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A MATRIX INTERPOLATION BETWEEN CLASSICAL AND FREE MAX

OPERATIONS.

I. THE UNIVARIATE CASE

FLORENT BENAYCH-GEORGES AND THIERRY CABANAL-DUVILLARD

Abstract. Recently, Ben Arous and Voiculescu considered taking the maximum of two free random
variables and brought to light a deep analogy with the operation of taking the maximum of two inde-
pendent random variables. We present here a new insight on this analogy: its concrete realization based
on random matrices giving an interpolation between classical and free settings.
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1. Introduction

The free probability theory has been a very active field in mathematics over the last two decades,
constructed in a deep analogy with classical probability theory. Nowadays, there is an unofficial dictionary
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2 F. BENAYCH-GEORGES AND T. CABANAL-DUVILLARD

of concepts in both theories: many fundamental notions or results of classical probability theory, such as
Law of Large Numbers, Central Limit Theorem, Gaussian distribution, convolution, cumulants, infinite
divisibility have their precise counterpart in free probability theory.

Recently, Ben Arous and Voiculescu [2] have added a new item in this dictionary, bringing to light the
fact that the operation called the classical upper extremal convolution, which associates the distribution of
the supremum X∨Y to the distributions of two independent random variables X and Y , has an analogue
in free probability theory, called the free upper extremal convolution, which associates the distribution of
the supremum X ∨ Y to the distributions of two free random variables X and Y . From the point of view
of cumulative distribution functions1, both of these operations have a concise interpretation: the classical
(resp. free) upper extremal convolution of two probability measures with distribution functions F, G is
the probability measure with distribution function FG (resp. max(0, F + G − 1)). The purpose of this
paper is to construct random matrix models providing a better understanding of the free upper extremal
convolution and a new insight on the relation between classical and free upper extremal convolutions.

Let us first notice the following fact (which is an immediate consequence of remark 2.1): for µ, ν
probability measures on the real line, for (Xi)i≥1 and (Yi)i≥1 two independent families of independent
identically distributed random variables, with respective distributions µ, ν, if for each N ≥ 1, one de-
notes by ZN,1 ≥ ZN,2 ≥ · · · ≥ ZN,N the N largest elements of the multiset (X1, . . . , XN , Y1, . . . , YN ),

then the empirical probability measure 1
N

∑N
i=1 δZN,i

converges almost surely to the free upper extremal
convolution of µ and ν as N tends to infinity. This result may appear as a coincidence. But, if we
consider (X1, . . . , XN ) and (Y1, . . . , YN ) as the eigenvalues of two independent random matrices X(N)

and Y (N) which are invariant in law under conjugation by any unitary matrix, then (ZN,1, . . . , ZN,N)

are the eigenvalues of the supremum2 of X(N) and Y (N) with respect to the spectral order introduced by
Olson [9] and used by Ben Arous and Voiculescu in their paper. Since X(N) and Y (N) are known to be
asymptotically free, this gives actually a first interpretation of the free upper extremal convolution.

We would like to give a deeper insight on the analogy between the classical and free settings. There is
a morphism Λ∨ from the set of probability measures endowed with the classical upper convolution to the
same set endowed with the free upper convolution. It maps any probability measure with distribution
function F to the one with distribution function max(0, 1 + log F ). Moreover, Ben Arous and Voiculescu
have established that Λ∨ provides a remarkable correspondence between classical max-stable laws and
free max-stable laws, which preserves the domains of attraction. In this paper, we shall give a concrete
realization of this morphism via a random matrix model.

More precisely, for each probability measure µ on the real line and each positive integer N , we shall
define a law Λ∨

N (µ) on the set of N by N Hermitian matrices such that:

a) a Λ∨
N (µ)-distributed random matrix is invariant under conjugation by any unitary matrix,

b) for any pair µ1, µ2 of probability measures on the real line and any pair M1, M2 of independent
random matrices distributed respectively with respect to Λ∨

N(µ1) and Λ∨
N (µ2), the law of the

supremum M1 ∨M2 of M1 and M2 is Λ∨
N (µ), where µ is the classical upper extremal convolution

of µ1 and µ2,
c) if for all N , MN is a random matrix with law Λ∨

N (µ), then the empirical spectral law of MN

tends almost surely to Λ∨(µ) as N tends to infinity.

Such a model produces a new clue with regards to the relevance of the analogy between the two max-
operations, and it may be used to provide more intuitive proofs of some of Ben Arous and Voiculescu’s
results. For instance, we have already mentioned that unitarily-invariant random matrices behave asymp-
totically as free random variables. Therefore one can re-prove immediately, as a consequence of a), b)
and c), the fact that Λ∨ is a morphism between the classical and the free upper extremal convolutions
(and thus the formula FX∨Y = max(0, FX + FY − 1) for free random variables X, Y ). We shall see later

1The cumulative distribution function of a random variable X with distribution µ is the function, denoted either by FX

or Fµ, is defined by Fµ(x) = µ((−∞, x]), for all x ∈ R.
2The supremum of two Hermitian matrices is defined in section 2.3.
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that Ben Arous and Voiculescu’s results about max-stable laws and domains of attraction can also be
proved with our random matrix model.

In a forthcoming paper, we will show how this approach is also appropriate to study the multivariate
counterpart of the free upper extremal convolution.

The paper is organized as follows. First, we shall focus on the upper extremal convolution for classical,
free and Hermitian random variables. Then, we shall introduce our models, via a strategy which is close
to the one of our previous papers [3] and [5], and set the main theorems. The last part will be dedicated
to the proofs.

2. The upper extremal convolutions

2.1. For independent real random variables. Let X and Y be real independent random variables,
with cumulative distribution functions FX and FY , and let us denote X∨Y = max(X, Y ). The cumulative
distribution function of X ∨ Y is then equal to FX∨Y = FXFY .

