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An invariant of embeddings of 3—manifolds in 6—manifolds
and Milnor’s triple linking number

TETSUHIROMORIYAMA

We give a simple axiomatic definition of a rational-valuedhiiants (W, V, €) of
triples W, V, €), whereW D V are smooth oriented closed manifolds of dimen-
sions 6 and 3, aneé is a second rational cohomology class of the complement
W\ V satisfying a certain condition. The definition is stateddémts of cobor-
disms of such triples and the signature of 4-manifolds. WMér- $° andV is

a smoothly embedded 3—sphere, and whga is the Poinca dual of a Seifert
surface ofV, the invariant coincides with-8 times Haefliger's embedding invari-
ant of (&, V). Our definition recovers a more general invariant due t@$akand
contains a new definition for Milnor’s triple linking numbef algebraically split
3—component links i3 that is close to the one given by the perturbative series
expansion of the Chern—Simons theory of link<Rip.

57R40, 57M27; 57R52, 57M25

1 Introduction and main results

Milnor [9] proved that the link homotopy classes of algebraicallyt sp-component
links L = K1 UK, UK3 in the Euclidean 3—spade® are classified by the triple linking
number (L) € Z. There are several definitions @fL), and one is given by the
perturbative series expression of the Chern—Simons thafdinks in R® (Altschuler—
Freidel [1], Bar-Natan—Vassilievd], Lescop [f], Thurston [L5], etc.), more precisely,
p(L) is expressed as an integral over a manifdid@xR3) \ £, whereT? = St xStx S
is the 3—torus andC = T3 U T3 U T3 C T3xR3 is the (disjoint) union of embedded
3—tori

T2 = {(t1, 2, 13,X) € T3xR3 | x = fi(ty)}

and wherd;: St — R2 is a smooth embedding representing the KotOn the other
hand, Haefliger§] [ 6] proved that the abelian group EntB(S°) of the smooth isotopy
classes of embedding® — <, with the group structure given by the connected sum,
is isomorphic toZ. In this paper, we give an interpretation @fL) as an invariant of
the embedding’ <— T3xR2 by generalizing Haefliger’s construction. To this end, we
will need to modify the manifold pairTéxR3, £) to make it fit into our settings. It
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will be replaced by T3xS*, ML), M. = £ U (—Lo), so that the ambient manifold is
closed and the submanifold is null-homologous, wigre- R® U {oo}, and Lo is a
3—submanifold off®xR3 constructed from a 3—component unlink®&3 split from L

in the same way as we construgt(so M, is the union of 6 disjoint copies dF2).

In this paper, we deal with triples = (Z, X, ), which we will call e-manifolds,
consisting of (smooth, oriented, and compact) manifdds X of codimension 3
such thatX is properly embedded i@ (0X C 0Z, andX is transverse t@Z), and a
cohomology clase € H2(Z \ X; Q) such that

elswo = &Fx)

overQ, wheree(Fx) € H2(S(vx); Z) is the Euler class of the vertical tangent subbundle
Fx C TSwx) of the total space of the normal sphere bungle Srx) — X of X,
and where the normal bundie; of X is identified with a tubular neighborhood of
X so that we can regar@®rx) as a submanifold oZ \ X. Such a cohomology
classe will be called ane-class of Z, X) in this paper. The existence of &Aclass
implies the vanishing of the rational fundamental homololggs of K, 9X) in (Z, 92)
(Proposition 6.11)), but the converse is not true in genemdkemark 6.2

The cohomology clasg/2 corresponds to the homology class of a Seifert surface
of X (if it exists and its normal bundle is trivial oveX) by the Poinca& duality
(Corollary 7.9. In particular, if €, X) admits just onee-class, there/2 represents
the homomorphisnHz(Z \ X;Z) — Q, y — Ik(y, X), where Ikf, X) is the linking
number ofy with X.

Precise definitions aé-class,e-manifold, isomorphism (denoted By) and cobordism
of e-manifolds, etc. will be given ilsection 2 We will also introduce notions of quasi
e-class and quase-manifold. These are slight generalizations estlass ande-
manifold, and easier to handle as we will explainRemark 1.2 We remark that,
for (quasi) e-manifolds 3 = (Z,X,e) and 3 (of the same dimension), the disjoint
sum g3 11 @, the boundanps = (9Z, 0X, €laz\ax), and the reversing the orientation
-0 = (—Z,—X, e) are defined in natural ways. By definition, arclass is a quasi
e-class, and the boundary of a quasimanifold is ane-manifold (not just a quasi
e-manifold).

There are two main purposes of the present paper. One iswotkh@xistence and the
unigueness of a rational-valued invariar(ty) of the isomorphism classes of closed
6—dimensionale-manifoldsa = (W, V. e) (OW = 9V = (), dimW = 6) which is
uniquely characterized by the following two axionThgorem 2

1« e” is the first letter of “Euler class”.
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Axiom 1 The invarianto is additive. More precisely, fo6—dimensional closed
e-manifoldsa. andd/,

o(—a) = —o(a),
o(aIl o) = o(a) + o).

Axiom 2 If a 6—dimensional closed-manifold oo bounds a7 —dimensionak-mani-
fold (Z, X, €), namelyo(Z, X, €) = «, then

o(a) = SignX.

Here, SigrnX € Z is the signature of a 4—manifold. The second purpose is to show
that o can detect both Haefliger’s invariariit{eorem % and Milnor’s triple linking
number Theorem 6.

Our main results are the following.

1.1 Existence and uniqueness theorem

All manifolds are assumed to be smooth, oriented, and coimpaess otherwise
stated. The following fundamental theorem on 6—dimensienaanifolds is the key
to proving the existence and the uniqueness of the invatiamind theproof will be
given inSection 4

Theorem 1 Any 6—dimensional closed-manifold is rationally null-cobordant.

The statement means that, for any 6—dimensional clesednifold «, there exists a
positive integerm and a 7—dimensiona-manifold 3 such thatog = 1T« (union

of m disjoint copies of«). This is a direct consequence of the fact that the cobor-
dism group(2g of 6—dimensionak-manifolds Section 4 is isomorphic to Q/7)®?
(Theorem 4.3 andm can be chosen to be the order of the cobordism clabs [2g

of a.

The following is the existence and the uniqueness theoretmedahvarianto .

Theorem 2 Let o be ab—dimensional closeé-manifold. Take any’—dimensional
e-manifold 3 = (Z, X, €) such thatog = 11M« for some positive integem (suchf
andm exist byTheorem ). Then, the rational number
o(0) def SignX

m
depends only on the isomorphism classcof Moreover, the invariant has the
following properties
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(1) The invariants satisfiesAxiom 1 andAxiom 2.

(2) The invarianto is unique. That is, if an invariant’ of 6—dimensional closed
e-manifolds satisfie\xiom 1 andAxiom 2, theno’ = o.

(3) If a 6—dimensional close@-manifold o bounds a7—dimensional quase-
manifold 3 = (Z, X, e), then

o(a) = SignX — 4A(B).

Here, A(5) € Q is the self-linking number of a 7—dimensional quasmanifold
6, and it will be defined inSection 2.3 The proof of Theorem 2will be given in
Section 5.3

Remark 1.1 If 3 is a 7—dimensionag-manifold, then the formulas iAxiom 2 and
Theorem Z43) are the same, sinc&(5) = 0 by the definition ofA.

Remark 1.2 If we use only the axioms to computéc), we need to find (or construct)
an e-manifold 3 such thatog = IIM«a and that the signature of the submanifold is
computable, but that may not always be easy. However, sorastfinding a simple
guasi e-manifold bounded byr may be much easier. In such cases, the formula in
Theorem Z3) gives us an alternative and effective way to compafe). In fact,
this formula will be used when we explorer the relationshepazen our invariant and
Haefliger's invariant $ection §, or Milnor’s triple linking number $ection 9.

The essential reason why the rational numbér) is independent of the choices of
0 is that if a 7—dimensionaé-manifold 5 = (Z, X, €) is closed, then Sigk = 0
(Corollary 5.9, and that the signature is additive with respect to the agositions of
closed manifolds (Novikov additivity).

More generally, if3 is a closed 7—dimensional quasimanifold, then the equality
SignX = 4A(7) holds Proposition 5.3 and A(G) is also additive with respect to the
decompositions of closed quasimanifolds (see the proof éfroposition 5.5 These
are the main reasons whheorem 43) holds.

1.2 Aninvariant of smooth embeddings

Two manifold pairs Z, X) and ¢’, X’) areisomorphicif there exists an orientation
preserving diffeomorphisri: Z — Z' such thatf (X) = X’ as oriented submanifolds.
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The rational numbes (W, V, €) defined inTheorem 2s not an invariant of the isomor-
phism class of\(V, V) in general, since it may depend on the choice.oHowever, if
we put alle-classes together, we obtain an invariant\df, /) as follows. Let

Ewy = {e€ HAW\ V;Q) | eis ane-class of W, V) }

be the set of ale-classes of\(V, V). For example, iV is empty, thert\y g = H2(W; Q)
by definition, and ifV # ), then&w v is empty or an affine subspacelaf(W\ V; Q)
which misses the origin. Let

owy: éwy — Q

be the function defined bywv(€) = (W, V,¢€) for e € Ewy. The following is a
corollary of Theorem 2

Corollary 3 Fora paifW, V) of closed manifolds of dimensiosand3, the function
owyv: éwyv — Q is an invariant of the isomorphism class(¥¥, V).

