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A double obstacle problem arising in differential game theory

Pierre Cardaliaguet∗

June 23, 2008

Abstract : A Hamilton-Jacobi equation involving a double obstacle problem is inves-

tigated. The link between this equation and the notion of dual solutions—introduced in

[1, 2, 3] in the framework of differential games with lack of information—is established. As

an application we characterize the convex hull of a function in the simplex as the unique

solution of some nonlinear obstacle problem.

Keywords : Viscosity solutions of Hamilton-Jacobi equations, differential games, lack of

information, convex hull.

1 Introduction

The paper investigates the notion of viscosity solution of Hamilton-Jacobi equations of the

form

min
{

max
{

w + H(x,Dw, D2w, p, q) ; −λmin

(
∂2w

∂p2

)}
; −λmax

(
∂2w

∂q2

)}
= 0 (1.1)

In the above equation, the unknown w = w(x, p, q) depends on the variables x ∈ IRN ,

p ∈ ∆(I) and q ∈ ∆(J), where ∆(I) and ∆(J) are the simplexes of IRI and IRJ . We have

denoted by Dw and D2w the first and second order derivatives of the map w with respect

to x, and by λmin (A) and λmax (A) the minimal and maximal eigenvalue of a symmetric

matrix A. The map H is a standard hamiltonian, non increasing with respect to the matrix

D2w. In particular, (1.1) is a degenerate elliptic equation. We note that, because of the

min-max Theorem, (1.1) can also be written as

max
{

min
{

wt + H(t, x, Dw, D2w, p, q) ; −λmax

(
∂2w

∂q2

)}
; −λmin

(
∂2w

∂p2

)}
= 0

Heuristicaly a map w is a solution w of (1.1) if:
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• w is convex with respect to p (since −λmin

(
∂2w
∂p2

)
≤ 0 ),

• concave with respect to q (since −λmax

(
∂2w
∂q2

)
≥ 0 ),

• and, at points where it is strictly convex in p and strictly concave in q, w satisfies the

Hamilton-Jacobi equation

w + H(x,Dw,D2w, p, q) = 0 (1.2)

In particular (1.1) appears as a double obstacle problem for equation (1.2), where the sec-

ond order obstacles are λmin

(
∂2w
∂p2

)
≥ 0 and λmax

(
∂2w
∂q2

)
≤ 0.

Example : The following equation appears in [6] and [9]:

max
{

w − g(p) ; −λmin

(
∂2w

∂p2

)}
= 0 . (1.3)

where g : IRI → IR. In [9] it is proved that the convex envelope of the function g is a viscosity

solution of (1.3). Note that this equation is exactly of the form (1.1) for H = H(p) = −g(p)

(there is no dependance in x and q here).

Our main motivation for studying equation (1.1) comes from the theory of stochastic

zero-sum differential games with lack of information [1, 2, 3]. In these games, the value

function u depends on the usual space variable x ∈ IRN (or time-space variables (t, x) ∈
(0, T )× IRN for evolution problems) and on some parameters (p, q) ∈ ∆(I)×∆(J). These

parameters are interpreted as probability measures on the sets {1, . . . , I} and {1, . . . , J}
respectively. Due to the specific structure of the game, u has to be convex with respect

to p and concave with respect to q. In particular u cannot be a viscosity solution of the

Hamilton-Jacobi equation (1.2) for every value of the parameters p and q, since otherwise

the convexity/concavity constraints would not be fulfilled. However u satisfies equation

(1.2) in a very specific sense, called “dual sense” [1, 2, 3]. By this we mean that the convex

Fenchel conjugate u∗ = u(x, p̂, q) of u with respect to p satisfies in the viscosity sense

u + H(x,−Du∗,−D2u∗,
∂u∗

∂p̂
, q) ≥ 0 in IRN × IRI ×∆(J) ,

while its concave conjugate u] = u](x, p, q̂) with respect to q satisfies

u + H(x,−Du],−D2u], p,
∂u]

∂q̂
) ≤ 0 in IRN ×∆(I)× IRJ .
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The main result of this paper amounts to show that a map w is a dual solution of (1.2)

if and only if it is a viscosity solution of (1.1). This equivalence is a little surprizing because

in the double obstacle problem p and q are considered as plain variables, while in the dual

sense interpretation of (1.2) they are merely parameters.

