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Abstract: Using observations from the FAST small explorer spacecraft we present fields 

and plasma observations above the dayside auroral oval showing the erosion of 

ionospheric plasmas from the topside ionosphere by the action of Alfvén waves. Using 

interferometric techniques the waves are shown to approximately obey the expected 

dispersion for Alfvén waves with transverse scales extending from greater than electron 

inertial lengths down to ion gyro-radii. Measurements of the plasma density where these 

waves are observed show that over latitudinal widths exceeding 100 km total depletion of 

the cold ionospheric plasma can occur. The plasma within these depleted regions or 

cavities is composed of magnetosheath ion and electron distributions and upgoing 

transversely accelerated ions and downgoing field-aligned electrons distributed as conics 

and field-aligned beams respectively. Poynting flux observations on the density gradients 

comprising the cavity walls show that these waves are directed downwards and focused 

inwards towards regions of lower density. The wave phase velocity measurement in the 

plasma frame, while subject to significant uncertainty, is directed transversely outwards 

from the cavity. These observations suggest a feedback model for Alfvén wave focusing 

and ion heating on density gradients that can lead to intense ion outflow from the 

ionosphere and subsequent depletion of ionospheric plasmas.  

1. Introduction 

Low altitude polar orbiting satellites commonly observe low frequency electromagnetic 

fluctuations above the auroral oval (Louarn et al., 1994; Stasiewicz et al., 2000a). Several 

studies have shown that these fluctuations are oblique Alfvén waves with perpendicular 

structuring extending over a range of scales including the electron inertial length and in 

some cases the ion gyro-radii (Wahlund et al., 1998; Stasiewicz et al., 2000b; Chaston et 

al., 2004). The plasma environment in which these waves are observed is usually 

characterized at altitudes below 1 Earth radii by plasma density gradients, field-aligned 

accelerated electrons and transversely accelerated ions (Wahlund et al., 1994; Stasiewicz 

et al., 1997; Knudsen and Wahlund, 1998; Andersson et al., 2002). Several studies have 

shown how a spectrum of dispersive Alfvén waves can produce the observed field-

aligned electron distributions (Kletzing, 1994; Thompson and Lysak, 1996; Chaston et 

al., 2000; Su et al., 2004) and provide ion acceleration if scales of the order of the ion 

gyro-radii are present (Stasiewicz et al. 2000c; Chaston et al, 2004). However, there has 

been comparatively little attention given to the importance of strongly localized 
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transverse plasma density gradients above the auroral oval on Alfvén wave propagation 

with the exception of publications by Genot et al. (1999, 2004) and Seyler et al. (1995). 

This is a significant omission since often the most intense fields fluctuations are observed 

to be localized in field-aligned density cavities (Stasiewicz et al., 1998).

At altitudes as low as ~1000 km it has been demonstrated that the cavities in which 

Alfvén waves are imbedded are depleted, and in some cases devoid, of cold ionospheric 

plasmas with dn/n~1 (Chaston et al., 2000).  Since the ionosphere is the dominant source 

of plasma at altitudes at least below 1 RE there must be some means by which this plasma 

is transported either vertically or radially to provide the cavitation. There have been a 

number of studies addressing the formation of density cavities by Alfvén waves in the 

auroral plasma based on various interpretations of the ponderomotive force associated 

with these waves. Li and Temerin (1993) showed through test particle simulations how 

plasma could be extracted from the auroral ionosphere due to the ponderomotive force 

associated with the gradient in altitude of the perpendicular wave electric field amplitude. 

The time scales for this mechanism are however of the order of minutes and perhaps to 

slow to account for a discrete density cavity formation.  Bellan and Stasiewicz (1998) 

suggest that density cavitation in Alfvén waves may occur through a parallel 

ponderomotive force associated with the oscillating field aligned current in the wave. 

However, a comparison of cavity depth with the predicted depth for observed field-

aligned current amplitudes indicated that this model was unable to yield sufficiently deep 

cavities (Chaston et al., 2000). Shukla and Stenflo (1999a) suggested that the parallel 

ponderomotive force balancing the thermal force due to Joule heating in the Alfvén wave 

field in the ionosphere may be sufficient to account from the depletions observed. This 

was supported by observations of the cavity depth and calculation of the joule heating 

expected for observed wave amplitudes. However given the almost collisionless nature of 

plasmas in the upper reaches of the ionosphere where these cavities are often observed 

this mechanism is questionable. Alternatively, Rankin et al. (1999) have suggested that 

density perturbations due to the ponderomotive force associated with the non-linear 

saturation of field line resonances above the aurora may be the source of density cavities 

observed. These density perturbations take the form of  a driven ion acoustic wave or 

slow mode Alfvén wave which follow naturally from the coupling between the shear and 

slow mode Alfvén wave (or ion acoustic wave) in the presence of perpendicular gradients 

in the plasma pressure. This process has been demonstrated to produce density depletions 

of sufficient depth and width to account for observations from FAST and other auroral 

satellites.  

The observations presented in this report however suggest a different mechanism for the 

formation of Alfvénic density cavities above the auroral ionosphere not dependent on the 

ponderomotive force but similar to those processes thought to responsible for the 

formation of what have become known as ‘lower hybrid cavities’ (Shuck et al., 2003). 

We begin in section 2 by presenting an overview of observations from the FAST satellite 

from a traversal above the dayside auroral oval where ionospheric density cavitation and 

electromagnetic waves are observed. In section 3 we employ interferometric techniques 

to identify these electromagnetic fluctuations as dispersive Alfvén wave turbulence 

extending over scales including the electron inertial length e and the energetic oxygen 
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gyro-radii O+. Then in section 4 we explore the plasma processes occurring within an 

Alfvénic density cavity in more detail and employ measurements of the wave Poynting 

flux and interferometric techniques to demonstrate that the incoming Alfvén waves from 

the magnetosphere become focused on the cavity and are refracted by the cavity walls to 

produce perpendicular field structures on small transverse scales. In section 5 we present 

a schematic model based on the observations and compare the observations to simulation 

results and observations made of lower hybrid density cavities before concluding with a 

brief summary of the most important observational results.