The statement means that if there is an isomorphisnfW’,V’) — (W, V) of pair
of manifolds, then the pull-back’ : H2(W \ V; Q) — H?(W' \ V’; Q) restricts to a
bijectionf*: &wyv — &w v/, and the identity

ow v/(f*€) = ow,v(€)
holds for anye € &w v .
In a special case, we can obtain a rational-valued invadftite isomorphism class

of (W, V), rather than a function—valued invariant, as follows.

Definition 1.3 A pair (Z, X) of manifolds of codimension 3 isimpleif it admits at
least onee-class and the restrictiod2(Z; Q) — H2(X; Q) is injective.

Theorem 4 If a pair (W, V) of closed manifolds of dimensior and 3 is simple,
then the rational number

U(Wv V) d:ef UW,V(e) = U(Wv V> e)> ec gW,V-
is an invariant of the isomorphism class(@¥, V).

The proof will be given at the end ofection § and is easy. The essential part is that
(W, V) is simple if, and only if, {V, V) admits just one-class Proposition 6.14)).
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1.3 Haefliger’s invariant

LetH: EmbS®, &) — Z be Haefliger's isomorphism. A short review of the definition
of H will be given inSection 8.1 Letf: S* — S be a smooth embedding, and write
M; = £(S).

There is an easy—to—check condition for the simplicity afspaf manifolds as follows.

Proposition 1.4 Let (Z, X) be a pair of manifolds of codimensi@) and assume that
the restrictionH?(Z; Q) — H?(X; Q) is an isomorphism. Ther(Z,X) is simple if,
and only if, (X, 9X) is rationally null-homologous ifZ,0Z).

The proof will be given inSection 6 By Proposition 1.4the pair &, M) is simple,
and the rational numbes(S°, M) is well-defined byTheorem 4 The relationship
between Haefliger’s invariari (f) and our invariant(S°, M¢) is the following one.

Theorem 5 For a smooth embeddirig S — S, we have
(S, M) = —8H(f).

The proof will be given inSection 8.3 and it will turn out that our invariant is a
natural generalization of Haefliger's invariarit

There are some generalizations of Haefliger's invariant suéakase 14] and
Skopenkov11]. Takase 14][13] proved that there is a bijectioi : EmbM, ) — Z

for any integral homology 3—spheké such thatifM = S® thenQ = H . Ourinvariant
recovers Takase’s invariant toGd@rollary 8.4, and that is a direct consequence of the
geometric formula fow (W, V, €) (Theorem 8.2

o(W,V,e) = SignS— /S e(vs)?

Here,S D W is a Seifert surface 0¥ which Poincag dual ise/2, and which rational
normal Euler clasg(vs) € H3(S Q) is trivial over 9S. If W = S andV is an integral
homology 3—sphere, then the right—hand side is nothing-b8tt{imes) the definition
of Q.

Recently, Skopenkovifl] proved a classification theorem of elements in EWE)
for any oriented connected closed 3—manifodds When M = S, his invariant
u: Wh™1(0) — Z (where Wh1(0) is a subsétof EmbM, ), and . is called the
Kreck invariant in his paper) coincides with. The invariantsy and o seem to be
closely related, and possibly identical (up to multiplicatby a constant) for aniy.

The subset Wh'(0) ¢ EmbM,S%) consists of elements which Whitney invariant
Wh: EmbM, %) — Hi(M; Z) [11] vanish.
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1.4 Milnor’s triple linking number

Let L be an oriented algebraically split 3—component linki®, and let T3x S, M,)
be the manifold pair defined as before. Section 9 we will prove that T3xS?, M)
is simple Proposition 9.3 and consequently, the rational numhkgT3xS* M) is
well-defined byTheorem 4

Remark 1.5 It is easy to see that(T3xS*,M,) is a link homotopy invariant of
L without explicit computations, in fact, we can see that thetapy class of the
submanifoldM_ depends only on the link homotopy type lofas follows. Suppose
that two algebraically split 3—component linksand L’ in R® have the same link
homotopy type, and Ie{tL(t)}te[O,l] be a smooth link homotopgyrom L to L’. Foreach
t € [0,1], we can construct a smoothly embedded 3—-submaniftlg) C T3x S,
in exactly the same way as we constrit. The obtained family{Mc}c(o 4 is @
smooth isotopy fronM, to M.

The relationship between Milnor’s triple linking numbe#(L) and our invariant
o(T3xS?, M,) is the following one.

Theorem 6 For an oriented algebraically spBt-component link in S, we have

o(T3x S, ML) = —8u(L).

The proof will be given inSection 9

Now, here is the plan of the paper. $®ction 2 we introduce definitions and notation
which are necessary to understand the main theorems gitkgis gection. Ir§ection 3

we study some elementary facts on the low—dimensional tegecobordism groups
2, (K(Q, 2)) andf2,.(BSO?3)) of the Eilenberg—MacLane spakgQ, 2) of type Q, 2)
and the classifying spad@S(3) of the Lie groupSQ(3), and this is a preliminary to
the next section. IBection 4 we show that there is an isomorphigng = (Q/zZ)%?
(Theorem 4.3 and we provelheorem las a consequence of this isomorphism. The
isomorphism is given by a short exact sequence

0 — Q4(BSAB)) — Q6(K(Q, 2)) — Q& — 0,

which is isomorphic to 0— Z%? — Q%2 — (Q/Z)¥2 — 0 (see the proof of
Theorem 4.3 Section 5is devoted to the proof oTheorem 2 roughly speaking,
which relies on the two properties efmanifolds as follows:

3Each connected componeki(t) of each intermediate link (t) = Ky(t) U Ky(t) U Ks(t)
may intersects itself, but no other componegid) (i # j).
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(1) Theorem limplies the existence and the uniqueness of the invasiant

(2) The formula SigiX = A(5) (Proposition 5.3implies thato is well-defined,
and thatTheorem 43) holds.

Section Gs the study of necessary and sufficient conditions enstiniegxistence and
uniqueness oé-classes. In particular, we prove that a palv, ) is simple if, and
only if, it is admits just onee-class Proposition 6.14)). The proof ofTheorem 4is
given at the end of the section. 8ection 7 we study the relationship between Seifert
surfaces an@-classes. I'section 8 we proveTheorem 5and it will turn out that our
invarianto is a natural generalization of the Haefliger’s invariahtWe also prove the
geometric formulaTheorem 8.2for o(W, V, €) whene/2 is represented by a Seifert
surface ofV, and as a direct consequence, we prove that our invariamtredevers
Takase’s invariantGorollary 8.4. In Section Qwe proveTheorem 6

Acknowledgmentd.would like to thank Professor Mikio Furuta, Toshitake Kohand
Christine Lescop for their advice and support. | also woikle to thank Osamu Saeki,
Masamichi Takase, and Tadayuki Watanabe for helpful suiggssand comments,
and Michael Eisermann for revising the English text.

2 Preliminaries

2.1 Notation

We use the “outward normal first” convention for boundaryentation of manifolds.
For an oriented real vector bundte of rank 3 over a manifoldX, we denote the
associated unit sphere bundle py: SE) — X, and letFg ¢ TSE) denote the
vertical tangent subbundle &(E) with respect tope. The orientations ofg and
S(E) are given by the isomorphismg&E = Re ¢ Fg andTSE) = p£TX& Fg, where
Re C pgE is the tautological real line bundle & over SE). Consequently, the Euler
class

&(Fe) € H(SE); 2)
of Fg is defined.

Next, let Z,X), Z D X, be a pair of manifolds, and we assume tKais properly
embedded irZ and the codimension is 3. Throughout this paper, we alwapes®
these assumptions for all pairs of manifolds. In particudren we write \V, V) or
(Z, X), we always mean a pair of manifolds of codimension 3 such\tandV are
closed and dinW = 6, and thatZ and X may have boundaries and difrcan be any
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(mainly assumed to be 7 or 6). Denote iy the normal bundle oK, which can be
identified with a tubular neighborhood of so thatX C vx C Z. For simplicity, we
will write

5\(:31/)()’ PX = Pux - X_>X7 FX:FVX

Let us write W,V) = 9(Z,X) for the boundary pair of 4,X) for a moment.

We can definewy, Fy, V, pv: V — V, etc. in exactly the same way as above.
Let ((0,1]xW, (0, 1]1xV) be the pair of collar neighborhoods of the boundary pair
({1} xW, {1} xV) = (W, V). Without loss of generality, we shall always assume
vx|0,xv = (0,1]xwy as tubular neighborhoods of,[@xV in (0, 1]xW. Conse-
quently, we have

X =V, e(Fx)ly = e(Fv).

