M = Mind 4 prem @)
tization identification, magnetostatic, thin shell. ’

If the thickness: of the sheet is small and relative permeability
|. INTRODUCTION - high, we can consider that induced magnetizaidit? is

OST SHIPS' hulls are built with ferromagnetic materiall grallel to the shell and constant throu_gh it [lr]l; We assume that
. . ) .. Itis the case for the remanent magnetizafMdf™ too. We can
(steel, etc.). A ship, placed in the earth’s magnetic fiel

then gets a magnetization and creates a local anomaly of it ¢n model the plate by a median surfaGevhere a distribution
g 9 y - oPthe tangential magnetizatidvi is located. Itis directly linked

military vessels, this anomaly can lead to their destruction By o \o.y/\ced field (ie., the field created by the shell) in the air

magnetic mines or their localization (submarine). The goal O qion by the followin [3]:
this work is to develop a tool that allows the ship to predict its 9 y g1k

own magnetization and then its own magnetic risk. e (3(M,r) r — r2M
Hia = — / / ’ ds
Ar | . 75
S

A hull's magnetization has two kinds of components. The 3)
first one is the induced magnetization and is due to the reac-

tion of the material when it is placed in an inductor fi€if} ) _ _ )

(i.e., earth’s magnetic field). The calculus of this magnetizatiodherer is the vector between a point of the air region and the
is now well-known and easy to compute [1], [2]. The seconi@itegration point of the median surface S.

magnetization is the remanent one and depends on the magnetic

history of the device (combination of mechanical and thermB Charges Distribution

constraints, magnetostriction, etc.). Because we have no idea of we consider that

this magnetic history, a deterministic calculus is not possible. It

is then necessary to use static magnetic measurements to deter- B = uo(M + H) (4)
mine it. In our application, sensors are necessarily placed on-

board the ship. The goal of our work is, from these measw%rjd _
ments, to reconstruct a model of the shell’'s magnetization. Once divB =0 (5)
it is obtained, it will be easy to calculate the field outboard, )
where sensors cannot be placed. we obtain
o div(M + Hy — gradgreq) = 0 (6)

Il. Two KINDS OF DISTRIBUTIONS

We consider a ferromagnetic shell placed in an external ias divHy = 0
ductor fieldHy. This device creates a local perturbation of the
Apreq = div M. (7)
Na%;’ggzcgpégm‘id June 18, 2002. This work was supported by the I:rerEE]uation (7)is equivalent to Poisson’s equation; the magnetiza-
0. Chadebec and J.-L. Coulomb are with the Laboratoire d’Electrotechnigti@n Of the shell can then be considered as equivalent to a distri-
de Grenoble, LEG/ENSIEG, Saint Martin d'Heres 38402, France (e-majjution of charges located on S. Thus, the relation between this

chadebec@Ileg.ensieg.inpg.fr). C . T
G. Cauffet and J.-P. Bongiraud are with the Laboratoire du Magnétisme glljstrlbutlon and the tangential magnetization is

Navire, LMN/ENSIEG, Saint Martin d’'Héres 38402, France. ind
Digital Object Identifier 10.1109/TMAG.2003.810429 edive M = p = p"® 4 prm (8)
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wheredivyg is the standard divergence operator applied only on n ~~] ,6/
the tangential components of S. Field perturbation can then be punctual charge Q il
expressed by s / :/  sensor
[ ] A /”
e r ‘r ., Ml :l:// |~
Hred = 4_ p—SdS (9) %
i " 1 !
o line charge distribution 1 ,l
i i i 1N H M;in; A@,‘;{*"t?" . i
We notice that the charge distributignis a mathematical ab- ! /(? 1 o %

straction but represents the flux of induction entering the shell
form the air region [4]. The advantage of (3) and (9) is their varig. 1. Sensor location in front of element's barycenter with line uniform
lidity everywhere in the air region (i.e., outboard and onboartiarge distributions and punctual distributions.
the device).
to locate charges where this flux could have a high value, in par-
[ll. I NVERSE PROBLEM ticular, on edges or corners of the device. So, we have decided
The aim of our work is, starting from measurements of tHe locate punctual chargép on each node of the mesh. Then,

field in the air, to determine these moments or charges distribte obtain the following:

tions. We have written (3) and (9) which can link a measured e Mo r
field (in fact the reduced measured field) to theses distributions. Bes = o | Ho — i Z (Q}“d + Q7™ | - (12)
The goal of our work is to invert them. We meShnto N sur- ™ "

I?‘Ce e.lt(;ments atn;M noc:}ezr Itt_Lertr)alns tg .ftmd sha}[pes funtc'Equation (12) is a less good approximation of the distribution
lon with respect o each distribution and 1ts variation on ht?\an (112) (line integration of charges against punctual charges).

elements. We will see the reasons for this choice in a following section.
A. Shape’s Functions

B. Sensors Location
1) Moments Shapes Functions¥e can assume that varia-

tions of magnetization on each element are not significant ItWe have seen that (11) and (12) presenty# numerical
9 9 ‘singularity near the shell. Itis then necessary to place sensors far

ZZ?;E]ZIzaﬂéﬂte?zt;%t?gf&de?rathartol;r(]ierﬁz:t?c?rf)at\l;\)lg Lsotciggitha;;t {; m these distributions. Our choice is to locate them directly in
PP ' nt of the barycenter of each element. Integration would then

is analytically convergent but its numerical integration can le : ; .
to divergence(/r3 field variation at the proximity of the shell).abe done with quite good accuracy (see Fig. 1).