2. Observations of Plasma Cavitation and Electromagnetic Waves  

Figure 1 shows observations from the FAST satellite as it passed through a region of 

magnetosheath precipitation above the dayside auroral oval at an altitude of ~1700 km 

before entering the polar cap. The magnetosheath ion population can be seen in the first 

panel at energies above ~200 eV. At energies below 100eV a second ion population can 

be identified. The mass spectrometer data shows that these ions are primarily O
+

suggesting that they are of ionospheric origin.  Figure 1 panel b shows that these 

ionospheric ions are observed transverse to the geomagnetic field at pitch angles slightly 

larger than 270 degrees showing that they have been locally accelerated transverse to Bo.

Integration of these data, as shown in panel c, indicates that these ions are out-flowing 

from the ionosphere at a rate of up to 10
9
 ions cm

-2
/s. A simple calculation shows that 

without replenishment the observed rate of ion outflow would lead to total depletion of 

the ionosphere on these fieldlines in ~60 minutes.   

Similar plasma sources can account for the observed electron populations. Precipitating

magnetosheath electrons can be identified in panel d by the peak in energy flux observed 

at ~ 200eV. Partly obscuring this peak, particularly after 06:44:47 UT, we can identify 

supra-thermal electron bursts (Johnstone and Winningham, 1982). Panel e shows that 

these bursts are largely field-aligned and downgoing (180
o
). Since the energies of these 

bursts extend upwards from the lowest measured (5eV) it is speculated that at large 

fraction of these fluxes are accelerated ionospheric electrons. 

These enhanced ion and electron fluxes are observed coincident with fluctuations in the 

electric and magnetic field measurements. Panel f shows the electric field measured in the 

spacecraft spin plane, perpendicular to the geomagnetic field, and pointing roughly 

northwards along the spacecraft trajectory (E  north or Ex). The observed field deviations 

are impulsive and disordered with no clear periodicity or scaling. Indeed Figure 1, panel 

g shows that over this interval the wave power falls monotonically with increasing 

frequency from 0 up to the 16 kHz Nyquist with no structuring in the vicinity of the 

proton or Oxygen gyro-frequencies. A similarly featureless spectrum can found in the 

spectra of the magnetic field time series (B  east or By) shown in panel h. These data are 

measured perpendicular to the geomagnetic field and in the eastwards direction 

orthogonal to Ex. This measurement has been performed using both fluxgate and search 

coil magnetometers shown here by the black trace representing measurements from the 

fluxgate magnetometer alone and red traces showing a composite magnetic field 



4

4

measurement from both the fluxgate and search coil magnetometers. For the operating 

mode of the spacecraft at this time the response of the fluxgate magnetometer falls off 

steeply above ~0.5 Hz above which the search coil magnetometer provides more reliable 

amplitude measurements. For this reason we have superimposed the search coil 

measurements on the fluxgate measurement to provide a more continuous representation 

of  fluctuations in B  with increasing frequency. The lowest frequency variations in this 

time series correspond to large scale field-aligned currents through Ampere’s Law. It has 

been demonstrated previously (Ijima and Potemra, 1978; Peria et al., 2000) that these are 

distributed as sheets highly elongated in the east-west direction. Under this assumed 

current geometry positive and negative gradients in Figure 1 h indicate downward and 

upward current sheets respectively. Such features are typical of the cusp. These currents 

can be expected to close through Pedersen currents in the ionosphere which provides us 

with the expression for the perturbation fields due to the currents as Ex/By=1/( o p)

(Sugiura, 1984) where p is the height integrated Pedersen conductivity. At smaller 

spatial and temporal scales, however the field-aligned current may close locally via 

polarization currents as an Alfvén wave which at FAST altitudes provides Ex/By

=VA(1+kx
2

e
2
)

1/2
 (Goertz and Boswell, 1979) where kx is the perpendicular wave number, 

e=c/ p is the electron inertial length and p is the electron plasma frequency .  Since VA

and e are density dependent to determine the nature of the electromagnetic fluctuations 

observed based on Ex/By requires a measurement of the density. 

The observed field fluctuations are co-located with rapid variations in the current 

measured by the Langmuir probe (ILP) and shown in panel i) by the black trace. The red 

trace in this panel is the current to the Langmuir probe from the field aligned motion of 

electrons as measured by the electrostatic analyzer experiment (IESA). This current has 

been evaluated by subtracting fluxes from the ESA measurements at energies below the 

spacecraft potential (which can be up to 20 V positive at this time), calculating the 

required moments and multiplying by the cross-sectional area of the Langmuir probe. 

From Figure 1 (i) it can be seen that IESA forms a lower bound for ILP. This leads us to 

write ILP=Ithermal+IESA where Ithermal is the contribution to ILP from the thermal plasma 

current.  When ILP=IESA the dominant current to the probe is that due to field-aligned 

electrons. Since the Langmuir probe is biased 15 V positive with respect to the satellite 

this indicates that at these times the total current is carried by electrons with energies of at 

least 15 eV. Consequently, it can be concluded that when ILP=IESA the measured plasma 

at these times is devoid of the usually dominant ambient ionospheric component (which 

usually provides the thermal plasma current to the LP) and the total plasma density is 

given by the moment of the ESA observations taken at energies above the spacecraft 

potential.

