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Two solvable systems of coagulation equations

with limited aggregations

Jean Bertoin∗

Abstract

We consider two simple models for the formation of polymers where at the initial time,

each monomer has a certain number of potential links (called arms in the text) that are

consumed when aggregations occur. Loosely speaking, this imposes restrictions on the

number of aggregations. The dynamics of concentrations are governed by modifications of

Smoluchowski’s coagulation equations. Applying classical techniques based on generating

functions, resolution of quasi-linear PDE’s, and Lagrange inversion formula, we obtain

explicit solutions to these non-linear systems of ODE’s. We also discuss the asymptotic

behavior of the solutions and point at some connexions with certain known solutions to

Smoluchowski’s coagulation equations with additive or multiplicative kernels.

Keywords : Coagulation equations, generating function, quasi-linear PDE, Lagrange

inversion formula, gelation.

A.M.S. Classification Primary : 34A34 ; Secondary : 82C23, 82D60.

1 Introduction

The coagulation equations of Smoluchowski [16] describe the evolution of concentrations of

particles in a medium in which particles coalesce pairwise as time passes. The surveys by

Aldous [1] and Laurençot and Mischler [12] provide stimulating introductions to the subject.

We also refer to Drake [5] and Dubovski [6] for detailed accounts, and e.g. to [8, 9, 14] and

references therein for some more recent works in this area.

In the discrete version of this model, particles are characterized by an integer m ≥ 1 which

should be though of as a size or a mass, in the sense that the result of the coagulation of a

pair of particles, say {m, m′}, is m + m′. The dynamics are characterized in terms of some
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symmetric kernel κ : N
∗×N

∗ → R+ such that, loosely speaking, every pair of particles {m, m′}

coalesces at rate κ(m, m′). This means that if ct(m) denotes the concentration of particles with

size m at time t, then the evolution of concentrations is governed by the infinite system

d

dt
ct(m) =

1

2

m−1
∑

m′=1

ct(m
′)ct(m − m′)κ(m′, m − m′) − ct(m)

∞
∑

m′=1

ct(m
′)κ(m, m′) , (1)

where the first term in the right-hand side accounts for the creation of particles of size m by the

coagulation of a pair of particles {m′, m − m′}, the factor 1
2

stems from an obvious symmetry,

and the second term accounts for the disappearance of particles with size m as the result of a

coagulation with other particles.

In general (1) cannot be solved explicitly; however there are a few important exceptions. The

fundamental examples of solvable Smoluchowski’s equations occur when the coagulation kernel

κ is constant, additive, or multiplicative. For instance, for a monodisperse initial condition

(this means that at time t = 0, all particles have unit size), it is known since the genuine work

of Smoluchowski [16] that

ct(m) =

(

1 +
t

2

)−2(
t

2 + t

)m−1

, 0 ≤ t < ∞ (2)

solves (1) for κ(m, m′) = 1. Further, if

B(λ, m) = (λm)m−1e−λm/m! , m ∈ N
∗

denotes the Borel probability function with parameter λ ∈ [0, 1], then, according to Golovin

[10],

ct(m) = e−tB(1 − e−t, m) , 0 ≤ t < ∞ (3)

is a solution to (1) for κ(m, m′) = m + m′. Finally, it has been shown by McLeod [13] that

ct(m) = m−1B(t, m) , 0 ≤ t < 1 (4)

solves (1) for κ(m, m′) = mm′. More generally, explicit though complicated expressions can

be obtained for solutions to (1) when the coagulation kernel κ is a linear combination of these

three basic kernels; see [19, 17, 20].

The key reason why Smoluchowski’s equations can be solved explicitly in these cases is that

considering generating functions transforms (1) into a solvable PDE’s; see e.g. Deaconu and

Tanré [4]. The purpose of the present work is to point out that the same techniques can be

applied successfully to investigate a related but more complex model for coagulation. Roughly
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speaking, the dynamics described by Smoluchowski’s equations depend only on an additive

quantity, namely the size of particles. Norris [15] developed the much more sophisticated

setting of cluster coagulation models in which the rates of transition may depend on further

parameters, such as typically the shapes of the clusters of particles. In this direction, we

will deal here with a toy model for the formation of polymers in which coagulation rates are

functions of a non-additive quantity that depends on the history of polymers. More precisely,

the medium consists initially in monomers (elementary particles with unit size), such that each

monomer has a certain number of potential links which we call arms. Specifically, we suppose

that each particle is determined by a pair of integers (a, m), where a ≥ 0 is the number of arms

of the particle and m ≥ 1 represents its size. The arms serve to perform aggregations, i.e. to

connect pairs of particles, and are consumed each time an aggregation occurs. We will consider

two different models.

The first model will be studied in Section 2. It is oriented, in the sense that a coagulation

occurs when a particle uses one of its arms to grab another particle. Only one arm is consumed

for each coagulation event; specifically, when a particle (a, m) with a ≥ 1 grabs a particle

(a′, m′), these two particles merge into a single one (a+a′−1, m+m′). We assume further that

each arm grabs other particles at uniform rate; the precise formulation will be given in Section

2.1. In Section 2.2 we use generating functions to connect these dynamics to a quasi-linear

PDE that is then solved by the method of characteristics. Section 2.3 presents a version of

Lagrange inversion formula which will be needed to invert the generating functions. The main

results on the oriented model are given in Section 2.4, and finally some illustrative examples

are discussed in Section 2.5. In particular, we point at some resemblances between on the one

hand, the oriented model when the number of arms of monomers is distributed according to

the standard Poisson law, and on the other hand, Smoluchowski’s coagulation equation for the

additive kernel.

The second model will be studied in Section 3. It is symmetric, in the sense that each coag-

ulation consumes one arm for each of the two particles involved into a coagulation event :

when a pair of particles {(a, m), (a′, m′)} with aa′ ≥ 1 coalesces, the resulting particle is

(a + a′ − 2, m + m′). Furthermore, we assume that each pair of arms is activated uniformly.