2.2. For free random variables. Let (M, τ) be a tracial W ∗-probability space, that is a von Neumann
algebra M endowed with an ultraweakly continuous faithful trace-state τ . The maximum X ∨ Y of two
self-adjoints elements X and Y in M is defined with respect to the spectral order introduced by Olson
in 1971 (cf [9]; see also [1, 2]):

• If p and q are two self-adjoint projectors, then q ∨ q is the Hermitian projector on ℑ(p) + ℑ(q).
• If a and b are two self-adjoint elements, with resolutions of identity Ea and Eb, then a ∨ b is the self-
adjoint element with resolution of identity given by Ea ∨Eb: a∨ b is the only self-adjoint element h such
that for all real number t,

χ(t,∞)(h) = χ(t,∞)(a) ∨ χ(t,∞)(b),

where χ(t,∞) denotes the indicator function of the interval (t,∞) and is applied via the functional calculus.

In 2006, in [2], Ben Arous and Voiculescu have determined the cumulative distribution function of
X ∨ Y whenever X, Y are free:

(1) ∀t ∈ R, FX∨Y (t) = max(0, FX(t) + FY (t) − 1) =: FX2∨ FY (t).

It is easy to note that the function Λ∨(u) = max(0, 1 + log u) is a kind of morphism between classical
and free upper extremal convolutions:

Λ∨(FXFY ) = Λ∨(FX)2∨ Λ∨(FY ).

Notations: • In order to avoid the use of too many notations, we shall define the binary operation
2∨ on the set of probability measures on the real line with the same symbol as the operation 2∨ on the
set of cumulative distribution functions. For all pair µ, ν of probability measures on the real line, µ2∨ ν
is defined by:

Fµ2∨ ν = Fµ2∨ Fν ( = max(0, Fµ(t) + Fν(t) − 1) ).

• We shall also define the operator Λ∨ on the set of probability measures on the real line with the same
symbol as the function Λ∨(x) = max(0, 1 + log x) on [0, +∞): for all probability measure µ on the real
line, Λ∨(µ) is the probability measure with cumulative distribution function:

FΛ∨(µ)(t) = Λ∨(Fµ(t)) ( = max(0, 1 + log Fµ(t)) ).

Remark 2.1. The free upper extremal convolution also appears in a much simpler situation than the
maximum of two free operators. Let x1, . . . , xN , y1, . . . , yN ∈ R, and z1 ≥ . . . ≥ zN the N largest

elements of the multiset (x1, . . . , xN , y1, . . . , yN ). Then 1
N

∑N
i=1 δzi

is the free upper extremal convolution

of 1
N

∑N
i=1 δxi

and 1
N

∑N
i=1 δyi

.



4 F. BENAYCH-GEORGES AND T. CABANAL-DUVILLARD

2.3. For independent Hermitian random matrices. Let N be a positive integer. The maximum
operation introduced by Olson is also defined on the space of N ×N Hermitian matrices, as a particular
case of the definition given in section 2.2.

Concretely, for A, B Hermitian matrices with the same size, A∨B can be defined in the following way.
Let {λ1 > λ2 > · · · > λp} be the union of the spectrums of A and of B. For i = 0, . . . , p, let us define

Ei =
∑i

j=1(ker(A−λjI) + ker(B −λjI)). Then A∨B is the Hermitian matrix with eigenvalues the λj ’s

such that Ej 6= Ej−1, with associated eigenspace Ej ∩ (E⊥
j−1). In other words, if, for any subspace F , PF

designs the orthogonal projector onto F , we have

A ∨ B = λ1PE1 + λ2PE2∩(E⊥

1 ) + λ3PE3∩(E⊥

2 ) + · · · + λpPEp∩(E⊥

p−1)
.

The following proposition resumes the characteristics of the operation ∨ on unitarily invariant random
matrices. Recall that the empirical spectral law of a matrix is the uniform measure on the multiset of its
eigenvalues counted by multiplicity.

Proposition 2.2. If A and B are two N × N Hermitian random independent matrices, whose laws are
invariant by conjugation by any unitary matrix, then

• A ∨ B is an Hermitian random matrix, whose law is invariant under the conjugation by any
unitary matrix;

• the N eigenvalues of A ∨ B are the N largest of the 2N eigenvalues of A and B (counted with
multiplicity);

• the cumulative distribution functions FA, FB and FA∨B of the respective empirical spectral laws
of A, B and A ∨ B are almost surely linked by the relation

(2) FA∨B = max(0, FA + FB − 1).

Remark 2.3. It is noteworthy that formulas (1) and (2) are identical, showing that the matricial and
free upper extremal convolutions are somehow the same operation. As free random variables can be
approximated by independent unitarily invariant random matrices, the rather trivial result (2) provides
an intuitive proof of formula (1).

3. The matricial interpolation

The aim of this section is to introduce random matrices giving quite a natural interpretation of the
mapping Λ∨. We simply follow the same approach as we did for the Bercovici-Pata bijection in [3] and
[5].

Let Fµ denote its cumulative distribution function for µ probability measure on the real line. For

all integer k ≥ 1, F
1
k

µ is the cumulative distribution function of a probability measure on the real line,

which will be denoted by µ
1
k . It is clear that if X1, . . . , Xk are independent random variables distributed

according to µ
1
k , max{X1, . . . , Xk} should be distributed according to µ.

Let us consider N, k ≥ 1. Let X1, . . . , XN be independent random variables distributed according to

µ
1
k and U an unitary, Haar distributed, N × N random matrix independent of X1, . . . , XN . Define the

random matrix M by

(3) M = U







X1

. . .

XN






U∗

Let M1, . . . , Mk be independent replicas of M .