The avantage of equation (1.1) on the notion of dual solutions of (1.2) is clear: the dual

formulation involves a non local operator (the Fenchel conjugate of the solution), while

equation (1.1) is a purely local one. Hence handling equation (1.1) is much easier than

handling dual solutions.

As an application we first show that the restriction of solutions of (1.1) to any face of

∆(I) and of ∆(J) is still a solution of (1.1). In particular, this means that equation (1.2)

has to be satisfied at the extreme points of ∆(I) and of ∆(J). Such a result is reminiscent

of a similar one given in [3] for dual solutions.

We also prove a comparison principle for (1.1), which implies in particular that (1.1) has

at most one solution. For instance this shows that equation (1.3) characterizes the convex

envelope of a Lipschitz continuous map g defined on ∆(I) (in [9] this characterization was

not established, and, in fact, did not hold since the author was working in the full space

IRI). The proof of this comparison principle is somewhat surprizing because it involves an

induction on the space.

Let us recall that a comparison result was already given in [3] for dual solutions of

evolution equations (see also [1] for the simpler case where (1.2) is of first order). How-

ever the proof of this comparison principle was really involved, requiring a very intricated

extension of the classical maximum principle. Our introduction of the double obstacle prob-

lem has largely been motivated by the desire to simplify this proof. In that respect our

goal is achieved since our new proof no longer requires the use of this intricated maximum

principle, but only of the standard one.

As a last byproduct of our equivalence theorem, we also get a new characterization of

the value function of the stochastic differential games studied in [1, 2, 3]. This point shall

not been discussed here and will be the aim of the forthcoming paper [4]. In [4] we show

in particular that the intriguing terms λmin

(
∂2w
∂p2

)
and λmax

(
∂2w
∂q2

)
have a natural inter-

pretation: they appear as second order term generated by fictious martingales in p and q

controlled by the players.

The paper is organized in the following way: in section 2, we collect the main notations

used in the paper and recall the definition of dual solutions for (1.2). Section 3 is devoted

to the proof of the equivalence between dual solutions and solutions of (1.1). In section 4
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we show the restriction property and in section 5 the comparison principle for solutions of

(1.1). Finally section 5 is devoted to examples: in particular we characterize the convex

hull of a function g as the unique solution of (1.3) and extend this result to the Φ−operator

of Mertens-Zamir [8].

2 Definitions and notations

Notations : if x and y belong to IRK (for some K ≥ 1), we denote by x.y or by 〈x, y〉
their scalar product, by |x| the euclidean norm of x and by Br(x) the ball centered at x and

of radius r. We denote by SK the set of symmetric matrices of size K. For I ∈ IN∗, ∆(I)

is the set of all p = (p1, . . . , pI) ∈ [0, 1]I that satisfy
∑I

i=1 pi = 1. By abuse of notation, we

denote by Int(∆(I)) the set of p = (pi) ∈ ∆(I) such that pi > 0 for any i ∈ {1, . . . , I}. If

C is a closed convex subset of normed vectoriel space and x ∈ C, TC(x) is the tangent cone

to C at x, namely

TC(x) = closure

(⋃
ε>0

K − p

ε

)
.

In particular we often use the cone

T∆(I)(p) =

{
v ∈ IRI |

∑
i

vi = 0, vi ≥ 0 if pi = 0

}
∀p ∈ ∆(I) .

For n ∈ IN∗ and w : IRn ×∆(I)×∆(J) → IR, we define the Fenchel conjugate w∗ of w

with respect to p by

w∗(x, p̂, q) = sup
p∈∆(I)

{〈p̂, p〉 − w(x, p, q)}, (x, p̂, q) ∈ [0, T ]× IRn × IRI ×∆(J) .