Section 3.1 introduces the setting rigorously, and points at a critical time Γ∞ in the evolution

of the system which resembles the gelation time (i.e. the instant when particles with infinite

size appear in the medium) in Smoluchowski’s coagulation equations. We also use generating

functions to make the connexion with a quasi-linear PDE closely related to the one that arises

for the oriented model. The main results and some examples are given in Section 3.2. For

instance, we determine the critical time Γ∞ in terms of the initial data (interestingly, Γ∞ may

be finite or infinite) and note some similarities between the symmetric model started from

monomers with arms distributed according to the standard Poisson law and McLeod’s solution

3



to Smoluchowski’s coagulation equation for the multiplicative kernel at gelation time.

We conclude this Introduction by explaning the term limited in the title. Roughly speaking,

the effect of introducing arms in a coagulation model is that it imposes some restrictions to

the number of aggregations. Indeed, in the oriented model, we shall show that if at the initial

time the mean number of arms is less than the total concentration of particles, then the system

converges as time tends to infinity to some limiting concentrations (and more precisely the

system does not create particles with infinite size); see Corollary 1. A similar phenomenon is

observed for the symmetric model; see Corollary 2 and the remark thereafter. Perhaps this is

more surprising for the symmetric model, as the latter bears some similarities with the classical

Smoluchowski’s coagulation for the multiplicative kernel, and it is well-known that gelation

then always occurs in that case.

2 The oriented model

2.1 Setting

We now describe precisely the dynamics for oriented coagulation with arms. For every t ≥ 0,

a ∈ N := {0, 1, 2, . . .} and m ∈ N
∗ := {1, 2, . . .}, let ct(a, m) denote the density of particles

(a, m) at time t. Loosely speaking, we suppose that at any time, each arm may grab each

particle at the same unit rate. Rigorously, this means in terms of concentrations that the

transition

{(a, m), (a′, m′)} −→ (a + a′ − 1, m + m′)

occurs at time t with intensity

act(a, m)ct(a
′, m′) + a′ct(a

′, m′)ct(a, m) = (a + a′)ct(a, m)ct(a
′, m′).

The evolution of the concentration functions is thus governed by an infinite non-linear system

of ODE’s

d

dt
ct(a, m) =

1

2

a+1
∑

a′=0

m−1
∑

m′=1

(a + 1)ct(a
′, m′)ct(a − a′ + 1, m − m′)

−ct(a, m)
∞
∑

a′=0

∞
∑

m′=1

(a + a′)ct(a
′, m′) . (5)
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We also introduce the notation

Ct :=

∞
∑

a=0

∞
∑

m=1

ct(a, m)

for the total concentration of particles at time t, and

At :=

∞
∑

a=0

∞
∑

m=1

act(a, m)

for the mean number of arms, and stress that (5) only makes sense as long as At and Ct are

finite. But it is easy to check that both quantities are non-increasing as t grows (see Lemma 1

below), so it suffices to assume that at the initial time A0 and C0 are finite.

We also point out that

1

2

a+1
∑

a′=0

(a + 1)ct(a
′, m′)ct(a − a′ + 1, m − m′) =

a+1
∑

a′=0

a′ct(a
′, m′)ct(a − a′ + 1, m − m′) ,

and since in the sum in the right hand side, the term corresponding to a′ = 0 is null, we can

reformulate (5) as

d

dt
ct(a, m) =

a+1
∑

a′=1

m−1
∑

m′=1

a′ct(a
′, m′)ct(a − a′ + 1, m − m′) − ct(a, m)

∞
∑

a′=0

∞
∑

m′=1

(a + a′)ct(a
′, m′) .

The latter expression may be closer to the asymmetric description of the dynamics of the

stystem.

It will be convenient to re-express the system (5) in a slightly different form by introducing

the notation

〈ct, f〉 :=

∞
∑

a=0

∞
∑

m=1

f(a, m)ct(a, m) ,

where f : N × N
∗ → R+ stands for a generic nonnegative function. Then (5) reads

d

dt
〈ct, f〉 =

1

2

∞
∑

a,a′=0

∞
∑

m,m′=1

(f(a+a′−1, m+m′)−f(a, m)−f(a′, m′))(a+a′)ct(a, m)ct(a
′, m′) (6)

when f is a Dirac function. By linearity, (6) holds when f has finite support, and more generally

(by a standard approximation), whenever f is bounded.

We now start the analysis by pointing at an elementary property which should be intuitively

obvious, as at each coagulation event, the number of particles and the total number of arms
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both decrease by one unit. The rigorous proof requires however some care.

Lemma 1 For any solution to (5), the difference Ct − At remains constant as time passes.

More precisely :

(i) If C0 = A0, then

Ct = At = C0/(1 + tC0) .

(ii) If C0 − A0 := D 6= 0, then

Ct = At + D = D
C0e

Dt

C0(eDt − 1) + D
.

Proof: We get from (6) for f ≡ 1 that d
dt

Ct = −AtCt, and in particular the total concentration

decreases with t. Similarly, fix α > 0 and apply (6) for f (α)(a, m) = α ∧ a to see that A
(α)
t :=

〈ct, f
(α)〉 fulfills d

dt
A

(α)
t ≤ −AtCt. As At = limα↑∞ ↑ A

(α)
t , this entails that At also decreases

with t.

Then observe that

|f (α)(a + a′ − 1, m + m′) − f (α)(a, m) − f (α)(a′, m′)| ≤ (a ∧ a′) + 1 ,

and that therefore

|f (α)(a + a′ − 1, m + m′) − f (α)(a, m) − f (α)(a′, m′)|(a + a′) ≤ 2aa′ + a + a′ . (7)

Since

lim
α→∞

(f (α)(a + a′ − 1, m + m′) − f (α)(a, m) − f (α)(a′, m′)) = −1 ,

it is easy to get from (6) by dominated convergence that d
dt

At = −AtCt. We conclude that the

difference Ct − At is constant and the explicit expressions in the statement follow readily. �

2.2 A quasi-linear PDE

The system of evolution equations (6) resembles Smoluchowski’s coagulation equation for the

additive kernel. In the latter case, it is well-known that considering exponential functions yields

a quasi-linear PDE related to the transport equation which can be solved explicitly, see e.g.