Theorem 3.1. As k tends to infinity, the distribution of M1∨· · ·∨Mk converges to a probability measure
Λ∨

N (µ) on the space of N × N Hermitian matrices. This measure is invariant under the action of the



A MATRIX INTERPOLATION BETWEEN CLASSICAL AND FREE MAX OPERATIONS 5

unitary group by conjugation and in the case where µ has no atom, under Λ∨
N (µ), the joint distribution

of the ranked eigenvalues is absolutely continuous with respect to µ⊗N , with density

(4) NN1t1≥···≥tN

N
∏

i=1

Fµ(tN )

Fµ(ti)

at any point (t1, . . . , tN ) ∈ R
N such that for all i = 1, . . . , N , Fµ(ti) 6= 0 (the density being set to zero

anywhere else).

Moreover, if ν is another probability measure on the real line and A, B are independent random matrices
respectively distributed according to Λ∨

N (µ), Λ∨
N (ν), then A ∨ B is distributed according to Λ∨

N(ρ), where
ρ is the probability measure on the real line such that Fρ = FµFν .

Corollary 3.2. With the preceding notations, we have

(i) Λ∨
N(µ) is max-infinitely divisible,

(ii) if µ is max-stable, then so is Λ∨
N(µ).

In the following theorem, we are interested in the limit of the spectral measure of a Λ∨
N (µ)-distributed

random matrix, when its dimension N tends to infinity.

Theorem 3.3. Let µ be a probability measure on the real line. For all N ≥ 1, let MN a random matrix

with law Λ∨
N (µ), λ1, . . . , λN its eigenvalues and µ̂N = 1

N

∑N
i=1 δλi

its empirical spectral law. Then, when
N goes to infinity, µ̂N converges weakly almost surely to Λ∨(µ).

The previous theorem may be used to provide new, more intuitive proofs of some of the Ben Arous
and Voiculescu’s results in [2].

A first example has been given in the introduction: it is a new derivation of the formula (1) defining
the free upper extremal convolution in terms of cumulative distribution functions.

For second example, the fact that Λ∨ maps any classical max-stable law to a free one is a direct
consequence of (ii) of Corollary 3.2 and of formulas (1) and (2).

Finally, let us consider the preservation of the domains of attraction. Ben Arous and Voiculescu have
proved that for any classical max-stable law µ, Λ∨(µ) is freely max-stable and that for any cumulative
distribution function F , for any sequences ak > 0, bk ∈ R, we have

(5) F (ak · +bk)k −→
k→∞

Fµ(·) =⇒ F (ak · +bk)2∨k −→
k→∞

Λ∨(Fµ(·))

(to state the reciprocal implication, one needs to choose a right inverse to Λ∨, which we shall not do here).
This result can be generalized as follows: for all sequence (Fk) of cumulative distribution functions, if F
is a cumulative distribution function, we have

(6) Fk(·)k −→
k→∞

F (·) =⇒ Fk(·)2∨k −→
k→∞

Λ∨(F (·))

(the proof of (6) is given in the last section of the paper).

Let us now explain how our random matrix model gives an heuristic explanation of (6). For sake of

simplicity, let Fk be equal to F
1
k , with F the cumulative distribution function of µ (for more general Fk,

a slight modification of our random matrix model is enough to apply what follows).

For each N ≥ 1 and for each k ≥ 1, let us consider a family M1(N, k), . . . , Mk(N, k) of independent
replicas of the random matrix M of (3), i.e.

M = U







X1

. . .

XN






U∗,
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where X1, . . . , XN are independent random variables with cumulative distribution function F
1
k and U

an unitary, Haar distributed, N × N random matrix independent of X1, . . . , XN .

• Let k tend to infinity. Following the definition of Λ∨
N(µ) given in theorem 3.1, we get:

(7) M1(N, k) ∨ · · · ∨ Mk(N, k) −→
k→∞

MN in distribution,

where for all N , MN is a Λ∨
N(µ)-distributed random matrix.

Let now N tend to infinity. From theorem 3.3, we deduce:

(8) Empirical Spectral Law(MN ) −→
N→∞

Λ∨(µ).

• Now, let N tend to infinity before k does. According to the law of large numbers, the empirical
spectral law of Mi(N, k) converges almost surely, for each k and i = 1, . . . , k, to the law with

distribution function F
1
k , which shall be denoted by µ

1
k . Therefore, we deduce from the asymp-

totic freeness of independent randomly rotated random matrices (more precisely by the equality
between formulas (1) and (2)), the following almost sure convergence:

(9) Empirical Spectral Law(M1(N, k) ∨ · · · ∨ Mk(N, k)) −→
N→∞

µ
1
k 2∨ · · ·2∨ µ

1
k .

Joining (7), (8), (9), we get the following diagram

M1(d, k) ∨ · · · ∨ Mk(d, k)
k→∞

−−−−−−→ Λ∨
N (µ)

| |
N → ∞ N → ∞

↓ ↓
Empirical Spectral Law:

µ
1
k 2∨ · · ·2∨ µ

1
k

Empirical Spectral Law:
Λ∨(µ)

The right-hand side of (6), i.e. the fact that (µ
1
k )2∨k −→

k→∞
Λ∨(µ), only means that one can add an edge

−→
k→∞

between both bottom vertices of the diagram, i.e. that the operations k → ∞ and N → ∞ are

commutative, which is quite expected.

4. Proofs

4.1. Preliminary results. Both of the theorems will be proved first for measures which are absolutely
continuous with respect to the Lebesgue measure, and then extended to all measures by approximation.
In this context, the appropriate approximation tool is given by the following lemma.

Lemma 4.1. Let us define, for µ probability measure on the real line, the function F<−1>
µ on (0, 1) by

F<−1>
µ (u) = min{x ∈ R ; Fµ(x) ≥ u}.

