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Abstract. In this work it is studied and analyzed the possible advantages to simulate the mold 
filling process in Resin Transfer Molding (RTM) with an updated Lagrangian formulation. For 
this purpose, the well known meshless natural element method (NEM) [1] was implemented to 
simulate the mold filling process. In this approach, nodes are distributed in the calculation 
domain, however no mesh is needed to interpolate the unknown functions. This technique 
presents some advantages over classical finite element simulations (FEM): (1) no remeshing of 
the transient saturated domain is required at each calculation step; (2) the accuracy of the 
interpolation is not significantly affected by the nodal distribution. The use of meshless 
techniques also prevents from having to cope with the numerical instabilities generally 
associated with the numerical resolution of the transport equations that arise in RTM [2], such as 
in the heat balance during mold filling or in the equations giving the position of the fluid front or 
the incubation time at each calculation step. In this paper, the position of the flow front and the 
geometry of the fluid saturated domain in the mold cavity are handled by invoking the 
geometrical concept of α-shape for a cloud of nodes [3,4], which allows to extract the shape of 
the domain being simulated by employing a cloud of nodes only. Numerical examples are 
presented to show the performance of the proposed new numerical formulation. 

Keywords: Resin Transfer Molding, Liquid Injection Molding, Meshless, Natural Element 
Method, α-shape. 
PACS: 81.05.Qk. 

INTRODUCTION 

Injection strategy is a practical issue in RTM in which the resin can be injected into 
the mold using multiple gates. Traditionally the selection of gate and vent locations in 
mold design has been based on the designer knowledge and trial and error attempts, 
but many recent research studies have been conducted to optimize the process by 
using computer simulation. The most important task in simulation of the mold filling 
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process is the determination of the location of the moving free surface defined by the 
liquid resin flow front. Methods employed to solve such problems can be classified 
into two groups: Lagrangian and Eulerian schemes. The Eulerian methods use a fixed 
grid system, which is generated over the entire domain and is not changed until the 
completion of calculation. However, a special treatment is neccesary to track the 
moving free surface because the motion of fluid does not coincide with the calculation 
mesh. Fluid flows in porous media have been succesfully solved by an approach based 
on finite element method. In general, two alternative Eulerian numerical techniques 
using a fixed mesh have been developed for accounting moving interfaces in RTM: 
the Volume of Fluid techniques [5] and the level set methods [6]. However, the shape 
of the flow front is not necessarilly accurate by these numerical methods. Mesh 
adaptivity techniques have been impemented to overcome this issues in RTM 
modeling [7], but in these problems accurate finite element solutions require usually 
remeshing for each new position of the flow front, which makes the simulation quite 
expensive in terms of computer time.   

Lagrangian schemes are characterized by the mesh system, which is moved or 
deformed as the calculation proceeds. In the last years, a wide family of 
computacional methods has emerged in a Lagrangian framework. These methods have 
been used by many researchers for treating a large variety of engineering problems. 
All of them share the characteristic of no need of explicit connectivity information, 
which is built by the method in a process transparent to the user. Many of these 
meshless methods do not interpolate nodal values and, as a consequence, do not 
exactly reproduce essential boundary conditions. This and other problems, make their 
use not widely applicable and have demanded the attention of many researchers in the 
last years. The Natural Element Method (NEM) [1] is one of the methods based on a 
Galerkin implementation, built upon the so-called natural neighbor interpolation. This 
interpolation scheme is based on the concepts of Voronoi diagrams and Delaunay 
triangulations, and it has very interesting features, like its strictly interpolant character 
and its ability to exactly interpolate piece-wise linear boundary conditions.  

In this paper, we propose the use of the NEM to model the flow front position of 
the injected resin in the RTM process. First, the NEM is reviewed. Then, the 
governing equations and boundary conditions for the RTM flow model are presented. 
Finally, we present some numerical results which show the interest of the NEM to 
simulate the filling process in the context of a simple RTM case. In this case, the 
position of the flow front and the geometry of the fluid saturated domain in the mold 
cavity are handled by invoking the geometrical concept of α-shape for a cloud of 
nodes [3,4], which allows to extract the shape of the domain being simulated by 
employing a cloud of nodes only. 

NUMERICAL IMPLEMENTATION 

In this section we describe the numerical model of the RTM process in the context 
of a natural neighbour Galerkin method. We review the governing equations and the 
boundary conditions. Then we describe the technique used to deal with the flow front 
and the geometry of the fluid saturated domain. 
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The Natural Element Method 

The NEM interpolant is constructed on the basis of the Voronoi diagrams of a nodal 
set and its dual, the Delaunay triangulation. A first-order Voronoi diagram for a set of 
nodes  in , with coordinates  is a subdivision of the 
space in regions such that any point in  is closer to the node  than to any other in 
N. Two nodes whose associated Voronoi cells share an edge are called natural 
neighbours. The Sibson coordinates of a point x with respect to a natural neighbor  
is defined as the ratio of the overlap area of Ti to the total area of the Voronoi cell 
related to point x:  

    with    (1) 