2.2 e-classes ance-manifolds

Here is the definition oé-class and quas-class.

Definition 2.1 Let (Z, X) be a manifold pair of dimensionsandn — 3.
(1) A cohomology clase € H?(Z \ X;Q) is called ane-classof (Z, X) if
5 = &(Fx) overQ.
We call ¢, X, e) an n—dimensionale-manifold.
(2) A cohomology clase € H?(Z \ X; Q) is called aquasi e-clas®f (Z, X) if

(a) €

(@) €|sz\ax is ane-class ofd(Z, X), and
(b) ([Sf],e) =2 forallpeX.
We call ¢, X, e) an n—dimensional quase-manifold.

Here,SfJ = pgl(p) C X is the fiber ofpx atp, and the bracket , ) denotes the pairing
of a homology class and a cohomology class. Note thateariass is a quasé-class,
since([Sg],e(Fx» = 2, which is the Euler characteristic of the 2—sphere. Als® no
that the boundary of a quastmanifold is ane-manifold by definition.

For (quasi)e-manifolds 3 = (Z, X, e) and 3’ = (Z’, X', €), if there exists an isomor-
phismf: (Z’,X') — (Z,X) of pair of manifolds such that*e = €, then we say3
and ' areisomorphic(denoted by3 = ). The emptye-manifold @, ?, 0), where
0 € H2(0 \ ¥; Q), will be simply denoted by. If 93 = (), then we say3 is closed
If a closede-manifold o« bounds ane-manifold 3, i.e. 96 = «, then we say is
null-cobordant If o IT (—«/) is null-cobordant, then we sayanda’ arecobordant
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2.3 Self-linking form and sel—linking number

For a quasie-manifold 5 = (Z, X, €), we define theself-linking formy € H?(X; Q)
and theself-linking numberA () € Q as follows. HereA(5) is defined only when
dimg =7, i.e. dimX = 4.

By the Thom—-Gysin exact sequence
L 0 HAX; Q) 5 HA(R; Q) 25 HO(X; Q) — - -

of vx, the cohomology class|s — &(Fx) € H2(X; Q) belongs to the image of the
pull-back p% which is injective. We define the self-linking forme H2(X; Q) of 3
to be the unique cohomology class such that

elg = e(Fx) + 2p%7.

Sincedp is ane-manifold, we havey|sx = 0. There existsy € H2(X, 9X; Q) such
that the homomorphisril?(X, 9X; Q) — H?(X; Q) mapsy'to v. When dims = 7,
the self—linking numbeA(5) of 3 is defined by

Am=A%

It is easy to check that () does not depend on the choice~af Note thaty = 0 if 3
is ane—manifold, soA(5) = 0 if § is a 7—dimensionaé-manifold.

In Proposition 7.3we will give an interpretation ofy by using a Seifert surface of.

3 Oriented cobordism groups ofBS(3) and K(Q, 2)

Let K(Q, 2) be the Eilenberg—MacLane space of tyfii Z), i.e. m(K(Q,2)) = Q
and (K(Q,2)) = 0 for i # 2, andBS(3) the classifying space of the Lie group
SQ3). We can assume th&SQ3) andK(Q, 2) have structures of CW-complexes.
Let Q.(Y) denote the oriented cobordism group of a CW-compleAs a preparation
for the next section, in this section we study some relatignbetween(), (BSO3))
and Q. (K(Q, 2)).

3.1 Homology groups

We begin by recalling some elementary facts on the homologyas ofK(Q, 2) and
BS{3). The homotopy class of a mé&P>* — K(Q, 2) from the infinite dimensional
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complex projective spaceéP*> (~ K(Z, 2)), corresponding to the inclusidh <— Q on
the second homotopy groups, provides an isomorphism batiieeeduced homology
groups (cf. #]):

H(K(Q, 2); Z) = H(CP™; Q)

1) N {Q if k is positive even

0 otherwise

Let a1 € H3K(Q,2);Q) = Q denote the element dual to & m(K(Q,2)) =
H2(K(Q,2);Q), then thek—th powerak of a; generatesH?(K(Q,?2);Q) over Q
fork> 1.

It is easy to check that the low—dimensional homology grafd8S(Q3) are given as
follows:

k |01 2 34 5
H(BSQ@);Z) |Z 0 Z/2 0 Z Z/2

This table, forexample, is obtained by use of the Serre sgiesgtquence of the universal
principal SQ3)-bundle, and by the fact that the cohomology riiyBSQ3);Z/2) is

a free polynomial algebra generated by the second and thigtelSWhitney classes
over Z/2. The groupH4(BS(3);Z) is generated by the dual element of the first
Pontryagin clasg, € H4(BSQ3);Z).

(2)

3.2 Cobordism groups

The next step is the study of the low—dimensional orientdadism groups oK (Q, 2)
andBS{3). In low—dimensions, the cobordism grop = €. (pt) of one pointpt is
given as follows (cf. 10, Section 17]):

k|0 1234 5 6

) X|Z 0 0 02Z Z/2 0

Here, the isomorphisrf2, = Z is given by the signature of 4—manifolds.

In general, for any CW-compleX, the Atiyah—Hirzebruch spectral sequerigg,(Y)
for Q.(Y) converges (cf.12, Theorem 15.7]):

Eoq(Y) = Hp(Yi Qg) = Qpiq(Y)

The following lemma is an easy application of the Atiyah-zdliruch spectral se-
guence.



12 Tetsuhiro Moriyama

Lemma 3.1 The following isomorphisms hold

Q6(K(Q,2) = Q% Q3(BSAR)) =0,  Qu(BSAR)) =772

Proof We use the isomorphisni)and the tables?) and @) to prove this lemma. The
Atiyah-Hirzebruch spectral sequengp, = Ef 4(K(Q, 2)) converges on thE?-stage
within the rangep + q < 6, and soEj, = Eg,q in the same range. Consequently, we
have

. N{@ if p=6,2,

PP o otherwise
and thereforeQg(K(Q, 2)) = Q%2.

Similarly, the spectral sequenég , = EJ ,(BSQ3)) converges on thE2-stage in the
rangep+q < 4, and

o ~ )L if p=4,0,
P4P ) 0 otherwise.

Thus, 24(BSQQ)) = Z%2. The vanishing of23(BS(3)) follows fromFZ, , = 0
for all p. O

A pair (W, e) of a closed 6—manifoldV and a cohomology class € H2(W; Q)
represents a cobordism clad¥/[e] € Qg(K(Q, 2)). Here, we identifye with the ho-
motopy class of a map: W — K(Q, 2) such thaf*a; = e. Define a homomorphism

x: 26(K(Q,2)) — Q%2 by
X([Wa e]) = (Xl(W7 e)7 XZ(W7 e)) )
aW.g = 5 [ prwe—éca

x2(W, €) = %/WeSGQ.

Similarly, a pair ¥, E) of a closed 4—manifolk and an oriented vector bundEe of
rank 3 overX represents a cobordism clas§ E] € Q24(BS(3)). Here, we identify the
isomorphism class dE with the homotopy class of the classifying map— BSQ3)
of E. Define a homomorphisr: Q4(BSQ3)) — Z#2 by

S(IX.E]) = (Signx, /X pl(E))) .

We will see soon that the homomorphismsand¢ are isomorphicliemma 3.3.
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3.3  Homomorphism24(BSO3)) — Q6(K(Q, 2))

Let us consider the homomorphism
v 2(BSA3)) — 26(K(Q, 2))

defined byu([X,E]) = [SE), e(Fg)] for [X,E] € Q4(BSO3)). For a pair X, E)
representing an element §dy(BS{3)), the characteristic classes of the vector bundles
E, Fe, TX, andTSE) satisfy the following relations:

(4) &(Fe)® = p1(Fe) = pipr(E)
(5) = p1(TSE)) — pep1(TX) (modulo 2—torsion elements)

(6) pe &(Fg) = 2

Here, pg,: H3(S(E); Z) — HO(X;Z) is the Gysin homomorphism gfg, and 2 ¢
HO(X; Z) denotes the element given by the constant functiorXonmith the value 2.
The Hirzebruch signature theorem states that

(7) SignX = %/Xpl(TX).

The next two lemmas are easy to prove.