[4]. This incites us to introduce the generating functions

gt(x, y) := 〈ct, fx,y〉 with fx,y : (a, m) → xaym and x, y ∈ [0, 1] .
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For the sake of simplicity, we will focus on the situation where the total concentration of

particles equals 1 at the initial time, i.e. C0 = 1. The general case can easily be reduced to

that one by a linear time-substitution.

Lemma 2 (i) Consider initial concentrations (c0(a, m) : a ∈ N and m ∈ N
∗) such that C0 =

A0 = 1. The system (5) is then equivalent to the quasi-linear PDE

d

dt
gt(x, y) =

(

gt(x, y) −
x

1 + t

)

∂

∂x
gt(x, y) −

1

1 + t
gt(x, y)

for the generating functions, where t ≥ 0 and x, y ∈ [0, 1]. The latter possesses a unique solution

which is given in terms of its value at boundary t = 0 by

gt(x, y) = (1 + t)−1g0(ht(x, y), y) = t−1ht(x, y) −
x

t2 + t
,

where ht(·, y) : [0, 1] → [0, 1] is the (unique) inverse of the function x → (1 + t)x − tg0(x, y).

(ii) Consider initial concentrations (c0(a, m) : a ∈ N and m ∈ N
∗) such that C0 = 1 and

C0 −A0 = D for some D ∈ (−∞, 1)\{0}. The system (5) is then equivalent to the quasi-linear

PDE

d

dt
gt(x, y) =

(

gt(x, y) − x
DeDt

eDt − 1 + D

)

∂

∂x
gt(x, y) +

(

D −
DeDt

eDt − 1 + D

)

gt(x, y)

for the generating functions, where t ≥ 0 and x, y ∈ [0, 1]. The latter possesses a unique solution

which is given in terms of its value at boundary t = 0 by

gt(x, y) =
DeDt

eDt − 1 + D
g0(ht(x, y), y)

=
DeDt

eDt − 1
ht(x, y) −

D2eDt

(eDt − 1 + D)(eDt − 1)
x ,

where ht(·, y) : [0, 1] → [0, 1] is the (unique) inverse of the function

x → D−1
((

eDt − 1 + D
)

x −
(

eDt − 1
)

g0(x, y)
)

.

Proof: (i) From (6) for f = fx,y, we get

d

dt
gt(x, y) = (α − β − γ)/2
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where α is given by

∞
∑

a,a′=0

∞
∑

m,m′=1

axa−1ymct(a, m)xa′

ym′

ct(a
′, m′) +

∞
∑

a,a′=0

∞
∑

m,m′=1

a′xa′−1ym′

ct(a
′, m′)xaymct(a, m)

= 2gt(x, y)
∂

∂x
gt(x, y) ,

and β = γ by

x
∞
∑

a,a′=0

∞
∑

m,m′=1

axa−1ymct(a, m)ct(a
′, m′) +

∞
∑

a,a′=0

∞
∑

m,m′=1

a′xaymct(a, m)ct(a
′, m′)

= xCt
∂

∂x
gt(x, y) + gt(x, y)At .

Recall from Lemma 1 that Ct = At = 1/(1 + t) to get the PDE in the statement.

Note that this PDE does not involve partial derivatives with respect to the variable y, and

is quasi-linear. It can be solved using the methods of characteristics. Specifically we consider

functions t = t(r, s), x = x(r, s) and u = u(r, s) for 0 ≤ r ≤ 1 and s ≥ 0, with the boundary

conditions t(r, 0) = 0, x(r, 0) = r, u(r, 0) = g0(r, y) and such that

dt

ds
= 1 ,

dx

ds
=

x

1 + t
− u ,

du

ds
= −

u

1 + t
.

We deduce

t(r, s) = s , u(r, s) = g0(r, y)/(1 + s) , x(r, s) = r(1 + s) − sg0(r, y) ;

and then the comparison with the quasi-linear PDE gives gt(x, y) = u(r, s).

The requirements C0 = g0(1, 1) = 1 and A0 = ∂
∂x

g0(1, 1) = 1 ensure that for any s ≥ 0 and

y ∈ [0, 1], the function r → r(1 + s) − sg0(r, y) has derivative 1 + s(1 − ∂
∂x

g0(r, y)) ≥ 1, and

since −sg0(0, y) < 0 < 1 ≤ (1 + s) − sg0(1, y), there is a unique solution hs(·, y) : [0, 1] → [0, 1]

to the equation hs(x, y) = hs(x, y)(1 + s)− sg0(hs(x, y), y). This provides the solution given in

the statement.

Conversely, if (gt : t ≥ 0) is a family of generating functions solving this PDE with a boundary

condition g0(x, y) = 〈c0, fx,y〉 and such that g0(1, 1) = C0 = 1 and ∂
∂x

g0(1, 1) = A0 = 1, then we

know from above that

gt(x, y) = (1 + t)−1g0(ht(x, y), y) = t−1ht(x, y) −
x

t2 + t
,

with ht(·, y) : [0, 1] → [0, 1] the (unique) inverse of x → (1+t)x−tg0(x, y). Note that ht(1, 1) = 1
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for all t, which gives gt(1, 1) = 1/(1 + t). Further, taking a (left) derivative with respect to the

variable x at x = 1 in the identity

x = (1 + t)ht(x, 1) − tg0(ht(x, 1), 1)

entails ∂
∂x

ht(1, 1) = 1 and then

∂

∂x

gt(1, 1) = t−1 ∂

∂x

ht(1, 1) − 1/(t2 + t) = 1/(1 + t) .

Thus the family (gt : t ≥ 0) also solves the equation

d

dt
gt(x, y) = (gt(x, y) − xgt(1, 1))

∂

∂x

gt(x, y) − gt(x, y)
∂

∂x

gt(1, 1) .

Since gt(1, 1) = 〈ct, 1〉 = Ct and ∂
∂x

gt(1, 1) = 〈ct, a〉 = At , we recover (5) by inverting the

generating functions.

