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Recent Improvements for Solving Inverse
Magnetostatic Problem Applied to Thin Shells

Olivier Chadebec, Jean-Louis Coulomb, Jean-Paul Bongiraud, Gilles Cauffet, and Philippe Le Thiec

Abstract—in this paper, we propose a new approach to solve the solution. Usually, to overcome this difficulty, regularization
the magnetostatic inverse problem. The goal of the work is, from techniques are used. However, we will see that these approaches
measurements of the magnetic field in the air, to rebuild a model 5o very difficult to apply to 3-D thin shells geometries.

for the magnetization of a ferromagnetic shell structure. It's then Th thod which id . lassical
possible to calculate the field where sensors cannot be placed. This €n, we propose a new method which avoids using classica

problem is usually ill posed or rank-deficient, it's then necessary regularization, injecting physical knowledge about the magnetic
to use mathematical regularizations. These techniques are basedbehavior of the sources. By changing the magnetic material law
upon the injection of knowledge about the mathematical behavior ysed for the calculus of the induced magnetization, it is possible
of the solution. We preferred to add physical information. This so- {1 take into account the remanent one. We obtain then a linear

lution allows us to get a faithful solution and to reduce significantly e . . . .
the number of sensors. Moreover, our method has been tested onSYStem valid inside the shell. This system is then associated with

a mock-up with real measurements and led to very promising re- the linear system associated to the measurement, and the global

sults. resolution gives a unique solution. This better knowledge of the
Index Terms—inverse problem, magnetization identification, Pehavior of the material allows then to use less sensors. Once
magnetostatic, moments method, thin shell. the total magnetization is determined, it is easy to calculate the

field everywhere in the air region, in particular, where sensors
cannot be placed.

In this paper, we are especially interested in the magnetic
ORE AND MORE applications nowadays deal with inanomaly created by ferromagnetic ships. Our approach will
verse problems. In this paper, we are interested by theke it possible to predict the offboard magnetic anomaly

inverse magnetostatic problem. A ferromagnetic shell with ameated by such ships with onboard measurements.

unknown magnetization, placed in an external inductor field is

considered. The total magnetization of the sheet can be divided Il. CALCULUS OF THE INDUCED MAGNETIZATION

in two parts: 1) an induced one, due to the reversible reactiRn
of the material to the inductor field and 2) a remanent one duée
to the magnetic history of the material (which depends on hys-'“ this section‘, we are interested in the calculus of induced
teresis, mechanical, and thermal constraints). magnetizatiorM™<, knowing the external fieldo, the ge-

The calculus of the induced magnetization is now well-know@metry and the reversible permeabiljtyof the material. This

[1], [2]. In a first step, we propose a new formulation to calculatéind of calculus is a typical direct problem (determination of
this magnetization. the effect by knowing sources) and is well known. However, we

However, the remanent one is impossible to evaluate wittPgoPose a new formulation more adapted to solve the inverse

deterministic calculus, because, generally, we have no accl&blem.

to the magnetic past of the material. Moreover, even if we hadConsider a ferromagnetic shell placed in a static external in-
such a knowledge, existing models would be too complex gictor fieldH, (earth magnetic field or field created by coils).
app|y to three-dimensional (3-D) geometries_ It's then nece-ghe induced magnetization of the shell creates a local pertur—
sary to use magnetic measurements to determine the total ni? ion of the field, which can be expressed in terms of reduced
netization of the shell. The main goal of this work is to solve dield Hrea
inverse problem (i.e., determination of the sources by knowing

the effect) with magnetic sensors placed in the air region. The
relation between the distribution of the magnetization and tiag equation representative of a reversible variation of the in-
measurements leads to a linear system, but its resolution is 8g¢ed magnetization in low field is

trivial and the main difficulty comes from the lack of unicity of

I. INTRODUCTION

An Equation for the Material

H= H() + Hred- (1)

B = uH )
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By combining (1)—(3), we obtain a local internal equation fo

the sheet 5000

2500
Mind = (N1 - 1)(Hred + HO) (4) 2000
wherey,. is the relative reversible permeability abf}..q is the
field at one point of the shell and is created by the magnetizati
of all the sheet.

1500

1000

500

B. Reduction of the Singularity

The relation betweeH,.q in the air region and1i*¢ is then Fig. 1. Example of induced magnetization created by an external field of
given by [3] 46000 nT on a mock-up of a ship (4.60 m lopg, = 96,¢ = 1.4 mm).