Outside those regions where ILP is depressed we observe plasma emissions allowing us to 

calibrate ILP to give the density of the thermal plasma. This has been determined 

statistically using this event and other similar events at approximately the same altitude to 

be nthermal~(0.2±0.1) Ithermal for sphere 6 on FAST when operated in current mode (under 

the assumption that the cold ionospheric or thermal plasma temperature is roughly the 

same throughout). To obtain density measurements where the current to the probe is a 

mixture of the thermal current due to the ambient ionospheric plasma and that due to field 
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aligned electrons the density is given by subtracting IESA from the ILP to give Ithermal and 

then using the above calibration to give the thermal plasma density. The total density is 

then given by adding the thermal plasma density to that measured by the ESA above the 

spacecraft potential. The net result for total density in this case is shown in Figure 2. This 

result shows sections over horizontal widths of  >100 of km (based on a spacecraft speed 

of ~ 7 km/s) where the cold or thermal ionospheric plasma has been completely removed 

and replaced by significantly smaller densities of energetic electrons (red) (which are 

field-aligned). Significantly, it is in those regions where the cold ionospheric plasma has 

been depleted that the largest oscillations in the field quantities are observed. 

3. Cross Spectral Measurements and Alfvénic Turbulence 

With a reliable measurement of density in hand we now require a measurement of the 

wavevector to identify the electromagnetic fluctuations based on Ex/By. To achieve this 

we employ interferometric techniques to determine an average value for k in the spin 

plane (ksp). This approach is similar to that exploited Wahlund et al. (1998) and 

Stasiewicz et al. (2000b) using Freja measurements with the exception that we employ a 

wavelet based approach and obtain a 2-D measurement of the wavevector. In this 

approach the wave vector is determined by measuring the phase difference between 

electric field measurements in the spin plane at multiple points separated by a known 

distance in this plane (Labelle and Kintner, 1989). The FAST satellite provides several 

such baselines allowing interferometric measurements such as these to be performed. The 

configuration of the FAST fields instrument is shown in Figure 3. We use the measured 

electric fields given by the potential difference between spheres 5 and 8, 7 and 8, 1 and 2 

and 1 and 4. This provides two orthogonal baselines for relative phase determination in 

the spacecraft spin plane with x58-78=25.5 m and x12-14=12 m respectively. We now make 

the assumption that there is a single wave vector (ksp) for each wave frequency in the 

spacecraft frame ( sp).  Under this assumption if 58-78( sp) and 12-14 ( sp) are the phase 

differences measured along each baseline then ksp( sp) projected along each baseline is 

given by k58-78( sp)= 58-78( sp)/ x58-78 and k12-14( sp)= 12-14( sp)/ x12-14. Since k58-78

( sp)=ksp( sp) x58-78/ x58-78 and k12-14 ( sp)=ksp( sp) x12-14/ x12-14 then the angle between 

ksp and the x12-14 baseline is, 

12-14 ( sp)=tan
-1

( 58-78( sp)/ 12-14( sp) . x12-14/x58-78) 1 

Since the baseline orientation relative to Bo is known from fluxgate magnetometer 

measurements it is then straightforward to find the orientation of ksp to Bo and hence ksp.

Figure 4a shows the wavelet transform of the electric field measurements from spheres 1 

and 2 over the interval from 06:44:14 UT to 06:44:27 UT. The black trace in this panel 

represents the plasma density which has been scaled to fit in this panel. Comparing the 

wave spectra and the density measurement indicates that the wave power is enhanced in 

density cavities. Panel b shows the phase difference ( 12-14) for the x12-14 baseline with the 

coherence for this baseline shown in panel c. The same is shown for the x58-78 baseline in 

panel d however we have omitted the coherence measurement in this case because it is 

almost identical to that shown in panel c. The periodic variation of phase shown in panel 
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b and c is due to the spacecraft rotation and the relative orientation of k and the dipole in 

the spin plane. Since 12-14=x12-14. ksp or 58-78=x58-78 ksp and the rest frame wave 

frequency is given by = sp-ksp.vsp, then the variation of the measured phase with 

spacecraft rotation is,

12-14=x12-14(( sp- /(vspcos sp))cos 12-14  2 

And,

78-58=x78-58(( sp- /(vspcos sp))cos 78-58  3 

where sp is the angle between ksp and the spacecraft velocity vector. Clearly for a fixed 

phase, sp is smallest when 12-14 or 58-78 are 0 or  and goes to infinity when 12-14 or 

58-78 become /2 or 3 /2.  This pattern is represented in panels b and d by the U-shaped 

variations in phase with singularities at half the satellite spin period. At these singularities 

for a given  the spacecraft frame frequency sp , indicating that ksp and x at this spin 

phase are orthogonal. Comparing the form of panel b with the angle between x12-14  and 

Bo in the spin plane shown in panel e suggests that ksp is very nearly perpendicular to the 

geomagnetic field and parallel/anti-parallel to vsp.

In general Panels b and d of Figure 4 show that with increasing frequency, in the 

spacecraft frame, the magnitude of the phase difference between each dipole pair 

increases towards |  radians and then decreases. This change in the sign of the slope of 

phase with frequency occurs where the longest electric field dipole for each baseline 

matches half the wavelength projected along the dipole leading to an antenna null. The 

measured phase difference where this occurs is given by 12-14=± -x12/x14)=±0.8  and 

58-78=± -x78/x58)=±0.9 Once these phase differences have been exceeded the 

measured phase needs to be corrected to give the actual phase as, 

8.0if8.0)(Sign.2

8.0if

1412141214121412

141214121412
   4 

and,

9.09.0)(Sign.2

9.0if

7858785878587858

785878587858
  5 

Further nulls can be expected as the wavelengths approach the dimensions of the other 

electric field dipoles however these are beyond the frequency range where high 

coherence is obtained and do not effect the results reported here. 