(ii) The derivation of the PDE is obtained as in the proof of (i), applying the second part

of Lemma 1 in place of the first. It is solved again by the methods of characteristics; using the

same notation as in (i), we are led to consider the system of ODE’s

dt

ds
= 1 ,

dx

ds
= x

DeDt

eDt − 1 + D
− u ,

du

ds
= D

(

1 −
eDt

eDt − 1 + D

)

u

with the boundary conditions t(r, 0) = 0, x(r, 0) = r, u(r, 0) = g0(r, y). We obtain

t(r, s) = s , u(r, s) = g0(r, y)
DeDs

eDs − 1 + D

and

x(r, s) = D−1
(

r
(

eDs − 1 + D
)

− g0(r, y)
(

eDs − 1
))

.

The proof can then be completed just as in the case (i). �

2.3 A version of Lagrange inversion formula

The final step of our analysis consists in checking that the function (x, y) → ht(x, y) that

appears in Lemma 2 is the generating function of some finite measure on N × N
∗ that can be

inverted explicitly, at least under some natural hypotheses. It is an easy application of Lagrange

inversion formula (see, e.g. Section 5.1 in [22]).
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Lemma 3 Let µ = (µ(a))a∈N be a finite measure on N, µ 6≡ 0. We write

g(x) =

∞
∑

a=0

xaµ(a) , x ∈ [0, 1]

for its generating function. For every p, q > 0 and for every x, y > 0 sufficiently small, the

equation

h(x, y) = yg(px + qh(x, y))

has a unique solution which is analytic in x and y and given by

h(x, y) =

∞
∑

a=0

∞
∑

m=1

xaym 1

m

(

m + a − 1

a

)

qm−1paµ∗m(m + a − 1) ,

where µ∗m stands for the m-th convolution power of µ.

Proof: We fix p, q > 0 and x sufficiently small so that px < 1. Then we define g̃(y) :=

g(px + qy) for y ≥ 0 with px + qy ≤ 1, which is the generating function of the sigma-finite

measure

µ̃(k) :=

∞
∑

n=k

(

n

k

)

(px)n−kqkµ(n) , k ∈ N .

Observe also that g̃(0) = g(px) > 0. According to the Lagrange inversion formula, the equation

h(x, y) = yg̃(h(x, y)) has a unique solution for y > 0 sufficiently small, which is analytic in y

and can be expressed as

h(x, y) =

∞
∑

n=1

ynn−1µ̃∗n(n − 1) .

Then observe that the generating function of the measure µ̃∗n is g̃n(y) = gn(px + qy), so

µ̃∗n(k) =
∞
∑

j=k

(

j

k

)

(px)j−kqkµ∗n(j) .

We deduce that

h(x, y) =

∞
∑

n=1

ynn−1

∞
∑

j=n−1

(

j

n − 1

)

(px)j−n+1qn−1µ∗n(j) ,

and the change of variables j = a + n − 1 completes the proof. �
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2.4 Explicit solutions

We are now able to solve (5) explicitly in the situation when the initial concentrations c0(a, m)

are carried by particles having unit size (recall also the assumption that the initial total con-

centration is 1). More precisely, we consider µ = (µ(a))a∈N a probability measure on N, and

denote for every m ∈ N
∗ by µ∗m the m-th convolution power of µ.

Theorem 1 The system (5) has a unique solution (ct(a, m) : a ∈ N, m ∈ N
∗ and t ≥ 0) started

from

c0(a, m) = 1{m=1}µ(a) , a ∈ N and m ∈ N
∗

which is given as follows :

(i) If
∑

a∈N
aµ(a) = 1, then

ct(a, m) = m−1tm−1(1 + t)−(a+m)

(

a + m − 1

a

)

µ∗m(a + m − 1) .

(ii) If
∑

a∈N
aµ(a) = 1 − D for some D ∈ (−∞, 1)\{0}, then

ct(a, m) = eDtm−1Da+1
(

eDt − 1
)m−1 (

eDt − 1 + D
)−(a+m)

(

a + m − 1

a

)

µ∗m(a + m − 1) .

Proof: We shall focus on (i), the argument for (ii) being similar (note also that taking the

limit as D → 0 in part (ii) yields the solution in the case (i), as it should be expected).

According to Lemma 2 and the present hypotheses, we have to consider the initial generating

function

g0(x, y) = 〈c0, fx,y〉 =

∞
∑

a=0

xayµ(a) = yg(x)

where g is as in Lemma 3, and then the solution ht(x, y) to

(1 + t)ht(x, y) − tyg(ht(x, y)) = x .

Lemma 3 incites us to introduce

h(x, y) := t−1((1 + t)ht(x, y) − x) ,

so that

h(x, y) = yg

(

x

1 + t
+

t

1 + t
h(x, y)

)

.
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According to Lemma 3 (with p = 1/(1+ t) and q = t/(1+ t)), the solution to this equation can

be expressed in the form

h(x, y) =

∞
∑

a=0

∞
∑

m=1

xaym 1

m

(

m + a − 1

a

)

(

t

1 + t

)m−1

(1 + t)−aµ∗m(m + a − 1) ,

whenever x, y are sufficiently small. Recall that

ht(x, y) = (1 + t)−1(th(x, y) + x) ,

so we get

ht(x, y) =
x

1 + t
+

∞
∑

a=0

∞
∑

m=1

xaym 1

m

(

m + a − 1

a

)

tm(1 + t)−(a+m)µ∗m(m + a − 1) .

We then known that the unique solution to the quasi-linear PDE in Lemma 2(i) is

gt(x, y) = t−1ht(x, y) −
x

t2 + t

=

∞
∑

a=0

∞
∑

m=1

xaym 1

m

(

m + a − 1

a

)

tm−1(1 + t)−(a+m)µ∗m(m + a − 1) .

Hence gt coincides with the generating function of the concentrations that appear in the state-

ment, and the proof can be completed by an appeal to Lemma 2(i). �

We now conclude this section describing the limiting behavior of concentrations as time

tends to infinity, starting with the case D > 0 (i.e. at the initial time, the mean number of

arms is less than the total concentration).

Corollary 1 Let µ = (µ(a))a∈N be a probability measure on N with mean

∑

a∈N

aµ(a) = 1 − D < 1 .