Lemma 3.2 yv = £. Namely, for any paifX, E) of closed4—manifold X and an
oriented vector bundl& of rank 3 over X, we have

\(SE). eFe))) — <Signx, /X m(E)) |

Proof This follows from the formulas4), (5), (6), and ). In fact, these imply

PLTSE))e(Fe) — &Fe)® = ppa(TX) e(Fe)

over@Q, and
1/, 1 .
) o) = 5 [ ptmTeFe) = 5 | P10 = Signx

The equalityx2(S([E), e(Fg)) = fx p1(E) can be obtained in a similar way. O

Lemma 3.3 The homomorphisms : Q6(K(Q,2)) — Q%2 and¢: Q4(BSQQ3)) —
7.2 are isomorphisms.
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Proof Fork = 0,1, let Fx be an oriented vector bundle of rank 2 oveP? such
that ((CPY], e(Fy)) = k, and we sety = [CP? Fy @ R] € 24(BSQ3)). Then, two
elementst(Up) = (1,0) and&(uy) = (1,1) form a basis of the abelian grouf®?.
Therefore ¢ is a surjective homomorphism frof,(BSQ(3)) = Z%? (Lemma 3.) to
Z%2. This means thaf is an isomorphism.

Similarly, we havey(v(ug)) = (1,0) and x(v(u;)) = (1,1) by Lemma 3.2 and
these two elements form a basis of the vector sp@éé. Therefore,y is a linear
homomorphism fronf2g(K(Q), 2) = Q%? (Lemma 3.)to Q%2 of rank 2. This means
that x is an isomorphism. O

The following proposition is the goal of this section.

Proposition 3.4 The sequence of abelian groups
0 — 2(BSAB)) - 26(K(Q.2)) > (©/2)% — 0

is exact, where = x mod Z#2,

Proof This follows from that, the diagram
Q(BSAB) —— Q4(K(Q,2))

(| s

782 inclusion QEBZ
commutesl(emma 3.2 and the vertical arrows are isomorphiee(nma 3.3. O

4 Cobordism group of 6—dimensionale-manifolds

We defineQ)g to be the cobordism group of 6—dimensiogainanifolds, namely, it is
an abelian group consisting of the cobordism clasag¢®of 6—dimensional closeé-
manifoldsca, with the group structure given by the disjoint sum. Notd fad+[o/] =
[l /], —[a] =[—a], and 0= [{]. In this section, we prove th&?§ is isomorphic
to (Q/Z)®? (Theorem 4.} and then we prov&heorem 1

We begin by preparing some notation as follows. For a paiX{, we will write
(8) Zx = Z\ Uy,

where Uy is the total space of the open unit disk bundlevgt If (W,V) = 9(Z, X)
denotes the boundary pair, then the manifdlgd = W\ Uy can be defined in the same
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way as above. In line with our orientation conventions, theraaries ofZx and Wy
are given as follows:

9) 0Zx = Wy U (FX), oWy = £V

Here, the symbolsr = (—1)4MZ and+ = (—1)¥™W are the signs of orientations.
Note thatZy have the corne¥ which is empty wherX is closed.

4.1 Extension of the cobordism group o6—dimensionale-manifolds

In this subsection, we show that any element(lf can be represented by a 6—
dimensional close@-manifold with empty submanifold. More precisely, let

™ Q6(K(Q,2)) — Qf

be the homomorphism defined by[W, €]) = [W, 0, €] for [W, €] € Q6(K(Q, 2)), and
we prove thatr is surjective Proposition 4.1

For a 6—dimensional closee-manifold o« = (W, V, €), we construct a cobordism
class W', €] € Q6(K(Q, 2)) such thatr([W', €]) = [«] as follows. Since the oriented
cobordism groud23(BSQ3)) vanishes by.emma 3.1 there exists a pairX, E) of a
4—manifold X and an oriented vector bundie of rank 3 overX equipped with fixed
identificationsoX = V andE|y = . Two pairs §E), e(Fg)) and (M, €lw,) have
the common boundary

N(SE), &(Fe)) = (V. &(Fv)) = O(Wy, €lw,).
Let us consider the closed 6—manifold
W =W Uy (—S(E))

obtained fromW,, and —S(E) by gluing along the common boundaries (namely,
W is constructed by performing a kind of surgery alovg replacing the tubular
neighborhood ol/ with —S(E)). There exist® € H2(W'; Q) such thate/ |y, = €|w,
and€|gg) = &(Fg), and we have a cobordism class

[W/7 e(] € QG(K(Q> 2))

Proposition 4.1 We haver([W, €]) = [«] in Q. Consequently, the homomorphism
m: Qe(K(Q, 2)) — Q§ is surjective.
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Proof We only need to show the existence of a 7—dimensieralanifold 5 bounded
by a 11 (=), wherea/ = (W, (), €). Let| = [0, 1] be the interval. In this proof, for
a subsetA ¢ W, we write Ay = {t} xA C I xW for t = 0,1. The boundaries of the
7—manifoldl xW and the closed unit disk bundI®(E) of E are given as follows:

(I xW) = (—Wo) TWy
9D(E) = S(E) UD(w)

Gluing the manifoldd xW andD(E) alongD(wy)o C Wy andD(wy) C 9D(E) by the
identity map, we obtain a 7—manifold

Z=D(E) Ub()o (IxW)
with the boundary

0Z = Wy 11 (S(E) Uy, (—(Wy)o))
=~ WII (-W),

and we shall assume thaZ is smooth after the cornéf, is rounded, se€igure 1

| x W Z
| xV
D(E)
X gluing Vi X Vv
D(w)
—Wo W, —W wW

Figure 1: GluingD(E) andl xW, and the obtained manifold paiZ (X)

The 4—submanifold
XUy, (IxV) CZ

(where X is identified with the image of the zero—sectionbfso thatX ¢ D(E)) is
properly embedded iZ, and is bounded by/;. We will rewrite X Uy, (I xV) as X
and identify9Z with WII (—W'), so that

IZ,X) = (W, V) II (=W, 0).
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Now, all that is left to do is to show the existence ofewlass of Z, X) restricting to
e and€ on the boundary components. Since the includidn— Z \ X is homotopy
equivalence, there exists a cohomology class H2(Z \ X; Q) of (Z,X) such that
&w = €. By constructiong is ane-class of Z, X) and&,y = e. Hence, we obtain
a 7-dimensionaé-manifold 5 = (Z, X, & bounded by

8/8 - (Wa V7 é‘W\V) IT (_W/a (2)7 é‘W’) =all (—Oé/). D

4.2 Proof of Theorem 1

We define a homomorphism
d: 08 — (Q/7)%?

as follows. ByProposition 4.1any element ir)g is represented by ae-manifold
of the form W, (), ), whereW is a closed 6—manifold ane € H2(W; Q). We then
define

(W, 0, €) = x'([W, )

= }/ pr(TW) e — €2, }/ ] modz®.
6 Jw 2 Jw

The rest of this section is devoted to proving tlais an isomorphism. The first thing
we have to do is to show that([W, 0, €]) is independent of the representatiw, (), €)
of [W, 0, €].

Lemma 4.2 The homomorphisn®: Qg — (Q/Z)%? is well-defined.

Proof Let a = (W,(,e) and o’ = (W,(,€) be any 6—dimensional closeet
manifolds representing the same cobordism clas@gnand we prove that the dif-
ferencex([W, 0, €]) — x([W', 0, €]) belongs toZ%2, which implies x'([W, 0, €]) =
X' (W, 0,€]).

There exists a 7—dimension@lmanifold 5 = (Z, X, &) such that)3 = o 11 (—d/), in
particular, X is closed and embedded in the interioraf Thus, the manifoldy (see
(8)) has the smooth boundary

0Zx = OZ 11 (—X) = WII (—W) 1T (—X).

Sinceé

% = &(Fx), we can write

a(ZX7 é|Z><) = (Wv e) I (_le e() il (_)A(a e(FX))v
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and this implies |V, €] — [W, €] = [X, &(Fx)] in Q6(K(Q, 2)). We have
W) x(W.e) = (Signx. [ pua0 )
by Lemma 3.2and the right-hand side belongsZ62. O

The following theorem is the goal of this section.

Theorem 4.3 The homomorphisn®: Qg — (Q /7)%2 is an isomorphism.

Proof Consider the following commutative diagram:
0 —— U(BSA3)) —— 2%(K(@Q,2) —— Q¢ —— 0

H H |

0 —— QBSA3) —— 2(K(Q,2) —— (Q/2)*2 —— 0
The lower horizontal sequence is exactPrpposition 3.4and the homomorphism
is surjective byProposition 4.1 To complete the proof, we only have to show that the
upper horizontal sequence is exact, more specifically, knKer. We prove this in
two steps as follows.

Claim1 Imwv C Kerw. Let [X, E] € Q4(BSO3)) be any element, then(v([X, E])) =

[S(E), 0, &(Fg)]. RegardX as the image of the zero—sectionefo thatX C Int D(E).

The cohomology class(Fg) is ane-class of §E), )) = d(D(E), X), and it uniquely
extends to are-classegz of (D(E), X). The obtainede-manifold O(E), X, eg) is

bounded by KE), (), &(Fg)), and hence, we have(v([X, E])) = 0.

