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Recent Improvements for Solving Inverse
Magnetostatic Problem Applied to Thin Shells
Olivier Chadebec, Jean-Louis Coulomb, Jean-Paul Bongiraud, Gilles Cauffet, and Philippe Le Thiec

Abstract—In this paper, we propose a new approach to solve
the magnetostatic inverse problem. The goal of the work is, from
measurements of the magnetic field in the air, to rebuild a model
for the magnetization of a ferromagnetic shell structure. It’s then
possible to calculate the field where sensors cannot be placed. This
problem is usually ill posed or rank-deficient, it’s then necessary
to use mathematical regularizations. These techniques are based
upon the injection of knowledge about the mathematical behavior
of the solution. We preferred to add physical information. This so-
lution allows us to get a faithful solution and to reduce significantly
the number of sensors. Moreover, our method has been tested on
a mock-up with real measurements and led to very promising re-
sults.

Index Terms—Inverse problem, magnetization identification,
magnetostatic, moments method, thin shell.

I. INTRODUCTION

M ORE AND MORE applications nowadays deal with in-
verse problems. In this paper, we are interested by the

inverse magnetostatic problem. A ferromagnetic shell with an
unknown magnetization, placed in an external inductor field is
considered. The total magnetization of the sheet can be divided
in two parts: 1) an induced one, due to the reversible reaction
of the material to the inductor field and 2) a remanent one due
to the magnetic history of the material (which depends on hys-
teresis, mechanical, and thermal constraints).

The calculus of the induced magnetization is now well-known
[1], [2]. In a first step, we propose a new formulation to calculate
this magnetization.

However, the remanent one is impossible to evaluate with a
deterministic calculus, because, generally, we have no access
to the magnetic past of the material. Moreover, even if we had
such a knowledge, existing models would be too complex to
apply to three-dimensional (3-D) geometries. It’s then neces-
sary to use magnetic measurements to determine the total mag-
netization of the shell. The main goal of this work is to solve an
inverse problem (i.e., determination of the sources by knowing
the effect) with magnetic sensors placed in the air region. The
relation between the distribution of the magnetization and the
measurements leads to a linear system, but its resolution is not
trivial and the main difficulty comes from the lack of unicity of
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the solution. Usually, to overcome this difficulty, regularization
techniques are used. However, we will see that these approaches
are very difficult to apply to 3-D thin shells geometries.

Then, we propose a new method which avoids using classical
regularization, injecting physical knowledge about the magnetic
behavior of the sources. By changing the magnetic material law
used for the calculus of the induced magnetization, it is possible
to take into account the remanent one. We obtain then a linear
system valid inside the shell. This system is then associated with
the linear system associated to the measurement, and the global
resolution gives a unique solution. This better knowledge of the
behavior of the material allows then to use less sensors. Once
the total magnetization is determined, it is easy to calculate the
field everywhere in the air region, in particular, where sensors
cannot be placed.

In this paper, we are especially interested in the magnetic
anomaly created by ferromagnetic ships. Our approach will
make it possible to predict the offboard magnetic anomaly
created by such ships with onboard measurements.

II. CALCULUS OF THE INDUCED MAGNETIZATION

A. An Equation for the Material

In this section, we are interested in the calculus of induced
magnetization , knowing the external field , the ge-
ometry and the reversible permeabilityof the material. This
kind of calculus is a typical direct problem (determination of
the effect by knowing sources) and is well known. However, we
propose a new formulation more adapted to solve the inverse
problem.

Consider a ferromagnetic shell placed in a static external in-
ductor field (earth magnetic field or field created by coils).
The induced magnetization of the shell creates a local pertur-
bation of the field, which can be expressed in terms of reduced
field

(1)

An equation representative of a reversible variation of the in-
duced magnetization in low field is

(2)

where is the constant reversible permeability of the material. It
must be pointed out that this material law only takes into account
reversible variation of magnetization with respect to a remanent
magnetization equal to zero. Now consider the following gen-
eral equation:

(3)
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By combining (1)–(3), we obtain a local internal equation for
the sheet

(4)

where is the relative reversible permeability and is the
field at one point of the shell and is created by the magnetization
of all the sheet.