Then the solution (ct(a, m) : a ∈ N, m ∈ N
∗ and t ≥ 0) to the system (5) started from

c0(a, m) = 1{m=1}µ(a) , a ∈ N and m ∈ N
∗

has a limit as t → ∞ in ℓ1(N × N
∗) given by

c∞(a, m) = 1{a=0}
D

m
µ∗m(m − 1) .
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Proof: The pointwise convergence (i.e. with a and m fixed) should be plain from the expres-

sion given in Theorem 1(ii). Recall from Lemma 1 that the total concentration Ct tends to D

as t → ∞. On the other hand, as µ is a probability measure on N with mean less than 1, it is

easily seen (see e.g. the remark after this proof) that m−1µ∗m(m− 1) also defines a probability

measure on N
∗. So

∞
∑

a=0

∞
∑

m=1

c∞(a, m) = D ,

and we can complete the proof invoking Scheffé’s lemma (see for example [3]). �

Remarks. 1. It is well-known and easy to check that if µ is a probability measure on N with

mean 1 − D < 1, then µ̆ := (m−1µ∗m(m − 1))m∈N∗ is a probability measure on N
∗ with mean

∞
∑

m=1

µ∗m(m − 1) = D−1 .

Indeed, we know from the Lagrange inversion formula (see for instance Theorem 5.1.1 in [22]

that the generating functions g of µ and h of µ̆ are related by the equation h(x) = xg(h(x)).

The condition on the mean of µ reads g′(1) = 1 − D < 1; this readily entails that h(1) = 1, so

that µ̆ has total mass 1. Then taking the (left) derivative at x = 1, we get h′(1) = g(h(1)) +

h′(1)g′(h(1)), which yields h′(1) = 1/D. Thus Corollary 1 implies that

∞
∑

m=1

mc∞(0, m) = 1 .

The physical interpretation of this identity that if at the initial time the mean number of arms

is less than the total concentration of monomers, then the oriented model does not produce

particles with infinite size as time tends to infinity.

2. The recent paper [2] deals with a system of randomly interacting particles which is closely

related to the present deterministic model, and sheds a probabilistic light on Corollary 1. More

precisely, in [2], time is discrete and at the initial time there are n particles with arms such

that the sequence ξ1, . . . , ξn of the number of arms of particles is i.i.d. with a fixed distribution

µ on N. Arms are enumerated uniformly at random, which specifies the order of activation.

When an arm is activated, it grabs uniformly at random one of the particles in the system

which had not been grabbed previously and which does not belong to its own cluster either.

The polymerization procedure terminates when all arms have been activated, and the terminal

configuration is given by a forest of trees. Roughly speaking, the main result in [2] is that if

µ is subcritical (i.e. its first moment is 1 − D < 1), then as n → ∞, the distribution of a

tree picked uniformly at random in the terminal configuration converges to that of a Galton-

Watson tree with reproduction law µ. According to Dwass [7], the probability that the size of

13



a Galton-Watson tree with reproduction law µ is m equals m−1µ∗m(m − 1). Further, by the

law of large numbers, the number of trees in the terminal forest is approximately Dn, so that

the density of trees with size m at the terminal time is Dm−1µ∗m(m − 1). This corroborates

Corollary 1, proving another example of the deep connexions between coagulation models and

branching processes (see, e.g. [4, 18]).

2.5 Examples

Let us now discuss some explicit examples.

Consider first the degenerate case when µ = δ1 is the Dirac mass at 1, so at the initial time,

there is a unit concentration of particles with unit size having exactly one arm, and all the

other concentrations are 0. Then µ∗m = δm so we find

ct(1, m) = tm−1(1 + t)−(1+m) ,

and ct(a, m) = 0 for a 6= 1. As a check, observe that summing these quantities for m ∈ N
∗

is in agreement with Lemma 2. It is also interesting to compare with Smoluchowski’s solution

(2). Specifically we see that Smoluchowski’s coagulation equation for the kernel κ(m, m′) = 2

and monodisperse initial condition can be viewed as the present oriented coagulation with arms

when at the initial time all particles have unit size and exactly one arm. This observation can

be established directly by an elementary analysis of the transition rates in both models.

More generally, consider the case when µ is the binomial law with parameter (n, 1/n), where

n ≥ 2 is some integer, i.e.

µ(a) =

(

n

a

)

n−n(n − 1)n−a for a = 0, . . . , n .

Then µ∗m is the binomial distribution with parameter (mn, 1/n), and we get

ct(a, m) =
(mn)!

(mn + 1 − a − m)!m!a!
tm−1(1 + t)−(a+m)n−mn(n − 1)mn−a−m+1

when a + m − 1 ≤ mn, and ct(a, m) = 0 otherwise.

Then we let n tend to ∞ and thus consider the case when µ is the standard Poisson law, i.e.

µ(a) = 1/(a!e) for a ∈ N. Then µ∗m is the Poisson distribution with parameter m and we get

ct(a, m) = e−mma+m−1tm−1(1 + t)−(a+m) 1

a!m!
, m ∈ N .

It is interesting to point out that summing this quantity over a ∈ N yields the total concentra-
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tion of particles with size m,

Ct(m) :=
∑

a∈N

ct(a, m) =
1

1 + t

(tm/(1 + t))m−1

m!
e−mt/(1+t) =

1

1 + t
B(t/(1 + t), m) .

The comparison with Golovin’s solution (3) suggests that, loosely speaking, Smoluchowski’s

coagulation equation for the additive kernel and monodisperse initial condition coincides after

the logarithmic time change t → log(1+ t), as the present oriented coagulation with arms when

at the initial time, particles have unit size and the number of arms is distributed according to

the Poisson law.

We leave to the interested reader the task of developing similar calculations for binomial or

Poisson laws with mean 6= 1 to illustrate Theorem 1(ii). Here is a final example in this vein.

We assume that µ is the Negative Binomial distribution with parameters r > 0 and p ∈ (0, 1),

viz.

µ(a) =
Γ(r + a)

a!Γ(r)
pr(1 − p)a , a ∈ N .