Claim2 Imwv D Kerm. Next, we prove the opposite inclusion. L&/[e] € Kerr be
any element, themx = (W, (), ) bounds a 7—dimensionamanifold 3 = (Z, X, &),
namelydps = «. In particular, we havé&|y = e(Fx). Since

8(ZX> é|Z><) = (W> e) nl (_)A<> e(FX))>

we have

[W, €] = [X, &(Fx)] = v([X, vx])
in 26(K(Q, 2)), wherevy is the normal bundle oK. Therefore, W, €] belongs to
Imv. This completes the proof. O

Theorem Ican be proved very easily froitheorem 4.3s follows.

Proof of Theorem 1 For a 6—dimensional closeetmanifold «, its cobordism class
[a] € QF = (Q/Z)%? (Theorem 4.3 has a finite order, sayn. The meaning of
m[«] = 0 is that there exists a 7—dimensioraianifold 5 such thatVg = IIMa. O
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5 Proof of Theorem 2

In this section, we give a proof dtheorem 2

5.1 Signature of4—manifolds in 7—manifolds
For a pair Z, X), let us consider the Mayer-Vietoris exact sequence&pZ | X, Ux):
(10) - — H(Z;Q) F 12z X,Q) & HA(X; Q)

S 2% Q) S HEZ Q)
Here, we identifiecH?(Ux; Q) with H2(X; Q), andH?(Ux \ X; Q) with H3(X; Q) via

the isomorphisms given by the homotopy equivaleridgs~ X and Uy \ X ~ X, and
here, the maps

ix: X< Z, i X—=Z\ X,  jx: Z\X—2Z
denote the inclusions. Denote by
tx € H(Z; Q)

the fundamental cohomology class Xf(the Poincag dual of the fundamental ho-
mology class X, 0X] € Hg,x(Z,0Z;Q)). Sincepxie(Fx) = 2 (see 6)), we have

(11) 5 e(Fy) = 2tx.

The following lemma states that the existence of a qeasliass of Z, X) is almost
equivalent to K,0X] = 0 (exactly equivalent if the second betti-number @{
vanishes).

Lemmab5.1 Let(Z,X) be a pair of manifolds of codimensicdh Then,[X,0X] = 0
if, and only if, there exist cohomology classess H*(Z \ X; Q) and~y € H?(X; Q)
such that

e

% = e(Fx) + 2px7-
Moreover, if suche and~ exist andy|gx = O, thene is a quask-class of(Z, X), and
~ Is the self-linking form of the quasi-manifold (Z, X, €).

Proof The vanishing of X, 9X] implies e(Fx) € Kerd* by (11), and thusg(Fx) =
el — 2p%y holds for some elements € H3(Z \ X;Q) andy € H2(X;Q) by the
exactness of the sequencH)). The converse also holds. The second half of the
statement is obvious fromefinition 2.1(2). O
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Lemma 5.2 Let(Z,X) be a pair of closed manifolds of dimensionand4. If X is
rationally null-homologous iiZ, then

X([X, &(Fx)]) = (SignX, —3SignX).
Proof By Lemma 3.2we have

V(% eF)]) = <Signx, /x pl(ux)> .

The Hirzebruch signature theorem) @nd the vanishing of the homology classXf
imply

/Xpl(VX):/Xpl(TZ)—/Xpl(TX): —/Xpl(TX): —3SignX. D

Proposition 5.3 Let (Z, X) be a pair of closed manifolds of dimensionand4. If e
is a quaske-class of(Z, X), then we have

SignX = 4A(Z, X, e).

Proof Lety € H?(X;Q) be the self-linking form of3 = (Z, X, e), namelyelg =
&(Fx) + 2 pxv. Then, we can write
e’ = e(Fx)® + 6e(Fx)*px + 12e(Fx)pxy” + 837
= &(Fx)° + 6% (P1(x)7) + L2(Fx)py” + 8px >,

Here, we used the relatiod)((whereE = vx) on the second term of the right—-hand
side. Since dinX < 6, the second and the last terms of the right—hand side vanish
Integrating the both sides ov&r, we obtain

/>‘< € = 2x2(X, e(Fx)) + 24A(3).

The left-hand side vanishes by Stokes’ theorem, sii@x, €%|z,) = (—X, €
Thus, we obtainy2(X, (Fx)) = —12A(3).

%)
On the other hand, the existence of a quasiass of Z, X) implies thatX is ratio-

nally null-homologous irZ by Lemma 5.1 and so Z, X) satisfies the assumption of
Lemma 5.2 Hence, we obtain

SignX = — S x2(, &(Fx)) = 4A(9). o

As a corollary, we obtain the following vanishing properfytloe signature.
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Corollary 5.4 If a pair (Z, X) of closed manifolds of dimensiors and4 admits an
e-class, thersignX = 0.

Proof Let e be ane-class of Z, X), thenA(Z, X, €) = 0 by the definition ofA. This
implies SignX = 0 by Proposition 5.3 O

5.2 Definition of the invariant o(«a)

Let a be a 6-dimensional closeetmanifold. We first review and generalize the
definition of the invariant(«) as follows. ByTheorem 1there exists a 7—dimensional
e-manifold 8 = (Z, X, &) such thatog = IIM« for some positive integem. More
generally, we shall assume thatis a quasie-manifold. We then define

SignX — 4A
(12) o(a) = QT(B) €Q.
In this section, we use this definition instead of the onemivelTheorem 2 because
(12) includes the formula iTheorem Z3).

Proposition 5.5 For a6—dimensional closed-manifold«, the rational number (),
defined as ir{12), depends only on the isomorphism classwof

Proof Let A be the set of the isomorphism classes of 6—dimensionalgulibrdant
closede-manifolds. Note that itv € A/, thenII™a € A for any positive integem.
We prove the statement in three steps as follows. The firgtistthe most important,
and the rests are proved in a formal way.

Claim1 If a € NV, theno(a) is well-defined. Assumea € N, and take any 7—
dimensional quasé-manifolds 5y = (Zo, Xo, €) and 51 = (Z1, X1, €1) equipped with
fixed identificationsdy = o = 931. We need to show the equality

(13) SignXg — 4A(Gp) = SignXy — 4A(51).
For that, we consider the pair of closed manifolds
(Zv X) = (ZO U (_Zl)7 XO U (_Xl))

obtained from Zg, Xp) and Z;, —X1) by gluing along the identified boundaries, and
write (W, V) = (0Zp, 0Xo) C (Z,X). Since the quase-classesyy ande; restricts to
the samee-class of W, V), there exists a quasiclasse of (Z, X) such thaklz\x, = &
fori = 0,1. Thus, we obtain a 7—dimensional closed q@asianifold 5 = (Z, X, €).
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The self-linking formy € H2(X; Q) of 3 is trivial on V, and thus, there exists an
element

5 = (J0,71) € H3(X, V; Q) = H?(Xo, 9Xo; Q) ® H3(X1, 0%1; Q)

such that the homomorphist?(X, V; Q) — H2(X; Q) mapsy'to ~. Similarly, the
homomorphismH2(X;, 0X;; Q) — H?(X;; Q) maps~; to the self-linking form ofs;,

and thus
A = [ 32

Hence, we have
A@zL%zL%—A%sz—Mm-

(Namely, the self-linking numbek is additive with respect to the decompositions of
closed quase-manifolds.) By the additive properties df and the signature, and by
Proposition 5.3we have SigiXy — SignX; = 4A(6p) — 4A(51), and so 13) holds.

Clam2 If o € NV, theno(IIMa) = mo(«) for any positive integer mLet 3 =
(Z,X, €e) be a 7—dimensiona-manifold such that3 = «, thenII™a boundsIT™j.
The rational numbes(I1M«a) is well-defined byClaim 1, and we have

o(IIMa) = Sign (IMX) = mSignX = mo ().

Claim 3 o(«) is well-defined for ang—dimensional closed e-manifold. Let o be

a closede-manifold, andm a positive integer such that™a € A/ (suchm exists by
Theorem ). The rational numbes (I1M«) is well-defined byClaim 1L We can show
that the rational number(IT™«)/m does not depend on the choicerofas follows.

If Mo € N andII™ o € A for some positive integemn andnt, thenII™ o € A
Thus, the rational numbers(IM«), o(II™ ), and o(II™" &) are well-defined by
Claim 1 Sincell™ (IIMa) = 1™ ¢ = [I™(II™ @), we have
oMa)  o(™a) (I a)
m  mm o
by Claim 2 This implies thatr(II™«) /m does not depend on the choicerof O

5.3 Proof of Theorem 2

By using the results we have obtained so far, we pifdveorem 2
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Proof of Theorem 2 By Proposition 5.5the rational humber(«) is well-defined
for any 6—dimensional closegtmanifold o.. Axiom 2 andTheorem Z3) are obvious
from the definition 12).

We prove thats satisfiesAxiom 1 as follows. Leta be a 6—dimensional closesl
manifold, andg = (Z, X, e) a 7—dimensionak-manifold such thabs = 1M« for
some positive integem. Then,d(—f) = IIM(—«), and the definition of implies

Next, let o/ be another 6—dimensional closedmanifold, ands’ = (Z/,X',€) a
7—dimensionak-manifold such tha®3’ = II™ « for some positive integem’. Then
(I1 8) 11 (II™3’) boundsII™™ (« II /), and we have
~  mMSignX + mSignX’
olalla’) = g

_ SignX  Signx’

I

= o(a) + o(a).