Moreover, we would like to place sensors close to the shell (apd Writing of the Inverse Linear System
the sources), it is then more efficient to use a classical diver-

gence theorem We now placell magnetic triaxial sensors inside the hull and

) close to it. We can then build a system where the unknowns are
H 1=i /// Mdvz_i //M n%dS the sum of remanent and induced moments or charges.
 d4r ) ). 75 4 T
\4 S

A x=A"4x*m) =D (13)

10 . .
(10) whereA is a (3K x 2N) matrix for the moments case and a
whereV is a volume with a constant magnetization, delimiteggK x M) matrix for the charges one. The goal is now to find
by S and with an external normal. By combining (3) and (10) so to solve an inverse problem= M corresponds to moments

reduced to a surface element, we obtain identification andr = Q to the charges one.
N
Bune = 110 | Ho — 4i Z / (M%nd n Mirem) .ni%dL,; D. Rank-Deficient and lll-Posed Problems
A i " Most inverse problems are said to be ill posed and their solu-

(11) tions are not unique. It is the case for our application too. Two

whereB,,..; is the measured field,; is the edge of element i, different causes could lead to an ill-posed problem [5].
andn; the external normal of; tangential to S. Integrations 1) Rank-Deficient ProblemMWe consider that we have few
are now realized on edges of the mesh. We can then notice thatisors and that they are far from each other. We then have fewer
a constant magnetizatidvi; on each elemeritis strictly equiv- equations than unknowns and (13) is purely underdetermined.
alent to a constant line distribution of chaly§.n; located of Indeed, every linear combination of vectors from the kernél of
the edge of element i. We have then found a relation betweismot observable and an infinite number of solutiansxactly
the measured field and a constant distribution of magnetizatifinthe data. The problem is then said to be rank deficient. An
per element. This relation has been written in terms of constaxample of sensors location which leads to such a system is
charge distribution per edge to limit the singularity > sin- shown in Fig. 2.
gularity near the shell). We notice that unknowns of (11) are To solve these kinds of systems, single-value decomposition
still M;. (SVD) is usually used. The SVD then returns the solution

2) Charges Shape’s FunctiondVe remember that a chargewhich fits the measurements and has the minimal norm. We have
distribution represents the flux of induction entering the sheliied to solve (12) and (13) for rank-deficient systems. Our ex-
form the outside and the inside air regions. It then seems natysatience can be resumed by the two following points.
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sensor our vectors basis (for moments distribution) makes ma-

0

/T trix L very difficult to compute. Moreover, the choice
/9 2 mesh of the weighted parameter remains a difficulty.
We notice that a magnetization identification problem can

Fig. 2. Typical case of rank-deficient probler¥ (= 9, 6 equations—18 have both difficulties (for example, if few sensors are close to
unknowns for moments identification). each other).

SENnsor

IV. STRATEGY FOR SOLVING |IDENTIFICATION
MAGNETIZATION PROBLEM

— Classical approaches favor applications with lots of measure-
ments and then use regularization theory [3]. However, we decide
not to follow this way. There are several reasons: first, devices
with lots of sensors are expensive and difficult to manage. Then
the choice of the regularization parameter is difficult and mea-

—  Charges identificationThe solution may be accept- . .
able. Indeed, SVD naturally minimizes the flux en§urementdependant. Finally, we would like to solve the moments

tering the shell. However, we think that inversions c)Hﬁversion to have a physical representation of the magnetization.

geometries where the flux has high variations can fail. We decided then to use only few sensors and then to solve a

— Moments identificationThe solution with the minimal severely rank-deficient system. The sensor location is chosen to

norm is not acceptable. In particular, elements far froffl >Ur€ good condition number. In particular,.they are far from
sensor get a magnetization that is too small. each other to obtain strong decoupled equations. The kernel of