Recall that
∞
∑

a=0

aµ(a) = r(1 − p)/p := 1 − D ,

and that µ∗m is Negative Binomial distribution with parameters mr and p. Assuming that

D 6= 0, we then find that the concentration ct(a, m) is given by

eDtm−1Da+1
(

eDt − 1
)m−1 (

eDt − 1 + D
)−(a+m) Γ(mr + a + m − 1)

a!(m − 1)!Γ(rm)
pmr(1 − p)a+m−1 .

3 The symmetric model

3.1 Setting and relation to a quasi-linear PDE

We next turn our attention to the symmetric model of coagulation with arms, keeping the

notation for the oriented one. This means that now each aggregation event consumes two

arms, one for each particle involved, and that any pair of arms is activated at the same unit

rate. So the transition

{(a, m), (a′, m′)} −→ (a + a′ − 2, m + m′)
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occurs at time t with intensity

aa′ct(a, m)ct(a
′, m′) ,

and the evolution of the concentration functions is specified by the infinite non-linear system

of ODE’s

d

dt
ct(a, m) =

1

2

a+1
∑

a′=1

m−1
∑

m′=1

a′(a − a′ + 2)ct(a
′, m′)ct(a − a′ + 2, m − m′)

− ct(a, m)
∞
∑

a′=1

∞
∑

m′=1

aa′ct(a
′, m′). (8)

Again (8) only makes sense as long At < ∞, but it is readily seen that t → At decreases as t

grows, so it suffices to require that A0 < ∞.

Before starting the analysis, let us point at the special role of particles with no arms. Indeed,

particles with no arms are inactive in the symmetric model, in the sense that they cannot

coagulate with other particles (this was not the case in the oriented model as a particle with

no arm could still be grabbed by some other particle). Analytically, this is seen from the fact

that the sub-system (8) for (a, m) ∈ N
∗ ×N

∗ is autonomous. We also stress that particles with

no arms are produced by the coagulation of two particles both with a single arm, and more

precisely, specializing (8) yields the simple identity

d

dt
ct(0, m) =

1

2

m−1
∑

m′=1

ct(1, m
′)ct(1, m − m′) . (9)

Just as for the oriented model, it is convenient to re-express the system (8) as

d

dt
〈ct, f〉 =

1

2

∞
∑

a,a′=1

∞
∑

m,m′=1

(f(a+a′−2, m+m′)−f(a, m)−f(a′, m′))aa′ct(a, m)ct(a
′, m′) , (10)

where f : N × N
∗ → R+ is a generic nonnegative and bounded function.

The equations (8) resembles Smoluchowski’s coagulation equation (1) for the multiplicative

kernel. In the latter case, it is well-known that a phenomenon of gelation occurs, in the sense

that the total mass is not a preserved quantity for all times as one might expect naively.

Informally, this is due to the formation of particles of infinite size in finite time; see e.g.

[1, 11, 21]. A similiar phenomenon may (or may not) happen in the present case, and we shall

study (8) and (10) before that critical time. Specifically, we introduce for any r > 0

Γr := inf{t ≥ 0 : 〈ct, a
2〉 ≥ r} ,
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where by a slight abuse in notation, we write a2 for the function (a, m) → a2, and then

Γ∞ := sup{Γr : r ≥ 0} .

Recall also that At := 〈ct, a〉 is the mean number of arms at time t.

Lemma 4 For the symmetric model, we have

At =
A0

1 + tA0

for all t < Γ∞ .

Proof: The argument is similar to that in Lemma 1. Using the same notation as there, we

first specify (10) to the function f (α) and let α → ∞. The bound

|f (α)(a + a′ − 2, m + m′) − f (α)(a, m) − f (α)(a′, m′)| ≤ (a ∧ a′) + 2 ,

enables us to apply the theorem of dominated convergence provided that sup0≤s≤t〈cs, a
2〉 < ∞

and we get the equation d
dt

At = −A2
t . �

We stress that the formula in Lemma 4 may fail when t is too large. Indeed, applying (10)

to f(a, m) ≡ 2, we also get d
dt

(2Ct) = −A2
t without requiring that t < Γ∞. Thus if Lemma 4

was always valid, then the difference 2Ct −At would remain constant. But this is absurd when

2C0 < A0 since then one would have 2Ct = 2C0 + At − A0 → 2C0 − A0 < 0 as t → ∞.

For the sake of simplicity, we shall focus in the rest of this section on the case when A0 :=

〈c0, a〉 = 1, which induces no significant loss of generality as the general case can be reduced

to that one by a linear time-change (provided that of course A0 < ∞). Recall the notation

gt(x, y) for the generating function of ct and introduce

kt(x, y) :=
∂

∂x
gt(x, y) , x, y ∈ [0, 1]

which should be viewed as the generating function :

kt(x, y) =
∞
∑

a=0

∞
∑

m=1

xaym(a + 1)ct(a + 1, m) .

The following statement is a partial counter-part of Lemma 2 for the symmetric model.

Lemma 5 Assume that A0 = 1. Then for any solution to the system (8) we have the equation

d

dt
kt(x, y) = (kt(x, y) − xAt)

∂

∂x

kt(x, y) − Atkt(x, y) ,
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and for t < Γ∞, the latter can be rewritten as the quasi-linear PDE

d

dt
kt(x, y) =

(

kt(x, y) −
x

1 + t

)

∂

∂x

kt(x, y) −
1

1 + t
kt(x, y) .

Proof: Just as in the proof of Lemma 2, the equation (10) specialized to f(a, m) = fx,y(a, m) =

xaym yields
d

dt
gt(x, y) =

1

2

(

∂

∂x
gt(x, y)

)2

− xAt
∂

∂x
gt(x, y) .

Then taking the partial derivative with respect to x, we obtain the first equation in the state-

ment. The second follows from an application of Lemma 4 and the assumption A0 = 1. �

We observe that the second PDE in Lemma 5 is the same as in Lemma 2(i) for the oriented

model with kt(x, y) replacing gt(x, y). In this direction, we recall that a similar relation between

solutions of Smoluchowski’s coagulation equations for the additive and the multiplicative kernels

holds, see e.g. Theorem 3.9 in [4].

