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In the present work we examine the feasibility and efficiency of the POD in the framework of Finite Difference Schemes of Implicit type for Parabolic Partial Differential Equations. Moreover, some applications are given.

INTRODUCTION

The aim of the present work is to introduce the Model Reduction in the context of Finite Difference schemes of implicit type. In order to compute the approximate values for the solution of generic parabolic PDE, at the grid points we introduce the following vectors. Let

u m = [u m 1 u m 2 • • • u m Nx-1 ] T ∈ R Nx-1
be the true solution of the PDE at time t m , and set

U m = [U m 1 U m 2 • • • U m Nx-1 ] T ∈ R Nx-1
, for the corresponding the approximation vector, where m = 0, 1, . . . , N t . Now, assume that by using a typical finite difference scheme of implicit type for equation we are to be able to construct the following two-level difference equation

QU m+1 = f(U m ) + g m , U 0 = u 0 . (1) 
for m = 0, 1, . . . , N t -1 (see for example [START_REF] Thomas | Numerical Partial Differential Equations: Finite Difference Methods[END_REF] and Chapter 3 of [START_REF] Achdou | Computational Methods for Option Pricing[END_REF]). The vector g m is usually constructed from values {u m j : j = 0, N x , m = 0, 1, . . . , N t } and f : R Nx-1 -→ R Nx-1 . Here the matrix Q may depend on k t and h x . Thus, by solving this difference equation we obtain the matrix U = [U 1 U 2 • • • U Nt ] which represents the approximate solution to the true one that, in matrix form, we can write as u

= [u 1 u 2 • • • u Nt ].

A MODEL REDUCTION METHOD APPLIED FOR FINITE DIFFER-ENCE SCHEMES OF IMPLICIT TYPE

Now, we introduce a model reduction method to be used to reduce the finite-difference scheme of implicit type [START_REF] Achdou | Computational Methods for Option Pricing[END_REF]. We assume that in this case we can obtain the snapshots u (m) s ∈ R Nx-1 , for m = 0, 1, . . . , Nt , (here Nt is the snapshots number) either by experimental data or by previous computer simulation of a similar problem. Now, let the matrix

u s = u (1) s u (k) s • • • u ( Nt) s ∈ R (Nx-1)× Nt .
By means the Singular Value Decomposition, u s can be decomposed as

u s = σ 1 Ψ 1 v T 1 + • • • + σ r Ψ r v T r .
where {Ψ 1 , . . . , Ψ r } and {v 1 , . . . , v r }, are orthonormal basis and

σ 1 > σ 2 > • • • > σ r are the singular values (here r = rank u s ). Moreover, if v j = v 1 j • • • v Nx-1 j T , this implies that u (k) s = r j=1 σ j v k j Ψ j
and this representation is optimal in the following sense. From the Schmidt-Eckart-Young-Mirsky Theorem a the unique minimizer of the problem min

X,rank X=k ||u s -X|| F is given by X * = σ 1 Ψ 1 v T 1 + • • • + σ k Ψ k v T k , and ||u s -X * || F = r i=k+1 σ i ,
where || • || F denotes the Frobenius norm. Now we construct a reduced finite-difference scheme by using the representative modes obtained by using the SVD of the matrix of representative data. To this end we consider the set of representative modes

Ψ * = span{Ψ 1 Ψ 2 • • • Ψ l }
where l ≪ N x -1 is choosed by means the condition l i=1 σ i / r i=1 σ i > 0.9999. Then the reduced version of (1) is given by

Q| Ψ * proj Ψ * (U m+1 ) = proj Ψ * (f(U m ) + g m ) , U 0 = u 0 . ( 2 
)
for m = 0, 1, . . . , N t -1, and where proj Ψ * (z) denotes the coordinates of z in the Ψ * -basis. Note that in the reduced version we solve N t linear systems with a l × l coefficient matrix.

A NUMERICAL EXPERIMENT

We compare the propagation errors in a standard Crank-Nicolson scheme vs. a Reduced one. To this end we borrow from [START_REF] Achdou | Computational Methods for Option Pricing[END_REF] the following PDE

- ∂u ∂t - σ 2 x 2 2 ∂ 2 u ∂x 2 -rx ∂u ∂x + ru = 0 for (x, t) ∈ [0, a] × [0, T ], (3) 
where u(x, 0) = max(K -x, 0), u(0, t) = Ke -rt , u(a, t) = 0, here a ≫ K. This PDE has a nice solution in closed form and it is well-known that the error of the numerical solutions is concentrated around x = K and it is increasing as t m → T Let Ûm be the numerical solution obtained by means the proposed reduced finite difference scheme. In Figure 1 we plot, for r = 0.05, σ = 0.40, K = 8 and a = 16 the errors ||u m -U m || F and ||u m -Ûm || F for m = 0, 1, . . . , 400. In the curve with label 2 we use as snapshots u (m) s = U m for m = 1, . . . , 25, the twenty five firts iterations obtained by using the standard Crank-Nicolson scheme. On the other hand in the curve with label 1 we use as snapshots u (m) s = u m for m = 1, . . . , 75, the seventy five firts iterations of the true solution. In both cases the number of modes are equal to five and we can see that the reduced method improves the approximation to the analytical solution. Now, we will to test how the robust are the modes obtained in the later numerical experiment. To see this, we consider a hundred pairs of parameters values closed to r = 0.05 and σ = 0.40. We generate its by means the formulas r i = 0.05 + X i and σ i = 0.40+Y i , where X i and Y i are independent uniform random variables in [-0.02, 0.02], and [-0.2, 0.2], respectively for i = 1, 2, . . . , 100. For each (r i , σ i ) we compute u m i , U m i and Ûm i for i = 1, 2, . . . , 100. In Figure 2 we plot the mean errors (1/100) 100 i=1 ||u m i -U m i || F and (1/100) 100 i=1 ||u m i -Ûm i || F for m = 0, 1, . . . , 400. As we can see the behaviour is similar to the above experiment and this fact allow to us to assert that the reduced basis are robust against small variations of the parameters values. 
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 1 Figure 1: The standard Crank-Nicolson scheme vs. a Reduced one using two different sets of snapshots

Figure 2 :

 2 Figure 2: In these cases we use the modes obtained by the twenty five first iterations of a Crank-Nicolson scheme with fixed parameters values.
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