(i) For µ, ν probability measures on the real line, we have the following equalities (between quantities
which can be infinite)

inf{ε > 0 ; Fν(• − ε) ≤ Fµ(•) ≤ Fν(• + ε)} = ||F<−1>
µ − F<−1>

ν ||∞ = inf ||X − Y ||∞,

where the infimum in the third term is taken on pairs (X, Y ) of random variables defined on a same
probability space with respective distributions µ, ν.

(ii) For any probability measure µ on the real line, for any ε > 0, there exists a probability measure µε

on the real line such that Fµε
is smooth and

Fµε
(• − ε) ≤ Fµ(•) ≤ Fµε

(• + ε).

Proof. (i) We prove these equalities by cyclic majorizations.

- Let us prove first

inf{ε > 0 ; ∀x ∈ R, Fν(x − ε) ≤ Fµ(x) ≤ Fν(x + ε)} ≥ ||F<−1>
µ − F<−1>

ν ||∞.
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Let us consider ε > 0 such that Fν(• − ε) ≤ Fµ(•) ≤ Fν(• + ε). Since this is equivalent to Fµ(• −
ε) ≤ Fν(•) ≤ Fµ(• + ε), this inequation is symmetric in µ and ν. Hence, it suffices to prove that
F<−1>

ν (u) − F<−1>
µ (u) ≤ ε for all u ∈ (0, 1). We have:

Fν(F<−1>
µ (u) + ε) ≥ Fµ(F<−1>

µ (u)) ≥ u,

hence, F<−1>
ν (u) ≤ F<−1>

µ (u) + ε.

- The inequality

||F<−1>
µ − F<−1>

ν ||∞ ≥ inf ||X − Y ||∞

is due to the fact that for U random variable with uniform distribution on (0, 1), X := F<−1>
µ (U), Y :=

F<−1>
ν (U) are respectively distributed according to µ, ν.

- To conclude, it suffices to prove

inf ||X − Y ||∞ ≥ inf{ε > 0 ; Fν(• − ε) ≤ Fµ(•) ≤ Fν(• + ε)}.

So let us consider a pair (X, Y ) of random variables defined on the same probability space with respective
distributions µ, ν. Consider ε > 0 such that |X − Y | ≤ ε uniformly on the probability space. Then, for
all real number x,

P(Y ≤ x − ε) ≤ P(X ≤ x) ≤ P(Y ≤ x + ε).

(ii) Let ε > 0, and F a smooth non decreasing function on the real line such that for all k ∈ Z,
F (kε) = Fµ(kε). Such a function exists obviously, as an example, one can consider F (x) =

∫ x

−∞
f(t) dt,

for

f(t) =
∑

k∈Z

[F (kε) − F ((k − 1)ε)]ϕ(t − kε)

with ϕ smooth non negative function on the real line, with support contained in [−ε, 0] satisfying
∫ 0

−ε
ϕ(t) dt = 1. Hence F is a càdlàg non decreasing function on the real line such that F (x) tends

to zero (resp. one) as x tends to −∞ (resp. +∞). It follows that F = Fµε
for a certain probability

measure µε on the real line. Moreover, for all real number x, if k ∈ Z is such that kε ≤ x < (k + 1)ε,
then, one has:

Fµε
(x − ε) ≤ Fµε

(kε) = Fµ(kε) ≤ Fµ(x) ≤ Fµ((k + 1)ε) = Fµε
((k + 1)ε) ≤ Fµε

(x + ε).

�

For any positive integer N , let us define maxN to be the function from ∪n≥NR
n to R

N which maps
any vector x of R

n, n ≥ N , to the vector of the N largest coordinates of x ranked in decreasing order.
The following property is a basic result, see for instance [7].

Proposition 4.2. Let F be the cumulative distribution function of a probability measure µ with no atom
on the real line. Let, for n ≥ N , X1, . . . , Xn be independent random variables with law µ. The distribution
of maxN (X1, . . . , Xn) has density

(t1, . . . , tN ) 7→
n!

(n − N)!
1t1≥···≥tN

F (tN )n−N

with respect to µ⊗N .

Before stating the next proposition, we shall recall that for µ be a probability measure on the real line

and k positive integer, µ
1
k is the probability measure on the real line with cumulative distribution function

F
1
k

µ , i.e. the law m such that for X1, . . . , Xk independent random variables with law m, max(X1, . . . , Xk)
has law µ.

Proposition 4.3. (i) Let µ be a probability measure on the real line. For all integer N ≥ 1, the push

forward of the probability measure (µ
1
k )⊗kN on R

kN by the function maxN converges weakly, as the integer
k tends to infinity, to a probability measure on R

N denoted by µN .
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(ii) When µ has no atom, µN is absolutely continuous with respect to µ⊗N , with density

NN1t1≥···≥tN

N
∏

i=1

Fµ(tN )

Fµ(ti)

at any point (t1, . . . , tN ) ∈ R
N such that for all i = 1, . . . , N , Fµ(ti) 6= 0.

(iii) Let us endow R
N with the norm ||x|| = maxi |xi|. Then, for any probability measures µ, ν on the

real line,

inf{||V − W ||∞ ; V, W random vectors defined on the same space with respective laws µN , νN}

≤ inf{||X − Y ||∞ ; X, Y random variables defined on the same space with respective laws µ, ν}.

(iv) For any pair µ, ν of probability measures on the real line, if ρ is the probability measure on the real
line such that Fρ = FµFν , for all N ≥ 1, ρN is the push-forward, by the function maxN , of the probability
measure µN ⊗ νN on R

2N .