We note that this actually corresponds to the Fenchel conjugate of the map w extended to

IRI by setting w = +∞ on IRI\∆(I). For w defined on the dual space IRn × IRI × ∆(J),

we also set

w∗(x, p, q) = sup
p̂∈IRI

{〈p̂, p〉 − w(x, p̂, q)}, (x, p, q) ∈ [0, T ]× IRn ×∆(I)×∆(J).

It is well known that, if w is convex in p on ∆(I), we have (w∗)∗ = w. We also have to

introduce the concave conjugate with respect to q of a map w : IRn ×∆(I)×∆(J) → IR:

w](x, p, q̂) = inf
q∈∆(J)

{〈q̂, q〉 − w(x, p, q)}, (x, p, q̂) ∈ IRn ×∆(I)× IRJ .
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We use the following notations for the sub- and superdifferentials with respect to p̂ and q̂

respectively: if w : IRn × IRI ×∆(J) → IR, we set

∂−p̂ w(x, p̂, q) = {p ∈ IRI , w(x, p̂, q) + 〈p, p̂′ − p̂〉 ≤ w(x, p̂′, q) ∀p̂′ ∈ IRI}

and if w : IRn ×∆(I)× IRJ → IR

∂+
q̂ w(x, p, q̂) = {q ∈ IRJ , w(x, p, q̂) + 〈q, q̂′ − q̂〉 ≥ w(x, p, q̂′) ∀q̂′ ∈ IRJ}.

Let H : IRN × IRN × SN ×∆(I)×∆(J) → IR be a continuous map.

Definition 2.1 (Dual solutions) We say that a map w : IRN × ∆(I) × ∆(J) → IR is a

supersolution in the dual sense of equation (1.2) if w = w(x, p, q) is lower semicontinuous,

concave with respect to q and if, for any C2(IRN ) function φ such that x → w∗(x, p̂, q̄)−φ(x)

has a maximum at some point x̄ for some (p̂, q̄) ∈ IRI ×∆(J) at which ∂w∗

∂p̂ exists, we have

w(x̄, p̄, q̄) + H(x̄,−Dφ(t̄, x̄),−D2φ(x̄), p̄, q̄) ≥ 0 where p̄ =
∂w∗

∂p̂
(x̄, p̂, q̄) .

We say that w is a subsolution of (1.2) in the dual sense if w is upper semicontinuous,

convex with respect to p and if, for any C2(IRN ) function φ such that x → w](x, p̄, q̂)−φ(x)

has a minimum at some point x̄ for some (p̄, q̂) ∈ ∆(I)× IRJ at which ∂w]

∂q̂ exists, we have

w(x̄, p̄, q̄) + H(x̄,−Dφ(x̄),−D2φ(x̄), p̄, q̄) ≤ 0 where q̄ =
∂w]

∂q̂
(x̄, p̄, q̂) .

A solution of (1.2) in the dual sense is a map which is sub- and supersolution in the dual

sense.

3 Equivalence between dual solutions and solutions of the

double obstacle problem

ln this section we explain that the notion of dual solution of (1.2) can be recasted in terms

of viscosity solution of the Hamilton-Jacobi equation (1.1).

Definition 3.1 (Viscosity solution of (1.1)) We say that w is a subsolution of (1.1) if,

for any smooth test function φ : IRN × ∆(I) × ∆(J) → IR such that w − φ has a local

maximum at some point (x, p, q) ∈ IRN × Int(∆(I))×∆(J), one has

min
{

max
{

w + H(x,Dφ,D2φ) ; −λmin

(
p,

∂2φ

∂p2

)}
; −λmax

(
q,

∂2φ

∂q2

)}
≤ 0
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at (x, p, q), where, for any (p, A) ∈ ∆(I)× SI ,