B. Reduction of the Singularity

The relation between in the air region and is then
given by [3]

(5)

where is the vector between a point of the shell and the inte-
gration point of the shell.

If the thickness of the sheet is small and relative perme-
ability high, we assume that this magnetization is tangential
to , the median surface [1]. The shell is meshed intoele-
ments with a uniform magnetization affected on each of them.
By combining (4) and (5) and applying a collocation method at
the barycenter of element, we obtain

(6)

Equation (6) presents the drawback to be singular for
with an order of . To reduce this singularity, we are going to
apply a classical result on each element. Considering a volume

with a uniform magnetization, we have

(7)

where is the external normal to . By applying (4) on each
element and by reducing it to a shell element, we obtain a
new expression for (6)

(8)

where is an external normal to the thickness of element.
Equation (8) does not present any singularity because the col-

location point is at the barycenter of the element and the inte-
gration points are located on edges of the mesh.

Fig. 1. Example of induced magnetization created by an external field of
46 000 nT on a mock-up of a ship (4.60 m long,� = 96,e = 1.4 mm).

C. Resolution of the System

By writing (8) on each element, we obtain a full square system
of 2 equations (two components of the magnetization per
element)

(9)

where is the identity matrix and depends on the inductor
field and on the relative reversible permeability. This system has
a good condition number and can be inverted with classical ap-
proach (single value decomposition, for example). This resolu-
tion leads the to induced magnetization (see Fig. 1).

It is then easy to calculate the induction everywhere in the air
region with the following equation:

The induction is calculated with an order of , which leads to
a better accuracy of the calculated field close to the shell (where
we are going to place the sensors). Moreover, integrations are
now realized on line elements and the constant magnetization
distribution on each element is mathematically equivalent to line
charge distribution on the edges of the mesh. We will use (9) to
solve the inverse problem.

III. RESOLUTION OF THEINVERSEPROBLEM

A. Classical Approach

We developed a new formulation to compute the induced
magnetization of ferromagnetic shell. However, our problem is
more complex. Basically, as we said, the total magnetization of
the sheet is composed of a induced one and a remanent
one . It is then necessary to use magnetic measurements
to determine . Let us consider a magnetic triaxial sensor lo-
cated in the air, close to the shell. The relation which links the
measured field to is

(10)

Placing sensors in the air region. We can then write a
system of 2 unknowns and 3 equations. We obtain
the following system:

(11)
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where depends on sensor positions, on the mesh and where
the components of are the measured reduced fields. Clas-
sically, solving the magnetostatic inverse problem consist in
finding a solution for only system (11) [4].

B. Difficulties for Solving Inverse Problems

Two kinds of difficulties can be associated to inverse prob-
lems. Generally, for most part of applications, lots of measure-
ments are taken to obtain more equations than unknowns. The
system obtained is then very large (especially for 3-D geome-
tries) and some equations are close to the contradiction (due to
the inaccuracies of the measurements). The system has then a
very bad condition number and the solution is divergent due to
the noise of measurements. It is said ill posed. Now, if there are
only few sensors, equations could not be contradictory, but the
system is rank deficient (less equation than unknowns). Then,
several distributions are going to fit the measurements. In both
cases, the solution is not unique. To solve an inverse problem
consist in selecting the good one.

Classical approach is then to use Tikhonov’s regularization
[5]. This method is based on the addition of a known informa-
tion. It is then necessary to solve (11), plus one new mathemat-
ical system weighted by a small coefficient. Instead of finding

such as

minimizes

The goal is to find such as

minimizes

The choice of the matrix depends on which kind of informa-
tion we want to add. If equal (i.e., the identity matrix), the
method tries to fit the distribution to the magnetic measurements
by keeping a minimal norm for (0-order regularization).
can also be chosen as the derivative matrix (first-order regular-
ization), the obtained solution is then the most regular.

In a first step, we tried to use a zeroth-order regularization
, being easy to compute. However, the approach was

not satisfying. Basically, the minimal norm solution is not ac-
ceptable for the magnetization. It seemed better to use first-order
regularization. However, these approaches are difficult to apply
to realistic 3-D thin shell problems. The geometrical complexity
of our device and our basis of vectors makes the derivative ma-
trix very difficult to compute. Classical regularization method
failed to solve the magnetostatic problem applied to thin shell.