Hence Axiom 1 holds.

We proveTheorem 22) (uniqueness ofr) as follows. Leto’ be an invariant of the
isomorphism classes of 6—dimensional closethanifolds satisfying the axioms. Let
us consider the difference

f(a) = o'(a) — () € Q.

If two 6—dimensional close@-manifolds «g and aq are cobordant, that is, if there
exists a 7—dimensiona-manifold 5 = (Z, X, €) such thatog = «ag 11 (—«1), then

f (o) — f(a1) = 0’(0B) — o(9B) = SignX — SignX =0
by the axioms. Thus, we can regédrés a function orf)g:
f: 05—0Q
Moreover,Axiom 1 implies thatf is a homomorphism.

On the other hand, any homomorphis$t§ — Q is trivial by Theorem 1in particular,
f must be trivial. Namelyy’ = o. O

This completes the proof dtheorem 2
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6 Existence and uniqueness aé-classes

As in Section 1.2 we denote bytz x C H?(Z \ X; Q) the set of alle-classes of a
manifold pair £, X) of codimension 3. In this short section, we study some eteang
properties of¢z x, and then we give a proof dtheorem 4

For elements € £7 x anda < Keriy, where
ix: H(Z;Q) — H*(X; Q)
is the restriction, the cohomology class
def
0e(@) = e+azx € HAZ\ X Q)

belongs tafz x , becauseny = 0. Thus, we obtain an affine homomorphism

ge: Keriy — &zx.

Note thatge is defined only whetgz x # (0. Let #A € NU {oo} denote the number of
elements in a seA, and let K, 0X] € Haimx(Z, 90Z; Q) be the fundamental homology
class of K, 0X).

Proposition 6.1 The following statements hold
(1) If[X,0X] #0, thenEz x = 0.
(2) Foranyee & x, the mapge: Keriy — £z x is an affine isomorphism.
(3) Assume thaty is surjective. Thenfz x # 0 if, and only if, [X, 0X] = 0.
(4) #Ezx = 11if, and only if, (Z, X) is simple.

(5) Proposition 1.40lds. Namely, whe, is an isomorphism(Z, X) is simple if,
and only if,[X,0X] = 0.

Proof (1) is a direct consequence bémma 5.1 In fact, if [X, 9X] # 0, then £, X)
does not even admit a quassiclass.

(2) Since two elements irfz x differ by an element in the kernel Kef of the
homomorphisms: H?(Z \ X; Q) — H2(X; Q), we only need to show that the homo-
morphismji: H%(Z; Q) — H2(Z \ X;Q) restricts a bijection Keg, — Ker:}, and
this is immediate from the following commutative diagram:

H2(Z\ X, %; Q) —= HX(Z\ X; Q) =~ HX(%; Q)

|

H2(Z, X; Q)

S

Ix

H2(Z; Q) — 2 H2(X; Q)

1%
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Here, the horizontal sequences are the long exact sequeh(2s X, X) and ¢, X),
andf is the excision isomorphism. Note that the vanishingié(z, Z \ X; Q) follows
the injectivity of j%.

(3) We only give a proof of that the vanishing of [0X] implies £z x # 0, since the
converse is given bylf. Assume thai is surjective andX, 0X] = 0. ByLemma 5.1
there existe € H%(Z \ X;Q) and v € H?(X; Q) such thatelg = e(Fx) + 2p%7.
By the assumption, there existsc H?(Z; Q) such thats|x = +. The homotopy
equivalencejxix ~ ixpx: X — Z implies elg = p¥%v, and the cohomology class
€ =e— 2|, x € H3(Z\ X; Q) satisfies

e

% = (e(Fx) + 20x7) — 20%7 = €(Fx).
This means € & x # 0.

(4) By (2), #£2 x = 1 implies Keriy = {0} which means thait; is injective, and thus,
(Z,X) is simple. Conversely, let us assume thatX) is simple, that isjy is injective
and&z x # (). Fix any elemente € £z x, then the mame: Keriy = {0} — &z x isa
bijection by @), and thus, & x = #{e} = 1.

(5) This is a combination of3) and @). O

If we drop the surjectivity assumption @f in Proposition 6.13), then the statement
does not hold anymore, and a counterexample is given in tlosving.

Remark 6.2 It is known that any oriented closed smooth 4—manifldcan be
smoothly embedded i’ (c.f. [3, Theorem 9.1.23, Remark 9.1.24]). Let us assume
SignX # 0 (for example, SigftP? = 1). Obviously, X is nul-homologous irS’,

but (S, X) does not admit ang-class byCorollary 5.4

Now, Theorem 4s proved as follows.

Proof of Theorem 4 Let us assume that\(, V) is simple. ByCorollary 3 the image
Imow,y C Q of the functionow,: &wyv — Q depends only on the isomorphism
class of W,V). The simplicity of ,V) implies that&yy consists of just one
element, saywy = {e}, and therefore, Imwy = {o(W,V,€)}. Thus,a(W,V,¢€)

is an invariant of the isomorphism class o¥(V). O
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7 Seifert surfaces

In this section, we establish the relationship betweene8edurfaces and quas-
classes. When we consider the intersection of submanjfaldsvill always assume
that the submanifolds are in general positions (by defogrtiiem slightly if necessary)
so that the intersections becomes smooth manifolds.

Let (X, E) be a pair of a manifold and an oriented vector bundE of rank 3 over
X. We denote by

7. E—E Vv~ —v

the involution given by the multiplication by a scalarl. There is a direct sum
decomposition

(14) H*(SE); Q) = Hi1 ® H-y,

whereH.1 is the eigenspace of the involutiari : H2(SE); Q) — H3(YE); Q) with
the eigenvalue:1. The subspack, ; is the image of the pull-back: : H?(X; Q) —
H2(S(E); Q), andH_1 is the subspace spanned by the Euler class ef@&9 of Fe.
These facts are proved by using the Thom—-Gysin exact seeudiic

The Euler clas®(Fg) of Fg is algebraically characterized as follows.

Lemma 7.1 Let (X, E) be as above. If a cohomology class H3(SE); Q) satisfies
two conditions

(1) 7*a= —a,
(2) ppa=2,

thena = e(Fg) overQ. Here,pg: H(SE); Q) — HO(X; Q) is the Gysin homomor-
phism of the associated sphere bundfe SE) — X.

Proof The property 1) impliesa € H_, and @) impliesa = e(Fg). O

Foramanifold pairZ, X) of codimension 3, &eifert surfacef X is a proper (oriented)
submanifoldY of Zx (see B)) such thaty N X = s(X) for some sectiors: X — X, and
such that the natural isomorphismy|sx) = Fx|gx) preserves the orientation. Note
that Y may have the cornes(0X) (see also17) below). More generally, ifY \ Ugx)

is immersed irZy \ Uy for some open neighborhoodiyx) of s(X) andUy of X (and
so Y has no multiple points ollgx)), then we sayy is animmersedSeifert surface.
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Let Y be such an immersed Seifert surfaceXoin Z. Define

(15) F(9 = SFx 2 $"(ovlsw).

which is an oriented vector bundle of rank 2 ovérand so its Euler class
e(F(9) € H*(X; 2)

is defined. Unless otherwise stated, we do not assumé-{sgts trivial in this paper.
Let

ty € H3(Z\ X; Q) = H3(Zx; Q)
be the fundamental cohomology classYafthen we have

(16) S'(tylg) = e(F(9),  s'77(ty[g) = 0.

Now, let us write
(W,V) =0(Z,X), S=YNnW

for a moment. ThenS is an immersed Seifert surface @fin W with respect to the
sectionsly: V — V (namelySNV = s(V)). Note that

ts=tylmv,  F@EV)=F@Ol, vs=wls

by definition. In line with our orientation conventions, tfwiented) boundaries of
andS are given as follows:

(17) I =(EJU(FsX),  9S==HV)

Here,+ = (—1)%MW and ¥ = (—1)4mZ,

Remark 7.2 Let Y C Z be an (immersed) submanifold with the bounday =
(Y N W)) U (¥X) and with the corner/Y = X such thatY’ intersectsW
transversely, and we assume that a neighborhood af Y has no multiple points.
Then,Y = Y' N Zy is an (immersed) Seifert surface Xfin the sense described above.
In order to avoid introducing too much notation, we will alsal Y’ an (immersed)
Seifert surface ofX. The corresponding sectios: X — X is defined such that
Y N X = g(X), and soF(s) = vy/|x. The cohomology class, € H2(Z \ X; Q) is
nothing but the fundamental cohomology classYof\ X (the Poincae dual of the
locally finite fundamental homology clas¥’[\ X] € HgimY,(Z \ X; Q) of Y\ X).