By writing (8) on each element, we obtain a full square system
of 2 x N equations (two components of the magnetization per

. . . element)
wherer is the vector between a point of the shell and the inte-

gration point of the shell. [C + Iq|[M™4] = [d] ©

If the thicknesse of the sheet is small and relative perme- ] ) ) . )
ability 2, high, we assume that this magnetization is tangentighereLa is the identity matrix andl depends on the inductor
to S, the median surface [1]. The shell is meshed iMtele- fieldand on t_h_e relative reversible permeablllty. Thls system has
ments with a uniform magnetization affected on each of thei@900d condition number and can be inverted with classical ap-
By combining (4) and (5) and applying a collocation method & 0ach (single value decomposition, for example). This resolu-
the barycenter of elemerit we obtain tion leads the to induced magnetization (see Fig. 1).

Itis then easy to calculate the induction everywhere in the air
region with the following equation:

N
e . r

B= H——Ej M, —dL; | .

No(o 47ri/Lz- RS e )

// (3(Mird.r)r — r2Mind ds;|. () The induction is calculated with an orderigf-, which leads to

7 e a better accuracy of the calculated field close to the shell (where
Si we are going to place the sensors). Moreover, integrations are
Equation (6) presents the drawback to be singularifer j n_ow_rea_lized on line elemen_ts and the gonstant r_nagnetiza_tion
with an order oft /73. To reduce this singularity, we are going todlstrlbutu_)n on e_ach elementis mathematically equw_alentto line
apply a classical result on each element. Considering a voluf{{rge distribution on the edges of the mesh. We will use (9) to

o i i C. Resolution of the System
ind _ 227 Aind
Hoao L [[[ OB,
4 T°
v

N
ind _ ¢
M = (pr — 1) HO*‘@Z

Bl

V with a uniform magnetization, we have solve the inverse problem.
Ill. RESOLUTION OF THEINVERSE PROBLEM
1 (3(M.r)r — r*M .
Hyeqa = i 5 av A. Classical Approach
v We developed a new formulation to compute the induced
1 r magnetization of ferromagnetic shell. However, our problem is
=—— [ M.n— dS @) - ; ot
An 73 more complex. Basically, as we said, the total magnetization of
S

the sheet is composed of a induced & and a remanent

wheren is the external normal t&". By applying (4) on each oneM™e™ |t is then necessary to use magnetic measurements

elements; and by reducing it to a shell element, we obtain to determinéM. Let us consider a magnetic triaxial sensor lo-
new expréssion for (6) cated in the air, close to the shell. The relation which links the

measured field tM is

e & r B Ho — — EN: / M;.n; — dL (10)
ind __ ind . sensor — M - i-nj — i ] -
M;™ = (p, — 1) <H0 i EZ /Li M;™ .3 dLZ> (8) 0 iy — I, 73

Placing P sensors in the air region. We can then write a

wheren; is an external normal to the thickness of elemgnt system of 2x N unknowns and % P equations. We obtain
Equation (8) does not present any singularity because the Ggls following system:

location point is at the barycenter of the element and the inte-
gration points are located on edges of the mesh. [A][M] = [b] (11)
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where A depends on sensor positions, on the mesh and whé&rew consider the equivalent of (3):
the components ob are the measured reduced fields. Clas- -
sically, solving the magnetostatic inverse problem consist in B = jio(H + M™ + M™™). (13)

finding a solution for only system (11) [4]. . o ) i .
Equation (4) is still valid, but nod,..q is created bpvi*< and

Mrem By an equivalent calculus of the Section Il, we obtain a

. o ) . collocation equation for each element of the mesh
Two kinds of difficulties can be associated to inverse prob-

lems. Generally, for most part of applications, lots of measure- e X L r

ments are taken to obtain more equations than unknowns. THg"" = (- — 1) <Ho ~ Z/ M;{* n; 5 AL
system obtained is then very large (especially for 3-D geome- i ki

tries) and some equations are close to the contradiction (due to e & com . T

the inaccuracies of the measurements). The system has then a T i Z /L M n; 3 dLi |. (14)
very bad condition number and the solution is divergent due to ‘ i

the noise of measurements. It is said ill posed. Now, if there 38 separatingVi*® andM™™, we obtain a new system repre-
only few sensors, equations could not be contradictory, but th&ative of the behavior of the shell and its sources
system is rank deficient (less equation than unknowns). Then,

several distributions are going to fit the measurements. In both

cases, the solution is not unique. To solve an inverse problem

consist in selecting the good one. _ )
Classical approach is then to use Tikhonov's regularizationSystem (15) is composed of 2 IV equations and &« N

[5]. This method is based on the addition of a known informalnknowns. It is rank deficient, so its solution is nonunique.

tion. It is then necessary to solve (11), plus one new mathem&flis situation could be predicted because we have not added

ical system weighted by a small coefficient. Instead of findingowledge about the magnetic history. Then, lots of distribu-
M such as tions of magnetization are possible. The new system minimize

the global energy by taking into account the inductor fiHg
M minimizes||AM — b)|. and the behavior of the sources between themselves. Notice
that solving (15) with a single value decomposition leads to
The goal is to findM such as the calculus of induced magnetization (i.e., createdy and
force remanent magnetization to zero.
M minimizes||AM — b|| + o[[LM]|. Then, it remains to _solve both systems (11) and (15) in a
global one to constrain system (15) by measurements. The