If we momentarily assume that the transverse phase velocity of the observed fluctuations 

is much less than the spacecraft speed  (i.e. that the observed phase structuring is due 

largely to Doppler shift) then ksp vsp and we can predict the variation of the phase nulls 

with frequency in the spacecraft frame (Temerin, 1979). From previously we found that 

roughly ksp || vsp  In this case the Equation 2 and Equation 3 can be rearranged to give the 

variation of spacecraft frame frequency with phase as, 

14121412
1412

sp1412 cosx
2

vf   6 

And,
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58785878
5878

sp5878 cosx
2

vf  7 

Substituting the angle for the nulls into these expressions gives the curves shown in 

panels b and d of Figure 4. The close agreement with the variation of the frequency and 

phase shown by these curves and the frequency of the observed nulls indicates that the 

assumptions of transverse wave phase speeds less than the spacecraft speed and of ksp

largely perpendicular to Bo (and so also parallel/antiparallel to vsp) are reasonable and can 

be used as a simple check on the more complete analysis where these assumptions are 

removed.    

The results from the complete interferometric analysis using Equation 1 are shown in 

Figure 5. These results represent an average taken over the entire interval contained in 

Figure 1. In obtaining these results we have excluded those measurements with two-point 

coherency less than 0.7 and those intervals where either one of the baseline are within 10
o

of the projection of the geomagnetic field into the spin plane. We have also excluded 

those transforms with rapidly or erratically varying phase with frequency. These 

exclusions significantly reduce the temporal resolution of the measurements made but 

provide a more reliable average result. The error bars shown throughout this Figure 5 

represent one standard deviation in the averaged results. These are of course symmetric 

about the averaged value but with some exceptions are generally plotted in one direction 

only due to the logarithmic scaling.  

Figure 5 a shows the variation of ksp with spacecraft frame frequency. The red line shows 

the expected result for field structures which are stationary in the plasma frame and 

provide the observed spacecraft frame frequency purely through spacecraft Doppler shift. 

Up to about 200 Hz the Doppler-shift yields a reasonable approximation of the 

wavenumbers and is well within one standard deviation of the averaged value as shown 

by the error bars. Panel b of Figure 5 shows the angle between ksp and the projection of 

the geomagnetic field (Bo) into the spin plane (Bsp). For the interval considered Bo and 

Bsp are separated by ~5
o
. Over the frequency range plotted we find angles ranging 

between 80
o
 and 85

o
. These angles represent a lower limit of the actual angle between k

and Bo since it is probable that a component of k exists perpendicular to the spacecraft 

spin plane. Due to the inclination of the spin plane relative to Bo, the presence of this 

unmeasured component means that the magnitude of k along Bsp will be over estimated 

and hence the angle of k to Bo underestimated. Nonetheless, in the measurements 

presented in this panel it should be noted that the averaged values are everywhere within 

one standard deviation of being exactly perpendicular and so sp 0
o
.

Panel c of Figure 5 shows the wave frequency in the plasma frame. This has been 

obtained by subtracting the spacecraft Doppler shift from the observed spacecraft frame 

wave frequency. In performing this calculation we have included the contribution from 

the poleward plasma convection of ~1 kms
-1

 estimated by integrating the measurements 

from the ion spectrometer experiment. Since the Doppler shift and the spacecraft frame 

frequency over most of the observed frequency range have very similar magnitudes the 

errors in the wave frequency are large. Because of this the averaged wave frequencies 
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shown here represent an upper limit for sp with the magnitude of the error bars 

indicating that within 1 standard deviation of the average values we find a wave 

frequency of 0 Hz.  The blue and green horizontal lines in this panel show the value of 

the local Oxygen (fO+) and Hydrogen cyclotron frequencies (fH+) respectively. From these 

observations it can confidently be said that sp in the plasma frame is less than O+ for 

spacecraft frame frequencies at least below 100 Hz in the spacecraft frame. Panel d of 

Figure 5 shows the wave phase speed sp/ksp. As with the wave frequency measurement 

the errors in evaluating this quantity are substantial. However, a time domain cross-

correlation analysis to be discussed in the next section also yields phase speeds similar to 

these values.  

The identification of the field fluctuations as turbulence requires scale invariance in the 

observed wave power spectra. Figure 5 e shows the k-spectra of the observations in the 

spin plane. The red-line represents a ksp
-1.7 

the power law spectra fitted to the observations 

over the first decade on the k-scale. This is the expected dependency for Komolgorov 

fluid turbulence. Beyond this range the wave power falls ever more rapidly with 

increasing ksp. The red dashed vertical line in this plot shows the wave number 

corresponding to the electron inertial length (2 / e=2 /145 m
-1

). Clearly there are scales 

present in the observed field fluctuations that extend downwards to include this length. 

Interesting it is at wavenumbers a few times smaller than 2 / e that the observed k-

spectra begins to deviate from the Komolgorov like power-law. In the local 

approximation, and for the parameters present and this altitude, the wave dispersion for 

an electromagnetic wave at frequencies below O+ and at small transverse scales can be 

described by /k||=VA(1+k
2

e
2
)

-1/2
 (Goertz and Boswell, 1979). This wave carries a 

parallel electric field given by E||/E =k k|| e
2
/(1+k

2
e
2
).  Consequently when k e 1

the wave becomes dispersive and may dissipate through electron Landau damping to 

provide the observed deviation from the power law spectra for k e 1

The other dashed vertical lines in this panel represent the Oxygen and Hydrogen gyro-

radii (2 / O+=2 /60 - green line and 2 / H+=2 /20 - orange line) of the energetic 

ionospheric plasma. These are measured by the FAST mass spectrometer calculated over 

the energy range from 5 to 100 eV for the backward looking hemisphere of the 

instrument to avoid the influence of magnetosheath ions and the effects of spacecraft ram 

respectively. The energies from this measurement averaged over the interval shown in 