The following proposition states that an immersed Seifarfage implies a quasi
e-class.
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Proposition 7.3 Let (Z,X) be a pair of manifolds of codimensid@y andY an im-
mersed Seifert surface ¥fwith respectto a sectiost X — X such thae(F(9))|sx = 0

overQ. Then,2ty is a quask-class of(Z, X), ande(F(s))/2 is the self-linking form
of the quasie-manifold (Z, X, 2ty).

Proof We writeb = ty|g € H2(X; Q) in this proof. ByLemma 7.1 we have

(18) b— b = e(Fx).

Since b + 7*b belongs toH, = Impy (see (4), where E = vx), there exists
¢ € H2(X; Q) such thatb + 7*b = pic. The pull-backs*: H?(X; Q) — H?(X; Q) is
a left-inverse ofy, and so

C = S"(pxC) = s'b+ s*7b = e(F(9))
by (16), and thus
(19) b+ 7"b = pxe(F(9)).
By (18) and @19), we have
2ty

s = &(Fx) + 2 (pxe(F(9)/2) -

Sincee(F(9))|sx = 0, 2y is a quaske-class of Z, X), ande(F(s))/2 is the self-linking
form of (Z, X, 2ty). O

The following is a direct consequenceifoposition 7.3

Corollary 7.4 Let(Z,X) andY be as inProposition 7.3 If e(F(s)) = 0, then2ty is
ane-class of(Z, X).

Proof By Proposition 7.3 the self-linking form of Z, X, 2ty) vanishes, in other
words, 2y is ane-class by definition. O

8 Haefliger’s invariant

In this section, we prov&heorem 5 We also prove the geometric formula forand as
a corollary, we obtain more general resulf®(ollary 8.4 establishing the relationship
between Takase’s invariafit and our invariant .
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8.1 Review of Haefliger’s invariant

We begin by reviewing Haefliger's resultS][[6] on the classification of smooth 3—
knots inS°. He first showed that the set EntB(S°) of the isotopy classes of smooth
embeddings : S — < is an abelian group with the group structure given by the
connected sum. Writé/y = f(S?). He showed the existence of an oriented proper
framed 4—submanifoldX C D’ such thatoX = M and SignX = 0. Here, a
framing of X is the homotopy class of a triples;($,s3), S: X — vy, of linearly
independent sections of the normal bundjeof X. We shall assumg(X) c X. The
homomorphism

H2(X, X; Q) = H(X; Q)

is an isomorphism, and we will identify these two groups. &@&-—cyclec of X, the
linking number Ik& (c), X) € Q of s(c) with X is well-defined, and it depends only
on the homology clas<] € Ha(X; Z) of ¢. Thus, we obtain a homomorphism

At Ha(X Z) — Q, A([c]) = Ik(s1(0), X),
which gives a cohomology classe H2(X, 0X; Q). He proved that the integral
(20) H(f) = }/AZ
2 Jx

is an integer and depends only on the isotopy clask, @nd that the induced map
H: EmbES, &) — Z is an isomorphism of abelian group.

8.2 Invariant o(, M;)

Let M; and X be as before. The paiS{, M;) is simple byProposition 1.4and we
can define the invariang(S°, M) € Q by Theorem 4 By Lemma 5.1 there exist
ec H?(D'\ X;Q) andvy € H2(X; Q) such that

elgx = e(Fx) + 2p%7-

Sinceylm, = 0 € H3(Mf;Q) = 0, e is a quasie-class of D’,X), and ~ is the
self-linking form of the quase-manifold O7, X,€). In particular, & = e|se\,\,|f €
H?(S° \ M¢; Q) is the uniquee-class of &%, My), and

oD, X, e) = (S, M, &)

ase-manifolds. ByTheorem 43), we obtain a formula

(21) o(S, M) = —4 /X 2.
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8.3 Proof of Theorem 5

The essential part of the proof ®heorem 5s that the cohomology classesand v,
we defined in this section, are actually the same.

Proposition 8.1 We have) = v in H?(X, 9X; Q).

Proof Fix a 2-cyclec of X, and letw € H?(X,9X; Q) be the Poincdr dual of the
homology classd] € Ha(X; Q) of c. Let us write& = s;(c) andX = s,(X) which are
cycles ofX. Note that the Poincardual of K, 0X] € Ha(X; Q) is e(Fx)/2.

Since& = X N py }(c), its Poincaé dual is
1 ~ o~
58 P € HY(X. 0% Q).
The homomorphism
HZ(D"\ X;Q) — H*(D',D"\ X; Q)
given by the pairD’, D’ \ X) mapse/2 to the Thom class afy, and thus, we have
~ ~ 1 .
K(E %) = ([6],/2) = /X e(Fx) e i
Therefore, we have
1 . 1 .
N = 3 [ eFdesiw =5 | eFpio) = [ 1= (e,
4 X 2 X X
where we used the relatialy = e(Fx) + 2pxy and the vanishing
| o = [ pxatm) =0

following from (4) and dimX < 6. Hence,\([c]) = ([c],~) for any 2—cyclec of X,
and thus \ = v € H2(X, 0X; Q). o

Theorem 5s now quite easy to proof.

Proof of Theorem 5 By (20), (21), andProposition 8.1we have

(S, M¢) = —4/X72 = —4/X>\2 = —8H(f). O

We shall say that is a natural generalization of Haefliger’s invariat
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8.4 Geometric formula

Let (W,V) be a pair of closed manifolds of dimensions 6 and 3, 8d W, a
Seifert surface ol with respect to a section: V — V (namely dS = s(V)) such
that e(F(s)) = 0 in H2(V; Q). By Corollary 7.4 2ts is ane-class of W, V). In this
subsection, we prove the geometric formuladgw, V, 2ts).

The vanishinge(F(s)) = 0 impliese(vs)|ss = 0 by (15), and the integral
(22) JEZ

iswell-defined. (More precisely22) meansthe integrqﬁs a?, wherea € H%(S, 0S, Q)
is an element such that the homomorphidf(S, 9S; Q) — H?(S, Q) mapsa to &(vs).)

The following is the geometric formula fer(W, V, 2ts).

Theorem 8.2 Let (W, V) be a pair of closed manifolds of dimensiohsind3, andS
a Seifert surface off with respect to a sectios: V — V such thae(F(s)) = 0 over
Q. Then, we have

(23) (W, V, 2ts) = SignS— /S e(rs)?.

Remark 8.3 The formula holds only for embedded Seifert surfaces, artdfgro
immersed Seifert surfaces.

Proof SetZ =[—1, 1]xW which is a 7—manifold, and let us consider the submani-
folds X, Y C Z of dimensions 4, 5 defined by

X = ([0, 1]xV) Ugycv ({0} x9)
Y =1[0,1]xSc Z

Here, we shall assume that is a smooth proper 4—submanifold such tlg¢ =
{1} xV, after “non—smooth part{0} xV is rounded in a standard fashion, and tiat
has the smooth boundafyy = SU (—X) and the cornef1} xV. Thus,Y is a Seifert
surface ofX in Z with respect to the sectio: X — X such thaty(X) = XN Y.
By Proposition 7.3 2ty € H2(Z \ X; Q) is a quasie-class of Z, X), and &(F(3))/2
is the self-linking form of the quag-manifold ¢, X, 2ty). By the construction, the
boundary of Z, X, 2ty) is

8(27 X7 2tY) = (W> Va ZtS) il (_(W7 ®> O))
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The oriented cobordism groufdg vanishes (see3f), and so \\V, (), 0) bounds are-
manifold of the form Z’.(),0). That implieso(W,?,0) = 0 by Axiom 2. Since
X = S, we have SigiX = SignS. By Theorem Z3) and by the definition of\, we

have
e(F(3))?
4

(W, V, 2ts) = SignX — 4/ — SignS— / e(F(%)%.
X X

By the Stokes’ theorem,

/X (F®)? = /S &(ve)? /a e = /S (s

where note thaty|s = vs andvy|x = F(5). Hence, the formula2d) holds. O

8.5 Takase’s invariant

Let M be an integral homology 3—sphere, ahdM — S a smooth embedding.
We write M; = f(M) as before. SinceSP, M) is simple byProposition 1.4 the
invariant (S, M¢) € Q is well-defined byrheorem 4 It is not difficult to show that
there is a Seifert surfac® of M; with respect to some sectian M; — M; (cf. [14,
Proposition 2.5]). Since(F(s)) = 0 € H?(M¢; Q) = 0, the cohomology classtis
the uniquee-class of &, M) by Corollary 7.4 and sar(S°, Ms) = o (S, M, 2ts). By
Theorem 8.2the geometric formula

(S, M) = SignS— /5 e(vs)?

holds. The right—hand side is nothing butf times) the definition of Takase’s invariant
Q(f) [14, Proposition 4.1], and thus, we obtain the following imnagelicorollary.

Corollary 8.4 For a smooth embeddin. M — S of an integral homolog)3—
sphereM, we have
(S, M¢) = —8Q(f).