Proof. Let k, N ≥ 1, and µ a probability measure with no atom. From property 4.2, we infer first

that µ
1
k = 1

kF
1
k
−1

µ dµ, and then that the distribution maxN ((µ
1
k )⊗kN ) has a density with respect to µ⊗N

equal to

(t1, . . . , tN ) 7→
(dk)!

kN (dk − N)!
1t1≥···≥tN

N
∏

i=1

Fµ(tN )1−
1
k

Fµ(ti)1−
1
k

at any point (t1, . . . , tN) ∈ R
N such that for all i = 1, . . . , N , F (ti) 6= 0 (the density can obviously be

set to zero anywhere else). As k tends to infinity, this density stays uniformly bounded and converges
pointwise to

NN1t1≥···≥tN

N
∏

i=1

Fµ(tN )

Fµ(ti)
,

hence (i) for probability measures with no atom and (ii) are proved.

Now, let us complete the proof of (i). Let us consider a probability measure µ and, for all positive

integer k, a family X(k, 1), . . . , X(k, kN) of independent random variables with law µ
1
k . To prove (i),

by Theorem 1.12.4 of [10], it suffices to prove that for any real bounded Lipschitz function f on R
N ,

the sequence E(f(maxN (X(k, 1), . . . , X(k, kN)))) converges as k tends to infinity. So let us fix such a
function. We shall prove that the previous sequence is a Cauchy sequence. Let us fix ε > 0. Let us
consider µε as in (ii) of lemma 4.1. Note that for all positive integers k, we also have:

F
1
k

µε(• − ε) ≤ F
1
k

µ (•) ≤ F
1
k

µε(• + ε).

So, based on (i) of lemma 4.1, we may suppose that for all k ≥ 1, on the probability space where the
X(k, i)’s are defined, there is a family

Y (k, 1), . . . , Y (k, kN)

of random variables such that

(a) the Y (k, i)’s are independent and distributed according to µ
1
k
ε ,

(b) for all i = 1, . . . , kN , |X(k, i) − Y (k, i)| ≤ 2ε almost surely.

Note that µε has no atom, hence by (a) and what we just proved, the sequence

E(f(maxN (Y (k, 1), . . . , Y (k, kN))))

is a Cauchy sequence. Note also that by (b), if C is a Lipschitz constant for f with respect to the norm
||x|| = maxi |xi|, then for all k,

|E(f(maxN (X(k, 1), . . . , X(k, kN)))) − E(f(maxN (Y (k, 1), . . . , Y (k, kN))))| ≤ 2Cε.
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Hence there is k0 ≥ 1 such that for all k, k′ ≥ k0,

|E(f(maxN (X(k, 1), . . . , X(k, kN)))) − E(f(maxN (X(k′, 1), . . . , X(k′, k′d))))| ≤ (4C + 1)ε.

Thus we have proved (i) for any probability measure µ.

Now, let us prove (iii). Consider µ, ν probability measures on the real line. Note that by part (i) of
lemma 4.1, it suffices to prove that for all positive ε such that

Fν(• − ε) ≤ Fµ(•) ≤ Fν(• + ε),

for all α > ε, there exists a pair V, W of random vectors defined on the same space with respective laws
µN , νN such that ||V − W ||∞ ≤ α. Let us consider such a positive ε and α > ε. For all k ≥ 1, we also
have:

F
1
k

ν (• − ε) ≤ F
1
k

µ (•) ≤ F
1
k

ν (• + ε).

So, according to part (i) of lemma 4.1, we shall consider, for all k ≥ 1, a family

X(k, 1), . . . , X(k, kN), Y (k, 1), . . . , Y (k, kN)

of random variables defined on the same space such that

(a) the X(k, i)’s are independent and distributed according to µ
1
k ,

(b) the Y (k, i)’s are independent and distributed according to ν
1
k ,

(c) for all i = 1, . . . , kN , |X(k, i)− Y (k, i)| ≤ α almost surely.

Let, for all k ≥ 1, τk be the joint law, on R
2N , of the random vector

(maxN (X(k, 1), . . . , X(k, kN)), maxN (Y (k, 1), . . . , Y (k, kN)).

The law of maxN (X(k, 1), . . . , X(k, kN)) (resp. of maxN (Y (k, 1), . . . , Y (k, kN))) converges weakly to µN

(resp. to νN ) as k tends to infinity. It follows that the sequence τk is tight, i.e. relatively compact for the
topology of weak convergence (Theorem 6.1 of [4]). Let τ be the weak limit of a subsequence of τk. Let
(V, W ) be a τ -distributed random vector of R

N ×R
N . Then the law of V (resp. of W ) is µN (resp. νN ).

Moreover, it is easy to notice that for all k, τk is supported by {(x, y) ; x ∈ R
N , y ∈ R

N , ||x − y|| ≤ α}.
Indeed, let σ, τ ∈ Sn such that X(k, σ(1)) ≥ · · · ≥ X(k, σ(kN)) and Y (k, τ(1)) ≥ · · · ≥ Y (k, τ(kN));
then for any i = 1, . . . , kN ,

X(k, σ(i)) = max
V ⊂{1,...,kN},#V =i

min(X(k, j), j ∈ V )

≥ max
V ⊂{1,...,kN},#V =i

min(Y (k, j) − α, j ∈ V )

= Y (k, τ(i)) − α a.s.

By symmetry, this proves |X(k, σ(i)) − Y (k, τ(i))| ≤ α a.s., and this implies

‖maxN (X(k, 1), . . . , X(k, kN)) − maxN (Y (k, 1), . . . , Y (k, kN))‖ = max
i=1,...,N

|X(k, σ(i)) − Y (k, τ(i))|

≤ α a.s.

Letting k go to infinity, this establishes the inequality ‖V − W‖ ≤ α almost surely.