2) Problem With Poor Condition Numbeiwe now consider the system has then a high dimension, and a high number of dis-

g.'#butions fit measurements. To obtain a pertinent solution, the
that we have lots of sensors close to each other. Several dif- . : S :
new solution that we propose is to reduce its dimension. It can

ferent distributions of sources can create a field very close tQ . . X
. er .~ be done by adding some other equations. In fact, our applica-
the measured one. It is then very difficult to favor a solut|or% . o
. . -~ .~ tion is really specific and a fundamental aspect of the problem
the measurements being noisy. In that sense, the solution is Not : . ;
. . ; . : an be taken into account: The shell channels the flux of in-
unique either. This fact is due to the presence of quasmontraqgc- . . , .
: . . uction by following Maxwell's laws. We consider a model for
tory equations in the system. The resolution of (13) leads thﬁ]n ) : . )
| ) : e ferromagnetic material which takes into account remanent
to an unacceptable divergent solution. The parallelism between o
) o magnetization
equations can be evaluated by the condition number of matrixX
A (ratio between the highest and smallest single values of ma- B = ;H + Br™ (15)
trix A). If the condition number is close to one, equations are
strongly independent; on the contrary, a high condition numbeherey is reversible linear permeability. We also have
leads to amplification of measurement inaccuracies and to an . ind rem
unstable solution. Let us note that a high number of measure- B = po(H + M™ + M™) (16)
ments increases the phenomena, by increasing the numbearud then, by combining (15) and (16)
equations and then increasing the condition number too, espe- Mind (4 — 1)H 17)
cially for the case of more equations than unknowns (Fig. 3). = W
The inverse problem needs then to be regularized. The medterey,. is the reduced reversible permeability of the material.
used regularization method has been developed by TikhonovBith (1), an equation similar to (11) and (17), we get with a

and consists of solving the following by SVD: collocation method at the barycenter on elemieott the mesh
(A 4 OéL) (xind + xrem) _ b (14) [7]

N
whereq is a weighted parameter.If equallq (i.e., the identity ind __ e ind T

matrix), the method tries to fit the distribution to the magnetic ¥ (ke = 1) | Ho — Z / Moy 5 d Lt
measurements by keeping a minimal norm+ofzeroth-order L

regularization) and avoiding then divergence of the solufion. e r

can also be chosen as the derivative operator, the solution re- I > / M ng 5 dL; | . (18)
turned is then the most regular. if

—  Charges identification: Zeroth-order regularization A similar approach can be applied with the charges approach
weighted parameter still remains a difficulty.

—  Moments identificationtnversion fails. Indeed, as we Mo .
already said for magnetization, a solution with a sma@)i™® = (u,, — 1) | e / Hog n;dL + ¢ Q" / L
L i L

Fig. 3. Typical case of problem with bad condition numbat (= 9, 27
equations—18 unknowns for moments identification).

norm is not satisfactory. Itis then better to find the most

regular solutionL, must be chosen as the derivative

matrix (first-order regularization). However, this ap- M r

proach is difficult to apply to three-dimensional prob- +ey Qi / Fmdl ) (19)
lems. The geometrical complexity of our device and i L;



CHADEBECet al. HOW TO WELL POSE A MAGNETIZATION IDENTIFICATION PROBLEM 1637

magnetic sensors

|

A

Fig. 4. Mesh and sensors location (28 sensors, 271 elements, 273 nodes).

By writing (18) or (19) on each element of the mesh, we obtain

two new square systems Val.ld inside the shell. We nOtICQ t |t. 5. Moments distribution obtained by identification with 28 sensors on a
Fhese sys_tems do not deal_W|th measure_ments but only with tB& mockup. Measurements system: 96 equations for 1024 unknowns. Internal
inductor field and the relative permeability system: 543 equations added.

(C + Id)(xind + Xrem) -d (20)

wherelyq is the identity matrix.

Other considerations can improve our knowledge of the
problem and leads to one equation more. We remember that a
distribution of charge represents the flux of induction entering
the shell; according to the physic the sum of these charges must
be null. We then get two new equations for moments

N .
> / (M 4 M) .ng dL; = 0 (21) ’
iy Fig. 6. Charge distribution obtained by identification with 28 sensors on a
real mockup. Measurements systems: 96 equations for 546 unknowns. Internal
and the punctual charges problem system: 274 equations added.
M
ind rem) __
Z (@ +Q5™) = 0. (22) VI. CONCLUSION

J

It remains now to solve a global system for the two problems 'T‘ this paper, we have explained a method(_)Iogy to change
an ill-posed problem to a better posed one. This approach con-

A AT 7 pind b sists of favoring the knowledge of the behavior of sources to
C+1; C { mm] =|d]. (23) the detriment of the measurement. Instead of using numerical
S s] L 0 tools to solve an ill-posed problem, we have preferred to pose

ﬂ_better one. This approach has many advantages. First no em-
'gcal parameters are needed. Then fewer sensors are used and
e approach seems to be very stable by ensuring a coherent
istribution of sources. According to our experience the punc-
rW_al charge distribution identification seems to be the most reli-
daﬁle but does not lead to a representation of the magnetization
méerms of moments.

The solution returned by these resolutions is now the dist
bution that fits the measurements and moreover that takes iAt
account the behavior of the material (according to Maxwell
laws). Our knowledge of the problem is now much better th
before. Moreover, (18) and (19) have both good condition nu
bers, therefore, it will also be the case for global systems, s
is then useless to regularize it. Systems are solved with a sim

SVD.
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