Figure 1 are ~10 eV and 18 eV respectively. These energies do not represent the 

temperature of the bulk ionosphere but rather the average energy of the tail of the 

ionospheric distribution at energies above 5eV. It is shown in Figure 2 panel a that the 

density of this energetic portion of the ion distribution can be as large as few 100 cm
-3

within regions of depleted density. The observed wavenumbers shown indicate wave 

scales extending down to and including the energetic oxygen gyro-radius but with wave 

power falling sharply at smaller scales and failing to reach the energetic proton gyro-

radius. It has been shown previously that at wave scales approaching ion gyro-radii 

electromagnetic waves in this frequency range may strongly energize ions and thereby 

dissipate (Chen et al., 2001). Dissipation by this means may account for the increasing 

rate of decline in Esp
2
(ksp) for k O+ 1.  These observations are consistent with that 
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expected for turbulence with power-law like k-spectra containing inertial and dissipative 

ranges.

To establish that we are observing specifically Alfvénic turbulence we compare the wave 

impedance with the expected dispersion for small-scale Alfvén waves in the observed 

plasma environment. It is well known in the local approximation that this is given by 

2

i

22

i

2

x

2

e

2

xA

y

x 1k1k1V
B

E
     8   

Where i is the average ion gyro-radius and  is the wave frequency in the plasma frame. 

For wave frequencies in the plasma frame approaching i this relation provides 

essentially electrostatic waves and is invalid for waves where i. In calculating the 

predicted Ex/By ratio from this expression we ignore the finite frequency correction. This 

is because the errors given by the standard deviation in the measured wave frequency are 

significantly larger than the average wave frequency and extend to include 0 Hz. This 

does alter significantly the result below frequencies of 100 Hz in the spacecraft frame (or 

ksp 0.1). Panel f shows the comparison between the observed Ex/By ratio and the 

predicted ratio from Equation 8 as functions of ksp. Each red line represents the predicted 

result but with VA shifted by one standard deviation above and below its average value.

The error bars on the observed Ex/By curve show that the model prediction lies with one 

standard deviation of the observations throughout, but generally predicts a wave 

somewhat more electrostatic than is observed. Given the highly variable density profile 

throughout this interval this is not an unexpected result since it has been shown elsewhere 

that coupling to drift modes density gradients can provide smaller Ex/By ratios than found 

in the homogeneous case (Chaston et al., 2005) given by Equation 8. In any case, since 

the overall trend observed in Ex/By matches the predicted results to within one standard 

deviation we identify these waves as dispersive Alfvén waves. 

4. Inside an Alfvénic Density Cavity 

To identify the processes occurring within these density depletions we now examine the 

fields and plasma within a single ‘well behaved’ cavity as shown in Figure 6 and 

identified in Figure 1. Panel a of this figure shows a Gaussian shaped depression created 

by the depletion of the cold thermal ionospheric plasma as indicated by the close 

agreement between the total density and the energetic electron density. Panels b, c and d 

show that localized within the transverse width of the cavity are electromagnetic 

fluctuations. The large scale electric field structure underlying the oscillations shown in 

panel b indicates an electric field pointing southwards then northwards across the cavity. 

Since the spacecraft at this time is moving southward these fields are converging. In the 

electrostatic interpretation (Mozer et al., 1977) this suggests excess negative charge 

within the cavity and the presence of upward parallel electric fields at this altitude or 

some altitude below the spacecraft. Panel c shows the electric field projected along Bo in 

the satellite spin plane. Since the spin plane at this time is within ~ 5
o
 of Bo this measured 

field provides an indication of the parallel electric field across the cavity (Ez or E||).

(Alternatively, these fields could be explained by transverse electric fields in the direction 

of the spacecraft spin axis, however these would need to exceed 1V/m to account for the 

observations). This field has a significant DC component directed upwards across the 
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base of the cavity consistent with the direction of the converging transverse fields in the 

electrostatic interpretation. Panel d shows the magnetic field measured across the cavity 

from the search coil and fluxgate magnetometers filtered above 0.5 Hz. The back trace in 

this panel is a composite measurement from the search coil and fluxgate magnetometers 

while the red trace is the result from the fluxgate magnetometer alone. These 

measurements show the presence of field-aligned currents on a variety of scales across 

the width of the cavity.

The enhanced electric and magnetic field fluctuations within the density the cavity are 

co-located with enhanced ion and electron fluxes shown in the remaining panels. The 

burst of ions at energies below 100 eV shown in panel e has its peak fluxes coincident 

with the largest electric field amplitudes. The integrated result shown in panel g indicates 

that these ions provide significant fluxes of upward moving ions from the base of the 

cavity. Panel i shows that these ions are distributed largely at angles just greater that 270
o

indicating some form of transverse acceleration. In the same panel we can also identify a 

very brief burst of upgoing ions at angles close to 360
o
 consistent with the existence of 

the quasi-stationary parallel electric field shown in panel c.  The electrons within the 

cavity  as shown in panels h and j have energies generally less than 200 eV and are 

distributed largely along the geomagnetic field and flow downwards (180
o
) towards the 

Earth. These observations suggest that these cavities are regions where waves become 

focused, produce small scale transverse structure and subsequently cause field-aligned 

electron acceleration and transverse ion acceleration.  

Figure 7 provides evidence for the focusing of incoming wave power into the density 

depletion. Panel a shows the wave power peaking in the density depletion as indeed was 

found for all the observed density depletions shown in Figure 3. Panel b shows the 

estimated field-aligned wave Poynting flux. This quantity has been calculated using the 

composite 3-D search coil/fluxgate magnetometer measurements and Ex above 0.5 Hz. 