To prove (iv), consider for any k ≥ 1,

X(k, 1), . . . , X(k, kN), Y (k, 1), . . . , Y (k, kN)

is a family of independent random variables such that for all i = 1, . . . , kN , X(k, i) (resp. Y (k, i)) is

distributed according to µ
1
k (resp. ν

1
k ). Then X(k, 1) ∨ Y (k, 1), . . . , X(k, kN) ∨ Y (k, kN) are i.i.d. with

law ρ
1
k , and consequently µN , νN and ρN are the respective weak limit distributions, as k tends to infinity,

of

maxN [X(k, 1), . . . , X(k, kN)], maxN [Y (k, 1), . . . , Y (k, kN)]

(10) and maxN [X(k, 1) ∨ Y (k, 1), . . . , X(k, kN) ∨ Y (k, kN)].
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Hence, by continuity and commutativity of the maximum operations, maxN (µN ⊗ νN ) is the weak limit,
as k tends to infinity, of the distribution of

(11) maxN [X(k, 1), . . . , X(k, kN), Y (k, 1), . . . , Y (k, kN)].

To conclude, we shall establish that the distributions of the vectors of (10) and (11) have the same weak
limits as k tends to infinity. Obviously, it reduces to prove that the probability of the event

{maxN [X(k, 1) ∨ Y (k, 1), . . . , X(k, kN) ∨ Y (k, kN)]

(12) 6= maxN [X(k, 1), . . . , X(k, kN), Y (k, 1), . . . , Y (k, kN)]}

tends to zero as k tends to infinity. Note that this event is equivalent to the fact that there is i ∈
{1, . . . , kN} such that X(k, i) and Y (k, i) are both coordinates of

maxN [X(k, 1), . . . , X(k, kN), Y (k, 1), . . . , Y (k, kN)]

and are not equal to any of the others X(k, j)’s and Y (k, l)’s. Hence, if one denotes by I(k) (resp. J(k))
the set of i’s in {1, . . . , kN} such that X(k, i) (resp. Y (k, i)) is one of the coordinates of

maxN [X(k, 1), . . . , X(k, kN)] (resp. of maxN [Y (k, 1), . . . , Y (k, kN)]),

the event of (12) is contained in the event I(k)∩J(k) 6= ∅, which probability is equal to
(

kN
N

)−1
, since we

may choose for I(k) and J(k) to be independent and to have uniform distribution on the set of subsets
of {1, . . . , kN} with cardinality N . Thus, (iv) is proved. �

4.2. Proof of proposition 2.2. The first statement is immediate. The third one follows immediately
form the second one. To establish the second statement, it suffices to prove that almost surely, for any
t ∈ R, Im(χ(t,∞)(A)) + Im(χ(t,∞)(B)) has the maximal dimension conditionally to the dimensions of
Im(χ(t,∞)(A) and Im(χ(t,∞)(B), i.e. that

(13) dim[Im(χ(t,∞)(A)) + Im(χ(t,∞)(B))] = min{N, dim[Im(χ(t,∞)(A))] + dim[Im(χ(t,∞)(B)]} a.s.

Let p = dim[Im(χ(t,∞)(A))], q = dim[Im(χ(t,∞)(B))]. Due to the unitarily invariance of A (resp. B),
the law of Im(χ(t,∞)(A)) (resp. Im(χ(t,∞)(B))) is also invariant under the action of any unitary matrix,
hence is uniform on the set of all subspaces of dimension p (resp. q). Moreover, Im(χ(t,∞)(A)) and
Im(χ(t,∞)(B)) are independent.

Let us consider a family (gi,j , i ∈ {1, . . . , N} , j ≥ 1) of independent complex standard Gaussian random
variables. The matrix (gi,j , i, j ∈ {1, . . . , N}) is distributed w.r.t. the Circular Unitary Ensemble. Hence,
it is unitarily invariant and a.s. inversible. Therefore, the subspace generated by vectors (gi,j , i ∈

{1, . . . , N})p
j=1 (resp. (gi,j , i ∈ {1, . . . , N})p+q

j=p+1, (gi,j , i ∈ {1, . . . , N})p+q
j=1) has dimension p (resp. q,

min(N, p + q)) a.s., and its law is uniform on the set of all subspaces of same dimension. This proves
(13).

Remark 4.4. Note that the proof of the second statement could also have been deduced from Theorem
2.2 of [6].

4.3. Proof of theorem 3.1. Following proposition 2.2, if we denote M (k) = M1 ∨ · · · ∨ Mk, then M (k)

is an Hermitian random matrix, whose law is invariant under conjugation with any unitary matrix and

whose eigenvalues λ
(k)
1 ≥ . . . ≥ λ

(k)
N are equal to the N largest of the Nk eigenvalues of M1, . . . , Mk

which are all independent with same distribution µ1/k. Therefore, by theorem 4.3.5 of [8], there exists U

unitary, Haar distributed and independent of the vector (λ
(k)
1 , . . . , λ

(k)
N ), such that:

M (k) = U









λ
(k)
1

. . .

λ
(k)
N









U∗.
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Note that the distribution of the vector (λ
(k)
1 , . . . , λ

(k)
N ) is the push forward of the probability measure

(µ
1
k )⊗kN on R

kN by the function maxN . Hence, the first part of the theorem follows from (i) and (ii) of
proposition 4.3, and the second part follows from (iv) of the same proposition.

4.4. Proof of corollary 3.2. Both assertions are easy consequences of the last part of theorem 3.1.

(i) Let p ≥ 1. By definition, Fµ =
(

F
µ

1
p

)p

. Therefore Λ∨
N (Fµ) is the distribution of H1 ∨ · · · ∨ Hp,

with H1, . . . , Hp i.i.d. with law Λ∨
N (F

µ
1
p
). This means that Λ∨

N (Fµ) is max-infinitely divisible.