3.2 Explicit solutions and examples

We are now able to solve (8) up-to the critical time Γ∞ when at the initial time, all particles are

monomers, i.e. each particle has unit size and its number of arms is arbitrary. In this direction,

we consider a measure µ = (µ(a))a∈N on N with unit mean and finite second moment (we stress

that we do not require µ to be a probability measure), and introduce the probability measure

ν = (ν(a))a∈N given by

ν(a) = (a + 1)µ(a + 1) , a ∈ N .

We denote the first moment of ν by

M :=

∞
∑

a=0

aν(a) =

∞
∑

a=1

a(a − 1)µ(a) ,

and then define

T =

{

∞ if M ≤ 1

1/(M − 1) otherwise.

Recall also that we write ν∗m for the m-th convolution product of ν.

Theorem 2 The system (8) has a unique solution (ct(a, m) : a, m ∈ N
∗ and t < T ) started

from

c0(a, m) = 1{m=1}µ(a) , a, m ∈ N
∗
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which is given for a, m ≥ 1 by

ct(a, m) =
(a + m − 2)!

a!m!
tm−1(1 + t)−(a+m−1)ν∗m(a + m − 2) .

Further, T coincides with the critical time Γ∞.

Proof: The initial conditions incite us to introduce the generating function of µ,

g(x) :=
∞
∑

a=0

xaµ(a) , x ∈ [0, 1] ,

and to set for y ∈ [0, 1]

g0(x, y) = yg(x) and k0(x, y) :=
∂

∂x
g0(x, y) = y

∞
∑

a=0

xaν(a).

Consider the second PDE of Lemma 5, viz.

d

dt
kt(x, y) =

(

kt(x, y) −
x

1 + t

)

∂

∂x
kt(x, y) −

1

1 + t
kt(x, y) , (11)

with boundary value k0(x, y) defined above. If we replace kt by gt, this is precisely the PDE that

has been solved by the method of characteristics in Lemma 2(i). There is however a difference

that requires some attention : here we assume that ∂
∂x

k0(1, 1) = M < ∞ whereas we had the

stronger hypothesis ∂
∂x

g0(1, 1) = 1 in Lemma 2(i). Nonetheless, the condition t < T implies

1 + t − tM > 0, and thus the derivative of the function x → (1 + t)x − tk0(x, y) is strictly

positive for x ∈ [0, 1]. As −tk0(0, y) < 0 < 1 ≤ 1 + t − tk0(1, y), this ensures the existence of a

unique inverse function ℓt(·, y) : [0, 1] → [0, 1] to x → (1 + t)x− tk0(x, y). The argument in the

proof of Lemma 2(i) is thus still valid, and we conclude that for every t < T and x, y ∈ [0, 1]

kt(x, y) = (1 + t)−1k0(ℓt(x, y), y) = t−1ℓt(x, y) −
x

t2 + t
.

The comparison with Theorem 1(i) now yields that for t < T and x, y ∈ [0, 1]

kt(x, y) =
∞
∑

a=0

∞
∑

m=1

xaymm−1tm−1(1 + t)−(a+m)

(

a + m − 1

a

)

ν∗m(a + m − 1) .

We thus see that if we define ct(a, m) for a, m ∈ N
∗ and 0 ≤ t < T as in the statement, and let

kt be the generating function of ((a + 1)ct(a + 1, m) : a ∈ N and m ∈ N
∗), then kt solves (11)

for 0 ≤ t < T .
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We next observe that ℓt(1, 1) = 1 since k0(1, 1) = 1, and thus

kt(1, 1) = 〈ct, a〉 = 1/(1 + t) .

Hence kt also solves

d

dt
kt(x, y) = (kt(x, y) − x〈ct, a〉)

∂

∂x
kt(x, y) − 〈ct, a〉kt(x, y) ,

which is the first PDE in Lemma 5. Inverting the generating functions, we conclude that

(ct(a, m) : a, m ∈ N
∗ and 0 ≤ t < T ) is a solution to (8).

We then check that the critical time Γ∞ of this solution coincides with T . In this direction,

we first recall that ∂
∂x

k0(1, 1) = M , ℓt(1, 1) = 1 and, by definition, that

(1 + t)ℓt(x, 1) = tk0(ℓt(x, 1), 1) + x .

We take the (left) derivative with respect to the variable x at x = 1 and obtain

(1 + t)
∂

∂x
ℓt(1, 1) = tM

∂

∂x
ℓt(1, 1) + 1 ,

so
∂

∂x
ℓt(1, 1) =

1

1 + t(1 − M)
, t < T .

It follows that

∂

∂x
kt(1, 1) = t−1 ∂

∂x
ℓt(1, 1) − (t + t2)−1 =

M

(1 + t)(1 + t(1 − M))

remains bounded on compact intervals in [0, T [, and further explodes as t ↑ T when M > 1

(i.e. T < ∞). As ∂
∂x

kt(1, 1) = 〈ct, a
2 − a〉, we conclude that T = Γ∞. Finally, the uniqueness

of the solution to (8) up to the critical time should be plain from a perusal of the preceding

arguments. �

Theorem 2 does not provide an expression for concentrations of particles with no arms.

However, these can be recovered from the concentrations of particles with exactly one arm via

the equation (9) (note that the concentration of monomers with no arm does not evolve, so we

may focus on particles with size m ≥ 2 in the following statement).

Corollary 2 Under the same assumptions as in Theorem 2, we have for every m ≥ 2 and

t < T

ct(0, m) =
1

m(m − 1)
(1 + 1/t)1−mν∗m(m − 2) for m ≥ 2 .
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As a consequence, in the case when M ≤ 1 (that is when T = ∞), the concentration of

particles (a, m) at time t has a limit c∞(a, m) as t → ∞ which is given by

c∞(a, m) = 1{a=0}
1

m(m − 1)
ν∗m(m − 2) for a ∈ N and m ≥ 2 .

Proof: We know from Theorem 2 that for every t < T and m ≥ 1

ct(1, m) = tm−1(1 + t)−mm−1ν∗m(m − 1) .