Since Q(f) = H(f) when M = S* [13, Corollary6.5], and so again we obtain
Theorem 5as direct consequence Gbrollary 8.4

9 Milnor’s triple linking number

In this section, we prov@heorem 6 We begin by reviewing the definition of the
triple linking number (L) € Z of oriented algebraically split 3—component links
L = K1 UK3 UKz in R3 by using Seifert surfaces.
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9.1 Review of the triple linking number

The lettersi andj will denote elements in{1,2,3}. Since the linking number
Ik(Ki, Kj) vanishes i # ), Ki has a Seifert surfac&! c R3, 9% = K;, such
that X/ N Kj = 0 (i # j). The triple linking numberyu(L) is defined to be the
algebraic intersection numbes(L) = # (X} N 5N X%). In other words, regarding
the intersectiorC{; = %N (i < j) asan oriented 1-dimensional closed submanifold
of 3/, we can write

p(L) = #(Ci, N Chy).

For the proof ofTheorem 6we introduce slightly different (but essentially the same
definition of x(L) as the following. LetLg = K109 U K30 U K3 be a 3—component

unlink in R? split from L. Then the linkL; = K; U (—Ki,0) has a connected Seifert
surfaceY; ¢ R3, 0% = L;, such thatz; N Li =0 (i #j), and (L) is defined to be

(24) p(L) = #(Cr2 N Cyp3),

where Ci; = XN C % (i < j) which is an oriented 1-dimensional closed
submanifold ofY};.

From now on, we regartl andLg as links inS* = R3 U {co}.
9.2 Seifert surface ofM_

We construct an immersed Seifert surf&ef M| as follows. First of all, let us recall
the definition of 3—submanifoltyl, of T3xS:

T2 = {(t1,t2,t3,%) € Tx S | fi(ti) = X}, L=T{UT3UTS,
T3 = {(te, t2, t3,X) € T>xS? | fio(ti) = x}, Lo=TioUT3,UTS,,
ML = LU (—Lyp).

Here,fi: St — S® andfio: S' — S* are smooth embeddings representiGgandK; o
respectively, and? is the 3—torus with coordinates (to, t3) such that; € S' = R/Z.
For convenience, we also write

Li=TPU(-T%
sothatM| = £, U Lo U L3.
Sincelj is connected, there exists a map

pi: N — S
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such thatp; fi = pifio = identity: St — St Let us consider the following smooth
embeddings:

Fl: leslxsl - T3XS37 (X7 t27t3) = (pl(x)7t27t37x)
Fo: S'xSox S — T3S, (t1, X, t3) — (t1, p2(¥), t3, X)
Fg: StxS'x¥g — T3x S, (t1,t2,X) — (t1,t2, p3(X), X)

The imageS c T3xS® of F; is a Seifert surface of;, such that

(25) SNL=0 (i#)),
and the union
(26) S=S5USUS

is an immersed Seifert surface M (S may intersects the other componer§s
(i # 1))
The intersection

Yij=SNn§c§ (i#j),

is aYjj as a 2—dimensional closed submanifold$f and the intersection number
#(X12 N X13) € Z is defined. The following lemma will be used to provkeorem 6
in Section 9.4

Lemma 9.1 #(3X12NX13) = p(L).

Proof Leth: S, — %1xS'xS! be the diffeomorphism defined by
h(p1(X), t2, t3,X) = (X, t2 — P2(X), t3 — P3(X))
for (p1(X),t1,t3,X) € S, then we have
h(X12) = C12x {0} xS,
h(2173) = C173><Sl>< {0} s
and therefore,
#(X1,2 N Y13) = #((C12x {0} xS") N (Cp3xS % {0}))
= #(Cy12 N Cy3)
= u(L)
by the definition 24). O
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9.3 (T3xS*,M,) is simple

By using the immersed Seifert surfaef M| constructed in the previous subsection,
we prove that T3x S?, M) is simple.

Lemma 9.2 The normal bundles of § C T3xS® is trivial.

Proof The vector fieldd/ot; on T3x S is transverse to the submanifo®l, and this
gives a non—vanishing section of . Since the rank ofg is 2, vg is trivial. O

Let ts € H?((T3xS%) \ M; Q) be the fundamental cohomology classS)fand we
define

e|_:2ts.

Proposition 9.3 The manifold paifT3xS*, M, ) has are-classe, and is simple.

Proof Since the normal bundles is trivial by Lemma 9.2the Euler clas(F(s)) €
H2(M; Q) vanishes, wheres: M, — M, is the section such tha(M,) = M, N
S. Thus, g is ane-class of T3xS*,M,) by Corollary 7.4 Since the restriction
H2(T3x S%; Q) — H?(M(; Q) is injective, T3xS?, M) is simple. 0

By Theorem 4andProposition 9.3we can define the invariant

o(T3x S, M) = o(T3xS,M,8) € Q

of (T3xS?,M.). As we explained irRemark 1.5this is a link homotopy invariant of
L.

9.4 Proof of Theorem 6

In this subsection, we provEheorem @oy using the formula imheorem Z3).

We begin by constructing a proper 4—submanififldc T3x D8 such thatdX = M,
andX = S 11 S, I1Ss. Pushing In§ into the inside ofT3xD* (95 is fixed on the
boundaryT3xS?), we obtain a proper 4—submanifol| ¢ T3xD* such thatX; = §
and 0X; = Lj, and we assume that the depthXfis shallower thanX;,1 so that
Xi N X =0 if i #j, seeFigure 2 We then define

X =X UXoU Xs.
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L2 \\ T xS

&@

X3

Figure 2: SubmanifolK = X; U Xz U X3

The natural isotopy of sinking down ontoX; gives a 5—submanifold
Y, ¢ T3xD*

with the boundanpY; = S U (—X;) and the cornerL;, and it is a Seifert surface o
in T3xD* with respect to the section

St X — X
such thats(X) = Y N X;. Letty € H3(T3xD?* \ X;;Q) be the fundamental
cohomology class of;. We define a conomology clagss H?((T3xD%) \ X; Q) by

e= 2(tyl + th + ty3).
Note that
(27) &raxsy\m. = &L
by definition. We will see soon thétis a quase-class of T3xD#*, X) (Proposition 9.Y.
Remark 9.4 The unionY = Y1 U Y2 U Y3 may not be an immersed Seifert surface of
X C T3xD* in our sense, becausén Y; may not be empty if < j. Thus, we cannot
apply Proposition 7.30 Y to prove thate is a quasie-class.
Let us consider the intersection
Ei/,j =XinY,cCX (i<j)

which is an oriented 2—submanifold ¥f such that
(28) ¥ CIntX;,
(29) 12N¥53=%13N%53=10.

Let vy, and Vs, be the normal bundles of ¢ TxD* and Zi’,j C X respectively.
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Lemma 9.5 The normal bundlesy, andyzi/j are trivial.

Proof The triviality of vy, follows from the definition ofY; andLemma 9.2 Since
vy, is isomorphic t0uyj|zi/j (where we regard]i’,j CYj), this is trivial too. O

Lemma 9.6 The cohomology clasaty, is ane—class of T3xD?*, X;).

Proof Sincewy, is trivial by Lemma 9.5the conhomology class(F(s)) € H?(X;; Q)
vanishes. Thus,tg is ane-class byCorollary 7.4 O

Leti; € H?(X;; Q) be the Poincd dual of%; j, and we write
v =12+ 713 + 723 € HAX; Q).
By the definitions ofX; andY;, we haveX; N'Y; = px (%) (i < j), and this implies
(30) tylg, = pxvj (<)
in H2(X;; Q) by the Poincae duality.

We obtain the following proposition.

Proposition 9.7 The triple (T3xD?* X, ) is a quasie-manifold with the boundary
(T3x S, M, &) and with the self-linking formy .

Proof By Lemma 9.6and @0), we have

3
g =Y &Fx)+ 200512 + P13+ 03,72,3)
i=1
= e(Fx) + 2pky

in H2(X; Q). It follows from (28) that vlox = 0. Thus, & is a quasie-class of
(T3xD* X) with the self-linking form~. By (27), we haved(T3xD* X,8) =
(T3S, M, a). 0

é

This is the proof ofTheorem 6

Proof of Theorem 6 By Theorem Z3) andProposition 9.7we have given as follows.

o(T3x S, ML) = SignX — 4/ ~2.
X
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SinceX; = § = +%xS'xS', we have SigiX = 0. We havey; = 0 (i # j) by
Lemma 9.5and~yyjy23 =0 (j = 2,3) by (29). Thus,

/ V=2 / Y1271 = 2#(E1 2 N XY 5)-
X X

Since the intersectioC123 = Y1 N Y2 N Y3 is a 1-dimensional oriented cobordism
from X1, N Y13 to ¥ , N X 3, namely

OC123 = (X12NY13) I (= (X7, N X1 3)),

we have
#(X1, N X 3) = #(X12 N X1 ).

The right—hand side equalgL) by Lemma 9.1and hence, we have
o(T3x S, ML) = —8u(M). O
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