λmin(p, A) = min
z∈T∆(I)(p)\{0}

〈Az, z〉/|z|2

and, for any (q, A) ∈ ∆(J)× SJ

λmax(p, A) = max
z∈T∆(J)(q)\{0}

〈Az, z〉/|z|2

We say that w is a supersolution of (1.1) if, for any test function φ : IRN×∆(I)×∆(J) →
IR such that w − φ has a local minimum at some point (x, p, q) ∈ IRN ×∆(I)× Int(∆(J)),

one has

min
{

max
{

w + H(x,Dφ,D2φ) ; −λmin

(
p,

∂2φ

∂p2

)}
; −λmax

(
q,

∂2φ

∂q2

)}
≥ 0

at (x, p, q).

Remarks :

1. In the definition we have to require that the solution satisfies the equation up to

the boundary of ∆(I) or ∆(J). Indeed, if for instance the function u = u(x) does

not depend on p and q, then it automatically satisfies equation (1.1) in Int(∆(I)) ×
Int(∆(J)), because in these sets,

λmin

(
p,

∂2w

∂p2

)
= λmax

(
q,

∂2w

∂q2

)
= 0

(in the viscosity sense), and

max {min {z, 0} ; 0} = 0 ∀z ∈ IR .

This shows that relevant informations have to be carried out by the boundary of ∆(I)

and ∆(J).

2. Following [5], the definition could be formulated in terms of super- and subjets.

Our main result is the following:

Theorem 3.1 Let us assume that H : IRN × IRN ×SN ×∆(I)×∆(J) → IR is continuous.

Let w : IRN ×∆(I)×∆(J) → IR be bounded and continuous, convex with respect to p and

concave with respect to q.

Then w is a supersolution (resp. subsolution, solution) of (1.2) in the dual sense if and

only if it is a supersolution (resp. subsolution, solution) of (1.1).
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Remarks :

1. The requirement that w is convex in p and concave in q is necessary: without this

condition, a dual supersolution of (1.2) need not be a supersolution of (1.1) (the re-

verse always holds, as can be seen in the proof).

Here is a counter-example for equation (1.3). Let g : [0, 1] → IR be Lipschitz con-

tinuous and such that g > 0 in (0, 1), g(0) = g(1) = 0. Let u be of class C2 such

that 0 < u < g in (0, 1), u(0) = u(1) = 0 and such that there exists p̄ ∈ (0, 1)

with u”(p̄) > 0. Then u is a dual supersolution of equation w − g = 0 but not a

supersolution of (1.1) at p̄.

2. A symmetric result holds for dual solutions of the evolution equation of the form

wt + H(t, x,Dw,D2w, p, q) = 0

in (0, T ) × IRN × ∆(I) × ∆(J) (see [3] for the definition). In this case the double

obstacle problem reads

min
{

max
{

wt + H(t, x, Dw, D2w) ; −λmin

(
∂2w

∂p2

)}
; −λmax

(
∂2w

∂q2

)}
= 0

in (0, T )×IRN×∆(I)×∆(J). Generalizations to problems stated in bounded domains

(for the x variable) are also straightforward, the arguments being only local in space.

Proof of Theorem 3.1 : Let us first assume that w is a supersolution of (1.2) in

the dual sense. Let φ be smooth and such that w ≥ φ on IRN × ∆(I) × ∆(J) with an

equality at (x̄, p̄, q̄) where q̄ ∈ Int(∆(J)). Then, since w is concave with respect to q and

q̄ ∈ Int(∆(J)), one readily gets that λmax

(
q̄, ∂2φ

∂q2 (x̄, p̄, q̄)
)
≤ 0.