When the point x coincides with the node , i.e., x=xi, , and all other 
shape functions are zero, i.e., . In consequence, the natural neighbor 
interpolant has the important properties of positivity, interpolation and partition of 
unity [1]. The linear consistency of the interpolant is derived after the local coordinate 
property 

(2) 

in conjunction with the partition of unity property [1]. Another property of this 
interpolants is the ability to reproduce linear functions over the boundary of convex 
domains [1].This is not true in the case of non-convex boundaries, then a suitable 
method to enforce essential boundary conditions is necessary. Among different 
possibilities, we use the geometrical concept of α-shape for a cloud of nodes [3, 4], 
which allows to extract the shape of the fluid saturated domain in the mold cavity 
being simulated and the position of the flow front by employing a cloud of nodes only. 
For a more discussion on the concept of α-shape and its application for modelling non-
convex domains, the interested reader can refer to [4] and the references therein. 

Finally, Natural neighbor shape functions are  at any point except at the nodes 
and across the interface, where it is , which allows an accurate treatment of models 
involving moving interfaces, as the calculation of flow front advance in RTM. The 
above properties make natural neighbour Galerkin methods an attractive choice among 
the wide field of meshless methods. The key difference between the formulation of the 
NEM method upon FEM techniques is the computation of shape functions. For the 
NEM method,  the trial and test functions are constructed using the before natural 
neighbor coordinates. Then, a standard Galerkin procedure is used to obtain the 
discrete system which is solved for the unknown vector. 
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Governing Equations 

The governing equations which describe the RTM process are given by Darcy´s law  

  (3) 

and the incompressibility equation, expressed as 
  (4) 
where v is the velocity, k is the preform permeability tensor, µ  is the fluid viscosity 
and p is the pressure. The fluid flow problem is defined in a volume Ω, 
  (5) 
where the fluid at time t occupies the volume . The boundary conditions to 
impose in Ωf (t) are: 
• The pressure gradient in the normal direction to the mold walls is zero.  
• The pressure or the flow rate is specified at the injection nozzle. 
• Zero pressure is applied on the flow front. 

Assuming constant permeability and viscosity, orthotropic preform and the fluid 
incompressibility, then the variational formulation of Darcy´s law extended to the 
fluid domain yields 
  (6) 

The numerical resolution of the governing equations will be performed by means of 
a NEM Galerkin technique. Then the resolution scheme is based in solving until the 
complete filling of the mold the next steps: 

1. Obtain the pressure field using a NEM discretisation of the variational 
formulation given by Eq.(6). The velocity vectors are interpolated using the  
Sibson shape functions, and can be written in the form 

  (7) 

2. Compute the velocity field from Darcy´s law. 
3. With the flow kinematics known at time tn , i.e., being velocities and pressures 

at time tn known ,  and pn respectively, the position of nodes can be updated at 
the same time that the flow front position ,  

  (8)  
4. Introduce new nodes. 
5. Update the fluid domain. 

Numerical Results 

In order to validate the proposed NEM technique for RTM process, a flat geometry 
mold with an obstacle has been simulated, as is shown in Figure 1. The mold is 1 
meter in long and 0.5 in width. The injection pressure is 2 bars, the perform 
permeability is 1e-8m2 and the resin viscosity is 0.1 pa*s. At the beginning of the 
filling process, a uniform node distribution in the injection nozzle has been 
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considered. These nodes will be moved during the injection and define the filled 
domain of the mold. Due to these nodes will be more separated at each time step, it is 
necessary to introduce new nodes in the domain. In this work have been used two 
different strategies: add nodes in the injection nozzle and on the melt front. The mold 
geometry is defined by a set of nodes located at the mold boundary. Obviously, all 
fluid domains nodes must be enclosed by the contour defined by the boundaries nodes. 

FIGURE 1. Mold geometry and injection conditions. 

In the case of considering that the nodes are introduced through the injection 
nozzle, the position of each one is exactly the node path inside the mold, and then we 
can track easily any property of the fluid. Usually these kinds of properties require an 
accurate treatment of the advection equation governing these evolutions. The 
incubation time constitutes an example of those kinds of properties. This strategy has 
the disadvantage that the position of all the nodes must be updated at each time step, if 
we consider a constant time step, we will obtain a greater nodes density near the 
injection nozzle. Also it is possible that the nodes remain accumulated in certain parts 
of the mold, depending on its geometry. 

On the other hand, the strategy of introducing the nodes in the melt front presents 
the advantage that only it is necessary update the positions of the new nodes, then it is 
easier to control the nodes density. However, the physical interpretation of the results 
is sometimes more complex since the position of the nodes indicates the position of 
the melt front at different time instants. At each time step the position of the nodes 
located on the melt front is checked. The time step must be small enough to avoid that 
nodes move out of the mold. When the distance between the boundaries nodes ant the 
melt front nodes is small enough, these nodes are activated as bodes belonging to the 
fluid domain, as is represented in Figure 2. 

FIGURE 2. Boundary domain adjustment during the injection 

The boundary nodes belong either to the melt front or to the mold boundary. At the 
nodes located on the melt front the null pressure condition applies. Figure 3 shows a 
sequence of a mold filling. 
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FIGURE 3. Mold filling simulation 
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