The choice of the matriL depends on which kind of informa- SyStem obtained is then
tion we want to add. IL. equally (i.e., the identity matrix), the [C 14 C} [ Mind } {d}

B. Difficulties for Solving Inverse Problems

[C+14 C] {Mn:} = [d]. (15)

method tries to fit the distribution to the magnetic measurements
by keeping a minimal norm faM (0-order regularization)L

can also be chos_en as the_der_ivative matrix (first-order regu'@énerally, the contradictory equations come from (11) and the
ization), the obtained solution is then the mostregular.  |grger (11) is, the worse the condition number is. With (16), it is

In a first step, we tried to use a zeroth-order regularizatiQRen, yseless to use a great number of sensors, a large part of the
(L = La), L being easy to compute. However, the approach Wgghayior of the sources being well known. This system will have
not satisfying. Basically, the minimal norm solution is not acs g40d condition number and a simple single value decomposi-
ceptable for the magnetization. It seemed better to use first-Orggf, |eads generally to a correct solution for the magnetization.
regularization. However, these approaches are difficult to appfye computation of a regularization matfixs then useless and

torealistic 3-D thin shell problems. The geometrical complexitye gifficulty associated to the choice of the weighted parameter
of our device and our basis of vectors makes the derivative MAtseless too [6].

trix L very difficult to compute. Classical regularization method
failed to solve the magnetostatic problem applied to thin shell.

(16)

A A [ Mrem b

V. NUMERICAL AND EXPERIMENTAL RESULTS

We are especially interested in the magnetic anomaly created

by ferromagnetic ships. We have built a real mockup of a ship
The main reproach which could be addressed to regulariza:60 meter longe = 1.4 mm andy, = 96) on which we

tion method is to choose the solution by taking into accountrgye tested our algorithm. The external magnetic figids the

mathematical criteria. Instead of adding a mathematical infggg th's magnetic field (46 000 nT). Thirty-two triaxial fluxgate

mation, we tried to add our physical knowledge of the problergensors have been placed inside the ship, which is meshed into
In (2), we only took into account induced magnetization. 1n71 elements (see Fig. 2). From measurements taken inside the

faCt, itis pOSSible to add in a model of material both induced am@” and by using our approacl‘L we obtain the fo”owing condi-
remanent magnetization. The magnetic material law becomegon numbere:

IV. EQUATION VALID INSIDE THE SHELL

B = ;H + Br*™, (12) £€=13.02
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magnetic sensors

*’THUL/\/
s

30cm

line of predicted field
10m long

induction(nT)

Fig. 2. Mesh of the shell, sensors location and line on which the field is
predicted by inverse problem and compared to measurements.
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—44+

-451 —o— predicted field by ]
inverse problem
—— measured field

-5 -2.5 0 25 5
meters

Fig. 5. Comparison of field predicted by inverse problem and measured field.
Vertical component of the induction outside the ship (30 cm under the hull).

VI. CONCLUSION

We have developed a new method to solve magnetostatic in-
verse problem and tested it on real measurements. It presents

advantages in comparison to classical regularization. First, we
Fig. 3. Model of the magnetization determined by measurements done insiggluced the order of the singularity of (5), which allows to place

the mock-up.

sensors closer to the sources (i.e., the shell) and to obtain more

accurate measurements. Second, by adding an internal physical

ther
(the

B
e

induction (nT}

-2.41 —— predicted field by
inverse problem
-2.45 { — measured field

_2.5 i |
-5 -2.5 /] 2.5 5
meters

(1]

[2
Fig. 4. Comparison of field predicted by inverse problem and measured field.
Longitudinal component of the induction outside the ship (30 cm under the hull).

(3]

This condition number is good. We can solve this system by a
simple single value decomposition and obtain a model of thel4!
magnetization (see Fig. 3), allowing to calculate the field out-
side. The field obtained is then compared to measurements takefs]
on a longitudinal line (10 m long) located 30 cm under the hull 6]
(see Fig. 4 for the longitudinal component and Fig. 5 for the ver-
tical component).

system for the shell, we improved the problem analysis. Fewer
measurements (so, fewer sensors) lead to a reliable solution and
systems obtained have generally a good condition number. Nei-

regularization nor choice of weighted parameter is needed
choice of this parameter is a real difficulty for 3-D shell de-

vices). We think that instead of trying to solve ill-posed problem
by mathematical analysis, it is better to solve a “well-posed”
one.
devices and is not restricted to boundary element formulations.
A future work will deal with its implementation with a finite el-
YL . ement method in FLUX3-D software.

Moreover, our approach can easily be applied to volume
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