(ii) Let p ≥ 1. Since µ is max-stable, there exists ap > 0, bp ∈ R such that µ is the distribution of
(apX1 + bp) ∨ · · · ∨ (apXp + bp), where X1, . . . , Xp are i.i.d. with law µ. Let H1, . . . , Hp be i.i.d.
with law Λ∨

N (µ). It is quite immediate from the construction that the image of the distribution
of apXi + bp is the law of apHi + bbIN where IN denotes the identity matrix. Therefore, Λ∨

N (µ)
is the distribution of (apH1 + bpIN )∨ · · ·∨ (apHp + bpIN ). This proves that Λ∨

N (µ) is max-stable.

4.5. Proof of theorem 3.3. Suppose first that Fµ is smooth on the real line. It implies that µ is
absolutely continuous with respect to the Lebesgue measure and that dµ(x) = F ′

µ(x) dx. Since Fµ is
continuous on the real line, the almost sure weak convergence of the sequence of random probability
measures µ̂N to Λ∨(µ) is equivalent to the fact the for all rational number t, µ̂N ((−∞, t]) converges
almost surely to max(0, 1 + log Fµ(t)). We shall prove that for all t ∈ R, µ̂N ((−∞, t]) converges almost
surely to max(0, 1 + log Fµ(t)). Let us fix a real number t.

The first step is to compute E
[

eλµ̂N ((−∞,t])
]

: with the notations λ0 = +∞, λN+1 = −∞, we have

E

[

eλµ̂N ((−∞,t])
]

= E

[

N
∑

p=0

e
λ(N−p)

N 1λp+1≤t<λp

]

=

N
∑

p=0

e
λ(N−p)

N P (λp+1 ≤ t < λp)

Now, note that for all real number T such that F (T ) > 0, for all integer non negative m,

∫

(T,∞)

(log Fµ(t))m dµ(t)

Fµ(t)
= −

(log Fµ(T ))m+1

m + 1
and

∫

(−∞,T ]

Fµ(t)mdµ(t) =
Fµ(T )m+1

m + 1
.

Hence for p = 0, . . . , N − 1,

P (λp+1 ≤ t < λp) =

∫

t∈RN

NN1t≥tp+1≥···≥tN
1t<tp≤···≤t1

N
∏

i=1

Fµ(tN )

Fµ(ti)
dµ(ti) =

Np

p!
Fµ(t)N (− logFµ(t))p.

And for p = N :

P (t < λN ) =
NN

(N − 1)!

∫ +∞

t

Fµ(tN )N (− logFµ(tN ))
N−1

dµ(tN ) =

∫ − log Fµ(t)

0

NN

(N − 1)!
uN−1e−Nu du.
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Thus, using the fact that
∑N−1

p=0
xp

p! = ex
∫ +∞

x
1

(N−1)!u
N−1e−u du, we get:

E

[

eλµ̂N ((−∞,t])
]

= eλFµ(t)N
N−1
∑

p=0

(−Ne−
λ
N log Fµ(t))p

p!
+

∫ − log Fµ(t)

0

NN

(N − 1)!
uN−1e−Nu du

= eλFµ(t)Ne−Ne−
λ
N log Fµ(t)

∫ +∞

−Ne−
λ
N log Fµ(t)

1

(N − 1)!
uN−1e−u du +

∫ − log Fµ(t)

0

NN

(N − 1)!
uN−1e−Nu du

= e
λ+N

„

1−e−
λ
N

«

log Fµ(t)
∫ +∞

−e−
λ
N log Fµ(t)

NN

(N − 1)!
uN−1e−Nu du +

∫ − log Fµ(t)

0

NN

(N − 1)!
uN−1e−Nu du.

The following inequalities will be useful, and they can be established from the Chernov inequality or
proved directly:
(14)

∀x ∈ [0, 1),

∫ x

0

NN

(N − 1)!
uN−1e−Nu du ≤ xNeN(1−x), ∀x > 1,

∫ +∞

x

NN

(N − 1)!
uN−1e−Nu du ≤ xNeN(1−x).

We have three cases to consider:

Case 1: − logFµ(t) > 1. If moreover λ ∈ [0, N log (− logFµ(t))), then −e−
λ
N log Fµ(t) > 1, and by

(14),

e
λ+N

„

1−e−
λ
N

«

log Fµ(t)
∫ +∞

−e−
λ
N log Fµ(t)

NN

(N − 1)!
uN−1e−Nu du

≤ e
λ+N

„

1−e−
λ
N

«

log Fµ(t) (

−e−
λ
N log Fµ(t)

)N

e
N

„

1+e−
λ
N log Fµ(t)

«

= eN(1+log Fµ(t)+log(− log Fµ(t))) < 1

since 1 + log Fµ(t) + log(− logFµ(t)) < 0. Hence for all N ≥ 1, E
[

eλµ̂N ((−∞,t])
]

≤ 2, and from the
Chernov inequality, we get then: for all ε > 0,

P {µ̂N ((−∞, t]) > ε} ≤ inf
λ∈[0,N log(− log Fµ(t)))

2e−ελ = 2e−εN log(− log Fµ(t)))

This is enough, with Borel-Cantelli lemma, to prove the almost-sure convergence of µ̂N ((−∞, t]) to
0 = max(0, 1 + log F (t)).

Case 2: − log Fµ(t) < 1. Then by (14),
∫ − log Fµ(t)

0

NN

(N − 1)!
uN−1e−Nu du ≤ (− log Fµ(t))N eN(1+log Fµ(t)) = eNδt

with δt = 1 + log Fµ(t) + log(− log Fµ(t)) < 0.