Let us now assume that

λmin

(
p̄,

∂2φ

∂p2
(x̄, p̄, q̄)

)
> 0 . (3.4)

Then we have to prove that

w + H(x̄,Dφ, D2φ, p̄, q̄) ≥ 0 at (x̄, p̄, q̄) . (3.5)

We claim that there are some δ, ε > 0 such that

w(x, p, q̄) ≥ φ(x, p̄, q̄) + 〈∂φ

∂p
(x, p̄, q̄), p− p̄〉+ δ|p− p̄|2 ∀x ∈ Bε(x̄), ∀p ∈ ∆(I) . (3.6)

Proof of (3.6) : From (3.4), there are η > 0 and δ > 0 such that

〈∂
2φ

∂p2
(x, p, q̄)z, z〉 ≥ 4δ|z|2 ∀(x, p) ∈ Bη(x̄, p̄), z ∈ T∆(I)(p̄) . (3.7)
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Hence for (x, p) ∈ Bη(x̄, p̄) we have

w(x, p, q̄) ≥ φ(x, p, q̄) ≥ φ(x, p̄, q̄) + 〈∂φ

∂p
(x, p̄, q̄), p− p̄〉+ 2δ|p− p̄|2 . (3.8)

In particular

p̂ :=
∂φ

∂p
(x̄, p̄, q̄) ∈ ∂−p w(x̄, p̄, q̄) .

We also note that, for any p ∈ ∆(I)\Bη(p̄), we have

w(x̄, p, q̄) ≥ φ(x̄, p̄, q̄) + 〈∂φ

∂p
(x̄, p̄, q̄), p− p̄〉+ 2δη2 . (3.9)

Indeed let p ∈ ∆(I)\Bη(p̄) and let us set p1 = p̄ + p−p̄
|p−p̄|η ∈ ∆(I) and let p̂1 ∈ ∂−p w(x̄, p1, q̄).

Then, since |p1 − p| = η, we have

w(x̄, p, q̄) ≥ w(x̄, p1, q̄) + 〈p̂1, p− p1〉
≥ φ(x̄, p̄, q̄) + 〈∂φ

∂p (x̄, p̄, q̄), p1 − p̄〉+ 2δη2 + 〈p̂1, p− p1〉
≥ φ(x̄, p̄, q̄) + 〈∂φ

∂p (x̄, p̄, q̄), p− p̄〉+ 2δη2 + 〈p̂1 − ∂φ
∂p (x̄, p̄, q̄), p− p1〉

where

〈p̂1 −
∂φ

∂p
(x̄, p̄, q̄), p− p1〉 ≥ 0

because w is convex, p̂1 ∈ ∂−p w(x̄, p1, q̄), ∂w
∂p (x, p̄, q̄) ∈ ∂−p w(x̄, p̄, q̄) and p − p1 = γ(p1 − p̄)

for some γ > 0. This proves (3.9). Let us now argue by contradiction and assume that our

claim (3.6) is false. Then there are (tn, xn) → x̄ and pn → p ∈ ∆(I) such that

w(tn, xn, pn, q̄) < φ(tn, xn, p̄, q̄) + 〈∂φ

∂p
(tn, xn, p̄, q̄), pn − p̄〉+ δ|pn − p̄|2

Note that pn /∈ Bη(p̄) because of (3.8). Letting n → +∞, we get p ∈ ∆(I)\Bη(p̄) and

w(x̄, p, q̄) ≤ φ(x̄, p, q̄) + 〈∂φ

∂p
(x̄, p̄, q̄), p− p̄〉+ δη2

which contradicts (3.9). So (3.6) holds true for some ε > 0 sufficiently small.