Since the fluctuation amplitudes in By are significantly larger than in Bx, and the 

polarization of the electric field in such events from FAST has been shown previously to 

be aligned north-south (Stasiewicz et al., 2000a), the unmeasured contribution to the 

field-aligned wave Poynting flux, |EyBx|/ o ,is expected to make a smaller contribution to 

the field-aligned Poynting flux than |ExBy|/ o. Consequently, Sz shown here is 

representative of the field-aligned Poynting flux. Significantly the largest field-aligned 

Poynting fluxes are observed on the walls of the cavity with somewhat of a gap in the 

center of the cavity and are primarily pointing down the magnetic field line towards the 

Earth. Panel c shows that the wave Poynting flux measured along the spacecraft 

trajectory and perpendicular to Bo (Sx).  Since the field-aligned magnetic wave-field, Bz,

is much smaller than the transverse magnetic wavefield the contribution of |EyBz|/ o to 

Sx is minimal unless Ey is larger than 1 V/m. Since fields of this magnitude are rarely 

measured it is reasonably to assume that Sx shown here is a meaningful representation of 

the Northward directed wave Poynting flux. This measurement indicates that the 

transverse wave Poynting flux is convergent or focused on the cavity with Sx pointing 

southward and northward on the northern and southern sides of the cavity respectively. 

Panel d shows the wave phase velocity across the cavity in the plasma frame. The gaps 

here occur where either of the two baselines become close to the projection of Bo in the 
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spin plane and where the phase variation with sp is erratic.  As detailed in section 3 this 

measurement is subject to errors of magnitude similar to the magnitude of the 

measurements themselves and so are not conclusive. However, the wave phase velocity 

in the cavity is divergent with vsp pointing northward and southward on the Northern and 

Southern sides of the cavity respectively. This result is confirmed by the time domain 

result displayed in panel e where the delay between wave phase fronts measured along 

the x58-78 and x12-14 baselines has been measured. The colored lines here indicate the 

transverse wave phase speed for fluctuations above 2.5 (black), 5 (blue), 10 (green) and 

20 Hz (red) and indicate divergence from the centre of the cavity. The magnitudes of 

these speeds are similar to that found by the frequency domain technique. 

Discussion

The observations presented here suggest a model for the propagation of Alfvén waves 

above the auroral oval and the subsequent acceleration of ionospheric plasmas leading to 

density cavity formation and the erosion of the auroral ionosphere. A schematic showing 

Alfvén waves incident on the ionosphere based on these observations is shown in Figure 

8.  This figure illustrates the refraction of a downward propagating shear Alfvén wave on 

a pre-existing density depression showing specifically the rotation of the phase fronts on 

the Alfvén speed gradients comprising the cavity walls. The refraction of the phase fronts 

on the cavity walls accounts for the outward directed phase velocities found across the 

cavity as observed in Figure 7. The inward focused Poynting flux observed indicates that 

the wave group velocity is convergent on the cavity. These observations are consistent 

with the reversely propagating nature of the inertial Alfvén waves where the transverse 

wave group and phase velocities are oppositely directed and importantly shows that the 

wave refraction on the cavity walls leads to the focusing of Alfvén wave energy within 

the cavity.    

The refraction of the incoming wavefronts on the cavity walls leads to phase mixing and 

continuously provides smaller scales perpendicular to Bo at a rate determined by the 

magnitude of the density gradient. Ultimately this process is limited by dissipation. As 

mentioned in section 3 when x e or i the wave is damped by field-aligned electron 

acceleration and transverse ion acceleration respectively. For the observed parameters 

phase mixing from the largest scales observed down to scales of the order of e could 

occur on time scales of the order of seconds (simulations to be discussed later show this 

time to be less than one Alfvén wave period). Once these scales have been attained and 

the wave carries an appreciable parallel electric field, instabilities driven by electrons 

accelerated in these waves may lead to the production of secondary waves with 

frequencies close to i causing transverse ion acceleration/heating via cyclotron 

resonance or via the disruption of the ion orbit in waves produced by instability on scales 

approaching ion gyro-radii. Based on the rather featureless form of the observed wave 

spectra the second of these acceleration mechanisms seems more probable. Indeed, the 

Kolmolgorov like ksp
-1.7

 wave spectra observed is unlikely to be the result of a linear 

cascade to smaller scales due the wave refraction on the density gradient. Rather, the 

observed wave spectra suggest a non-linear cascade with dissipation occurring for scales 

 2 e.
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The net result of the production of small scale structure in ksp is the acceleration and 

eventual loss of plasma from the cavity. This is facilitated by the mirror force of the 

diverging geomagnetic field accelerating the transversely accelerated ions upwards and 

ambi-polar electric fields acting on ionospheric electrons and dragging them upwards 

with the ions to maintain charge neutrality.  The plasma loss from the cavity walls leads 

to steeper density gradients and hence more rapid phase mixing and stronger focusing. It 

may also lead to larger parallel electric fields in the wavefront and hence stronger 

electron acceleration and so greater instability. This provides a positive feedback loop 

whereby the plasma loss process itself increases the rate of plasma loss. The process may 

initially be started by the focusing of incoming Alfvén wave Poynting flux due to 

dispersive effects in pre-existing shallow transverse density dips (Rankin et al., 2004). 

With several iterations of the feedback loop these dips will deepen to form cavities which 

will eventually broaden as the density on its edges is depleted. In this way density 

cavities may be unstable in the presence of Alfvén waves and very deep density cavities 

may be formed. With sufficient time adjacent cavities may join together to produce the 

density profile shown in Figure 1 where a large section of the topside auroral ionosphere 

has been eroded. 