IV. EQUATION VALID INSIDE THE SHELL

The main reproach which could be addressed to regulariza-
tion method is to choose the solution by taking into account a
mathematical criteria. Instead of adding a mathematical infor-
mation, we tried to add our physical knowledge of the problem.

In (2), we only took into account induced magnetization. In
fact, it is possible to add in a model of material both induced and
remanent magnetization. The magnetic material law becomes

(12)

Now consider the equivalent of (3):

(13)

Equation (4) is still valid, but now is created by and
. By an equivalent calculus of the Section II, we obtain a

collocation equation for each element of the mesh

(14)

By separating and , we obtain a new system repre-
sentative of the behavior of the shell and its sources

(15)

System (15) is composed of 2 equations and 4
unknowns. It is rank deficient, so its solution is nonunique.
This situation could be predicted because we have not added
knowledge about the magnetic history. Then, lots of distribu-
tions of magnetization are possible. The new system minimize
the global energy by taking into account the inductor field
and the behavior of the sources between themselves. Notice
that solving (15) with a single value decomposition leads to
the calculus of induced magnetization (i.e., created by) and
force remanent magnetization to zero.

Then, it remains to solve both systems (11) and (15) in a
global one to constrain system (15) by measurements. The
system obtained is then

(16)

Generally, the contradictory equations come from (11) and the
larger (11) is, the worse the condition number is. With (16), it is
then useless to use a great number of sensors, a large part of the
behavior of the sources being well known. This system will have
a good condition number and a simple single value decomposi-
tion leads generally to a correct solution for the magnetization.
The computation of a regularization matrixis then useless and
the difficulty associated to the choice of the weighted parameter

useless too [6].

V. NUMERICAL AND EXPERIMENTAL RESULTS

We are especially interested in the magnetic anomaly created
by ferromagnetic ships. We have built a real mockup of a ship
(4.60 meter long, 1.4 mm and 96) on which we
have tested our algorithm. The external magnetic fieldis the
earth’s magnetic field (46 000 nT). Thirty-two triaxial fluxgate
sensors have been placed inside the ship, which is meshed into
271 elements (see Fig. 2). From measurements taken inside the
hull and by using our approach, we obtain the following condi-
tion number :

13.02
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Fig. 2. Mesh of the shell, sensors location and line on which the field is
predicted by inverse problem and compared to measurements.

Fig. 3. Model of the magnetization determined by measurements done inside
the mock-up.

Fig. 4. Comparison of field predicted by inverse problem and measured field.
Longitudinal component of the induction outside the ship (30 cm under the hull).

This condition number is good. We can solve this system by a
simple single value decomposition and obtain a model of the
magnetization (see Fig. 3), allowing to calculate the field out-
side. The field obtained is then compared to measurements taken
on a longitudinal line (10 m long) located 30 cm under the hull
(see Fig. 4 for the longitudinal component and Fig. 5 for the ver-
tical component).

Fig. 5. Comparison of field predicted by inverse problem and measured field.
Vertical component of the induction outside the ship (30 cm under the hull).

VI. CONCLUSION

We have developed a new method to solve magnetostatic in-
verse problem and tested it on real measurements. It presents
advantages in comparison to classical regularization. First, we
reduced the order of the singularity of (5), which allows to place
sensors closer to the sources (i.e., the shell) and to obtain more
accurate measurements. Second, by adding an internal physical
system for the shell, we improved the problem analysis. Fewer
measurements (so, fewer sensors) lead to a reliable solution and
systems obtained have generally a good condition number. Nei-
ther regularization nor choice of weighted parameter is needed
(the choice of this parameter is a real difficulty for 3-D shell de-
vices). We think that instead of trying to solve ill-posed problem
by mathematical analysis, it is better to solve a “well-posed”
one. Moreover, our approach can easily be applied to volume
devices and is not restricted to boundary element formulations.
A future work will deal with its implementation with a finite el-
ement method in FLUX3-D software.
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