• Moreover, we suppose λ ≥ 0. Then

E

[

eλ[µ̂N ((−∞,t])−(1+log Fµ(t))]
]

≤

(

eλFµ(t)Ne−Ne−
λ
N log Fµ(t) + eNδt

)

e−λ(1+log Fµ(t))

= e
−N log Fµ(t)

„

λ
N

−(1−e−
λ
N )

«

+ eN(δt−
λ
N

(1+log Fµ(t)))

From the Chernov inequality, we infer then: for all ε > 0

P {µ̂N ((−∞, t]) − (1 + log Fµ(t)) > ε} ≤ inf
λ≥0

(

e
−N log Fµ(t)

„

λ
N

−(1−e−
λ
N )

«

+ eN(δt−
λ
N

(1+log Fµ(t)))

)

e−λε

= inf
λ≥0

(

e−N(log Fµ(t)(λ−(1−e−λ))+λε) + eN(δt−λ(1+log Fµ(t)+ε))
)

≤ 2e−NC
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for some constant C > 0. This gives, using Borel-Cantelli lemma:

lim sup
N−→+∞

µ̂N ((−∞, t]) ≤ 1 + log Fµ(t) a.s.

• We suppose now λ ≤ 0. Using the same trick, we get

P {µ̂N ((−∞, t]) − (1 + log Fµ(t)) < −ε} ≤ inf
λ≤0

(

e−N(log Fµ(t)(λ−(1−e−λ))−λε) + eN(δt−λ(1+log Fµ(t)−ε))
)

≤ 2e−NC′

for some constant C′ > 0. This gives:

lim inf
N−→+∞

µ̂N ((−∞, t]) ≥ 1 + log Fµ(t) a.s.

And the result follows:

lim
N−→+∞

µ̂N ((−∞, t]) = 1 + log Fµ(t) = max(0, 1 + log Fµ(t)) a.s.

Case 3: log Fµ(t) = −1. We know that Fµ(u) tends to 0 as u tends to −∞. Hence, there is u < t
such that log Fµ(u) < −1. For all N , µ̂N ((−∞, t]) ≥ µ̂N ((−∞, u]), hence,

lim inf
N−→+∞

µ̂N ((−∞, t]) ≥ lim inf
N−→+∞

µ̂N ((−∞, u]) = 0 = 1 + log Fµ(t) a.s.

Moreover, for any positive ε, by continuity of Fµ and by the fact that Fµ(u) tends to 1 as u tends to
+∞, there is u > t such that 1 + log Fµ(t) < 1 + log Fµ(u) < 1 + log Fµ(t) + ε. Hence,

lim sup
N−→+∞

µ̂N ((−∞, t]) ≤ lim sup
N−→+∞

µ̂N ((−∞, u]) = 1 + log Fµ(u) < 1 + log Fµ(t) + ε a.s.

Therfore, limN−→+∞ µ̂N ((−∞, t]) = 1 + log Fµ(t) almost surely.

The theorem is proved in the case where Fµ is smooth. Now, we consider a probability measure µ on
the real line without making any assumption about Fµ. By Theorem 1.12.4 of [10], the distance

d(m, m′) := sup

∣

∣

∣

∣

∫

f dm −

∫

f dm′

∣

∣

∣

∣

,

where the sup is taken on the set BL1 bounded Lipschitz functions f on the real line with Lipschitz
constant ≤ 1 and such that ||f ||∞ ≤ 1, is a distance which defines the weak topology on the set of
probability measures on the real line.

Thus we have to prove that almost surely, as N tends to infinity,

limd(µ̂N , Λ∨(µ)) = 0,

i.e. that for all ε > 0, almost surely, for N large enough,

(15) d(µ̂N , Λ∨(µ)) ≤ ε.

So let us fix ε > 0. By part (ii) of lemma 4.1, there exists a probability measure ν on the real line such
that Fν is smooth and

Fν(• − ε/6) ≤ Fµ(•) ≤ Fν(• + ε/6).

Note that the same obviously holds if one replaces µ by Λ∨(µ) and ν by Λ∨(ν), since for all probability
measure m, FΛ∨(m) = max(0, 1 + log Fm). Hence, according to part (i) of lemma 4.1,

(16) d(Λ∨(µ), Λ∨(ν)) ≤ ε/6.

Note also that by definition of Λ∨
N (µ), the vector (X1 ≥ · · · ≥ XN ) of ranked eigenvalues of MN has law

µN . Following part (iii) of proposition 4.3, one can suppose that for all N , on the same space as MN ,
there is a random matrix NN with law Λ∨

N (ν) with ranked eigenvalues (Y1 ≥ · · · ≥ Yk) such that for all
i = 1, . . . , N , |Xi − Yi| ≤ ε/3 almost surely. If one denotes the spectral law of NN by ν̂N , it implies that

(17) ∀N ≥ 1, d(µ̂N , ν̂N ) ≤ ε/3 almost surely.
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Please note finally that by the first part of the proof,

(18) almost surely, for N large enough, d(ν̂N , Λ∨(ν)) ≤ ε/3.

Equations (16), (17), (18), together, imply (15). Thus, the theorem is proved.

4.6. Proof of the implication (6). Let us end the paper with the proof of the implication (6). We
consider a sequence Fk of cumulative distribution functions and a cumulative distribution function F such
that at any x where F is continuous, Fk(x)k −→

k→∞
F (x). Let us prove that for any such x, Fk(x)2∨k −→

k→∞

Λ∨(F (x)). Let us denote, for y ∈ R, y+ = max(0, y). Note that since for any a, b ∈ R such that b ≤ 0,
we have (a+ + b)+ = (a + b)+, by induction on k, we prove easily that for all G1, . . . , Gk distribution
functions,

G12∨ · · ·2∨ Gk = (G1 + · · · + Gk − k + 1)+.

Thus we have to prove

(1 + k(Fk(x) − 1))+ −→
k→∞

(1 + log F (x))+, i.e. k(Fk(x) − 1) −→
k→∞

log F (x),

which follows directly from the hypothesis Fk(x)k −→
k→∞

F (x).
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