The scenario described above has been simulated through the use of a fluid code (Genot 

et al., 1999) and more recently through the use of a 2-D PIC code (Genot et al., 2000, 

2001, 2004) developed by Mottez et al. (1998). These authors have been able to follow 

the initially linear and then non-linear evolution of the system as a purely parallel (k =0) 

polarized Alfvén wave encounters a density cavity similar to that presented from 

observations in Figure 6a. While the periodic boundary conditions employed in these 

simulations does not allow an exact comparison with the observations some salient 

feature emerge. Firstly, as the wave refracts on the density gradients comprising the 

cavity walls scales of the order of e are formed in ~1/20 of an Alfvén wave period. Genot 

et al identify the usual linear E|| on transverse these scales scales as well as an additional 

linear contribution to E|| due to the polarization drift on the density gradient which 

induces space charges. On density gradients satisfying 1/n n/ x k  this contribution can 

significantly enhance the linear parallel field in the wave. This is indicated by the grey-

scale in Figure 9a which shows a snapshot of E|| in the PIC simulation along a ¼ Alfvén 

wavelength parallel to Bo (Z). Large scale enhancements of E|| (lightest and darkest 

shades) are observed on the transverse density gradients represented by the closely 

spaced density contours in this panel. This result is most clearly shown however, by 

averaging the parallel field of Figure 9a along Bo to yield the dashed line in Figure 9b 

which peaks close to the maxima in dn/dx (dot-dashed line in this panel). Secondly, as 

shown by the solid line and arrows in Figure 9b these authors find that the largest Alfvén 

wave Poynting fluxes are found on the density gradients (dot-dashed lines) and that this 

Poynting flux is focussed inwards towards the centre of the cavity. This is independent of 

wave phase and is consistent with the observations from FAST shown in Figure 7c.  

Thirdly, the field-aligned electron acceleration that occurs in the linear parallel Alfvén 

wavefield on the density gradient triggers a Buneman instability followed at a later stage 

by a beam-plasma instability which generate non-linear electrostatic structures on scales 

of the order of the Debye length.  These structures can be found on the negative 
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transverse density gradient in Figure 9a and are identified as electron holes and weak 

double layers typically with electric field amplitudes larger than that of the Alfvén wave 

field. Such features have been identified in Alfvén waves from FAST when high 

resolution fields measurements are available. Consequently, these PIC simulations concur 

with observations to show that the interaction of the Alfvén wave with a density gradient 

self-consistently produces structuring in the electric field on transverse scales of the order 

of the cavity itself (several e) down to Debye lengths.

Of particular interest to this study is however the structuring in the electric field at 

frequencies less than the oxygen-gyro frequency (~28 Hz) as measured in Figure 5. This 

can be most transparently examined from a fluid approach.  Fluid models for the 

production of small scale dispersive Alfvén waves and or Alfvénic turbulence in a low 

beta plasma have been developed based largely on non-linearities associated with the 

current carried by the wave.  Chmryev et al. (1992) have shown that non-linearly 

interacting electron current sheets in inertial Alfvén waves may lead to the formation of 

vortices which break-up into smaller scales vortices leading to an energy cascade from 

larger to smaller scales. Shukla and Stenflo, 1999b have shown that smaller scale 

dispersive waves can grow from electron beams driven by larger scale waves. Penano and 

Ganguli (2002) suggest that the operation of a dispersive Kelvin-Helmholtz instability 

driven by the shear in the E xBo flows in the wave fields of larger scale waves may drive 

smaller scale dispersive Alfvén waves. Although these authors did not extend this 

modeling beyond the linear case, such a process could lead to a cascade from larger to 

smaller scales. Seyler (1990) demonstrated from fluid simulations how inertial Alfvén 

waves above the auroral may evolve non-linearly through collisionless tearing to produce 

transverse electric field power spectra that tend to a universal k
-5/3

 power law as we show 

from observations in Figure 5e. Significantly they showed that the observed E /B

spectra obeyed the expected linear result as observed (Wahlund et al. 1998; Stasiewicz et 

al., 2000b) and shown here in Figure 5f. In a more recent development of this model 

Seyler and Wu (2001) and Wu and Seyler (2003) have investigated the linear properties 

of the instabilities generating the Alfvénic turbluence in the simulation and identify a 

current convective interchange instability as the primary cause of the cascade to smaller 

scales and the cause of broadband ELF observed (Seyler and Tu, 2003). Alternatively, 

filamentation instabilities (Champeaux et al., 1999; Shukla and Stenflo, 1999b) may be 

important in focusing the wave energy and also for producing small scales however the 

efficacy of this instability for a low beta plasma remains unproven.  

A clear indication of the importance of non-linear effects in the wave dynamics inside the 

density cavity is the large magnitude of the parallel electric field observed as shown in 

Figure 6c which at times exceeds 100 mV/m. This is amplitude is more than 2 orders of 

magnitude large than given by the linear expression for the parallel electric field due to 

linear electron inertia presented in section 3. Observations of this kind in Alfvén waves 

are however not unusual and have been reported elsewhere by (Chust et al., 1998; 

Stasiewicz et al., 1998; Chaston et al., 1999; Ergun et al., 2004) however the origin of 

these large fields remains unknown. In the fluid description of the plasma the parallel 

electric field associated with a field-aligned current, such as that carried by an Alfvén 

wave, is given by the electron parallel equation of motion. This equation shows that the 
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parallel field can be supported by a number of effects including linear (Goertz and 

Boswell, 1979), non-linear (Ronnmarck, 1999) electron inertia, parallel electron pressure 

gradients (Hasegawa, 1976) and anomalous resistivity (Lysak and Carlson, 1981; 

Streltsov and Lotko, 1996). Incidently, all of these contributions to E||  were included in 

the simulation performed by Lysak (1983) with the exception of those due to the finite 

electron pressure gradient. Observations reported by Ergun et al (2004) however suggest 

that the parallel field may not be well described by the two-fluid approach at all, and a 

full kinetic treatment such as those typically invoked in the study of strong double layers 

is required. In fact using Vlasov simulations Singh  (2002) has presented a model similar 

to that first proposed by Mishin and Forster (1995) in which a double layer forms where 

the field-aligned current in an Alfvén wave encounters a density cavity. In this model 

transitory parallel fields as large as 100 mV/m are possible for observed parameters. 