According to the classical Lagrange inversion formula (cf. Theorem 5.1.1 in [22]), m−1ν∗m(m−1)

appears as the m-th coefficient in the analytic expansion of the entire function u which solves

u(x) = xφ(u(x)), where φ is the generating function of the probability measure ν. Another

application of the Lagrange inversion formula now shows that the m-th coefficient in the analytic

expansion of the entire function u2(x) is 2m−1ν∗m(m − 2). In terms of convolution product,

this reads

ct(1, ·)
∗2(m) :=

m−1
∑

m′=1

ct(1, m
′)ct(1, m − m′) = tm−2(1 + t)m 2

m
ν∗m(m − 2) .

Since c0(1, m) = 0 for m ≥ 2 by assumption and

∫ t

0

sm−2(1 + s)−mds = (m − 1)−1(1 + 1/t)1−m ,

our first claim follows from (9). The second follows immediately from the first for a = 0, and

from Theorem 2 for a ≥ 1. �

Remark. We stress that when M ≤ 1 and ν 6= δ1, then

∞
∑

a=0

∞
∑

m=2

mc∞(a, m) =
∞
∑

m=2

1

(m − 1)
ν∗m(m − 2) =

∞
∑

a=0

1

a + 1
ν(a) = µ(N∗) , (12)

which means that the symmetric coagulation model does not produce particles with infinite size

as time tends to ∞. Indeed, the identity (12) is easily checked as follows :

∞
∑

m=2

1

(m − 1)
ν∗m(m − 2) =

∞
∑

a=0

ν(a)
∞
∑

m=2

1

(m − 1)
ν∗(m−1)(m − 2 − a)

=
∞
∑

a=0

ν(a)
∞
∑

n=1

n−1ν∗n(n − a − 1) .
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As ν 6= δ1 is a probability measure with mean M ≤ 1, it follows easily from the Lagrange

inversion formula (see the argument in the remark after the proof of Corollary 1) that for any

a ≥ 0,
∞
∑

n=1

a + 1

n
ν∗n(n − a − 1) = 1 .

We stress that this is where the assumption ν 6= δ1 is needed as otherwise the generating

function of ν would vanish at 0, impeding the application of Lagrange inversion formula. We

thus have checked that

∞
∑

m=2

1

(m − 1)
ν∗m(m − 2) =

∞
∑

a=0

(a + 1)−1ν(a) ,

the other equalities in (12) are obvious.

We now conclude this work by illustrating Theorem 2 with some examples. The simplest is

when µ = δ1, that is, initially, there is a unit concentration of monomers with a single arms.

So ν = δ0 and one finds

ct(1, 1) =
1

1 + t
, ct(0, 2) =

t

2t + 2
, 0 ≤ t < T = ∞ ,

and all the other concentrations are zero.

Next, suppose that at the initial time, there is a concentration 1/2 of monomers with two

arms, i.e. µ = 1
2
δ2. Then ν = δ1 and we get

ct(2, m) =
1

2
tm−1(1 + t)−(m+1) , m ∈ N

∗, 0 ≤ t < T = ∞ ,

and all the other concentrations are zero. Note the similarity with the oriented model started

from a unit density of monomers with a single arm. Of course, this property could also be

observed by a direct argument.

We then turn our attention to the simplest example with a finite critical time, namely the

situation where at the initial time, there is a concentration 1/3 of monomers with three arms,

i.e. µ = 1
3
δ3. Then ν = δ2 and M = 2, so the critical time is T = 1. One gets

ct(m + 2, m) =
(2m)!

(m + 2)!m!
tm−1(1 + t)−(2m+1) , m ∈ N

∗ and t < 1 ,

and all the other concentrations are 0. It is easily checked that

lim
t→1−

∞
∑

m=1

(m + 2)2ct(m + 2, m) = ∞ ,
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in agreement with Lemma 4.

Finally, consider the case when µ is the standard Poisson law, then ν is also the standard

Poisson law and in particular T = ∞. As ν∗m is the Poisson law with parameter m, we get

from Theorem 2 that

ct(a, m) =
ma+m−2

a!m!
tm−1(1 + t)−(a+m−1)e−m , a, m ∈ N

∗, t ≥ 0 ,

and from Corollary 2 that

ct(0, 1) = e−1 and ct(0, m) = e−m mm−2

m!
(1 + 1/t)1−m for m ≥ 2 .

It is interesting to point out that

lim
t→∞

ct(0, m) = e−m mm−2

m!
= m−1B(1, m) , m ∈ N

∗

and to compare with McLeod’s solution (4) to Smoluchowski’s coagulation equation for the

multiplicative kernel and monodisperse initial condition. We see that the terminal state for

the symmetric model of coagulation started from monomers with arms distributed according

to the standard Poisson law is the same as the state at gelation time in Smoluchowski’s model

for the multiplicative kernel and monodisperse initial condition.

References

[1] Aldous, D. J. : Deterministic and stochastic models for coalescence (aggregation, coagu-

lation): a review of the mean-field theory for probabilists. Bernoulli 5 (1999), 3-48.

[2] Bertoin, J.; Sidoravicius, V. and Vares, M. E. : A system of grabbing particles related to

Galton-Watson trees. Preprint available at http://fr.arXiv.org/abs/0804.0726.

[3] Billingsley, P. : Probability and Measure. Third edition. New York, John Wiley & Sons,

1995.

[4] Deaconu, M. and Tanré, E. : Smoluchovski’s coagulation equation: probabilistic interpre-

tation of solutions for constant, additive and multiplicative kernels. Ann. Scuola Normale

Sup. Pisa XXIX (2000), 549-580.

[5] Drake, R. L. : A general mathematical survey of the coagulation equation. In Hidy, G. M.

and Brock, J. R. (eds) : Topics in current aerosol research, part 2. International Reviews

in Aerosol Physics and Chemistry. pp 201-376, Oxford, Pergammon Press, 1972.

23



[6] Dubovski, P. B. : Mathematical Theory of Coagulation. Seoul: Seoul National University,

1994.

[7] Dwass, M. : The total progeny in a branching process and a related random walk. J. Appl.

Probability 6 (1969), 682-686.

[8] Escobedo, M. and Mischler, S. : Dust and self-similarity for the Smoluchowski coagulation
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