From a single point measurement it is, however, extremely difficult to reliably determine 

the means by which larger parallel fields in Alfvén waves are supported and we reserve 

further discussion for a more detailed study. 

A significant result of the extreme density depletion provide by Alfvén waves in these 

cavities is that the electron plasma frequency is less than the electron cyclotron frequency 

( pe < ce). Consequently the Alfvén wave accelerated electrons within these cavities 

may be unstable to the cyclotron maser instability and hence such cavities may be a 

source for auroral kilometric radiation (AKR). An Alfvén wave source for AKR has in 

fact been suggested previously by Olsson et al. (2004). This may be particularly relevant 

for the Alfvén wave accelerated magnetosheath and or plasma sheet electrons which after 

reflection from the magnetic mirror form so called ‘electron conics’ bracketing the 

electron loss cone as visible in Figures 1e particularly at ~06:44:55 UT and hence provide 

a positive df/dv  and a free energy source for the cyclotron maser instability as described 

by Melrose (1982).

Finally, the observations reported here are similar to those of what has been termed 

‘lower hybrid cavities’ as first reported by Labelle et al. (1986) from sounding rocket 

observations. These structures have been observed with widths transverse to the 

geomagnetic field of the order of 20 m and density depletions of 10s % in which waves 

with frequency in the vicinity of the lower hybrid frequency are found. These have been 

associated with ion heating (Lynch et al., 1999) and a number of mechanisms have been 

proposed to account for the ion heating observed (Knudsen et al., 2004). The mechanism 

attributed for the formation of these cavities whereby pre-existing depletions focus the 

lower hybrid waves, enhance the wave amplitude, provide ion heating and thereby further 

density cavitation is in essence the same as that described here for the Alfvénic cavities 

which are the subject of this paper. However, an obvious difference is that the width of 

the Alfvénic cavity is much larger than the gyro-radii of energized ions observed within it 

and so the ion heating mechanisms described by Reitzel and Morales (1996) and 

Knudsen et al. (2004) which rely on gyro-radii larger than the width of the cavity may be 

ineffectual in the Alfvénic cavity case. Observations reported by Pincon et al. (1997) and 

theoretical work by Seyler (1994) and Schuck et al. (1998) suggested that the waves 

observed in lower hybrid cavities are lower-hybrid eigenmodes. It is also possible that, in 

the Alfvénic cavity case considered here, the observed fluctuations at the largest 
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transverse scales could be described as transverse eigenmodes. This has been previously 

suggested by Stasiewicz et al. (1997). The largest scales are certainly comparable to the 

width of the cavity and the lowest frequency oscillations observed appear to be contained 

within it. However, because the phase velocity of the waves is much less than that of 

lower hybrid waves, and in fact less than the spacecraft speed, it is significantly more 

difficult to reliably unravel the phase structure of the wave within the cavity than for the 

lower hybrid case. Because of this we are unable to conclude that we are observing 

transverse Alfvén eigenmodes inside the cavity. Nonetheless, the Alfvénic cavities we 

observe could be described as the electromagnetic, low frequency, version of lower 

hybrid cavities.

Conclusions

In conclusion, we have observed dispersive Alfvén waves on transverse scales including 

the electron inertial length and energetic ion gyro-radii located in deep density 

depressions above the auroral ionosphere. The plasma in these cavities may be depleted 

by more than 50% and in the most depleted cases the ambient ionospheric plasma, 

usually by far the dominant plasma component at the altitudes of observation, is 

completely absent. In these cases the cavities are populated by energized field-aligned 

electrons and transversely accelerated ionospheric ions and plasmas from magnetospheric 

sources. The field-aligned wave Poynting flux (and hence the wave group velocity) is 

directed downwards across the density depletion while the transverse wave Poynting flux 

is directed inwards towards the centre of the cavities observed. There is some evidence to 

suggest that the wave phase velocity is oppositely directed outwards from the cavity 

consistent with what would be expected from the refraction on the cavity walls of an 

initially downward propagating wave.  These observations suggest a feedback scenario 

for plasma loss from the ionosphere facilitated by the production of dispersive Alfvén 

waves on transverse density gradients and the acceleration of the plasma on the gradients 

by these waves.
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Figure 1. FAST observations of dayside ionospheric erosion. a) Ion energy spectrogram for the
hemisphere opposite to the spacecraft velocity vector. b) Ion pitch angle spectrogram covering the
hemisphere opposite to the spacecraft velocity vector. c) Integrated field-aligned ion flux over the same
pitch angle range. d) electron energy spectrogram. e) electron pitch angle spectrogram. f) Electric field
measured perpendicular to B along the spacecraft trajectory and pointing roughly northwards. g) Power

spectra of panel f). h) Magnetometer measurements perpendicular to B and pointing roughly

eastwards- black is the fluxgate measurement alone red is fluxgate plus search coil measurement. I)
Langmuir probe current (black) and field-aligned current from the electrostatic analyser experiment on
FAST (see text for explanation).
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Figure 4. Phase measurements in the spin plane. a) wavelet spectrogram of the
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