Using (3.6) we have, for any p̂′ ∈ IRI and any x ∈ Bε(x̄),

w∗(x, p̂′, q̄) = maxp∈∆(I) {p.p̂′ − w(x, p, q̄)}
≤ −φ(x, p̄, q̄) + maxp∈IRI

{
p.p̂′ − 〈∂φ

∂p (x, p̄, q̄), p− p̄〉 − δ|p− p̄|2
}

≤ −φ(x, p̄, q̄) + p̄.p̂′ + 1
4δ

∣∣∣p̂′ − ∂φ
∂p (x, p̄, q̄)

∣∣∣2
Recalling that p̂ := ∂φ

∂p (x̄, p̄, q̄), the above inequality shows that ∂w∗

∂p̂′ (x̄, p̂, q̄) exists and is

equal to p̄ and, since w is a dual supersolution of (1.2), that (3.5) holds.
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Let us now assume that w is a supersolution of (1.1). Let φ = φ(x) be smooth and such

that φ(x) ≥ w∗(x, p̂, q̄) for any x, with an equality only at x̄ and assume that p̄ := ∂w∗

∂p̂′ (x̄, p̂, q̄)

exists. Without loss of generality we also assume that φ is coercive, i.e., φ(x) → +∞ as

|x| → +∞. For ε > 0 small let (xε, p̂ε, qε) be a maximum point of the map

(x, p̂′, q) → w∗(x, p̂′, q)− φ(x)− 1
2ε
|p̂′ − p̂|2 + εσ(q)− 1

2ε
|q − q̄|2 ,

where σ(q) =
∑

j ln(qj(1− qj)). We note that such a maximum point exists because w∗ has

at most a linear growth with respect to p̂′ and φ is coercive. From standard arguments, we

have that qε ∈ Int(∆(J)) and that (xε, p̂ε, qε) → (x̄, p̂, q̄) as ε → 0. From the definition of

(xε, p̂ε, qε) we have

w∗(x, p̂′, q) ≤ φ(x) + 1
2ε |p̂

′ − p̂|2 − εσ(q) + 1
2ε |q − q̄|2

+w∗(xε, p̂ε, qε)− φ(xε)− 1
2ε |p̂ε − p̂|2 + εσ(qε)− 1

2ε |qε − q̄|2
(3.10)

Hence, for any (x, p, q) we have

w(x, p, q) ≥ −φ(x) + maxp̂′
{
p.p̂′ − 1

2ε |p̂
′ − p̂|2

}
+ εσ(q)− 1

2ε |q − q̄|2

−w∗(xε, p̂ε, qε) + φ(xε) + 1
2ε |p̂ε − p̂|2 − εσ(qε) + 1

2ε |qε − q̄|2

≥ −φ(x) + p.p̂ + ε
2 |p|

2 + εσ(q)− w∗(xε, p̂ε, qε)− 1
2ε |q − q̄|2

+φ(xε) + 1
2ε |p̂ε − p̂|2 − εσ(qε) + 1

2ε |qε − q̄|2

(3.11)

Let pε = 1
ε (p̂ε − p̂). From (3.10) we have that

pε ∈ ∂−p̂ w∗(xε, p̂ε, qε) ⊂ ∆(I) . (3.12)

We note that pε → p̄ as ε → 0 because (xε, p̂ε, qε) → (x̄, p̂, q̄) and ∂−p̂ w∗(x̄, p̂, q̄) = {p̄}.
Moreover (3.12) also implies that inequality (3.11) is an equality at (xε, pε, qε). Since w is

a supersolution of (1.1) and since the right-hand side of (3.11) is strictly convex in p and

qε ∈ Int(∆(J)), we get

w + H(xε,−Dφ,−D2φ, pε, qε) ≥ 0 at (xε, pε, qε) .

Letting ε → 0 gives the desired result. 2

4 Restriction of solutions

In this section, we show that the restriction of a solution of (1.1) to any face of ∆(I) or

∆(J) is still a solution. For this, we use the following conventions. If I ′ ⊂ {1, . . . , I}, we
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denote by ∆(I ′) the set

∆(I ′) = {p ∈ ∆(I) | pi = 0 if i /∈ I ′} .

We identify ∆(I ′) with ∆(|I ′|) (where |I ′| is the cardinal of I ′).

Proposition 4.1 Let w be a subsolution (resp. supersolution, solution) of (1.1). Let I ′

and J ′ be a subsets of {1, . . . , I} and {1, . . . , J}. Then the restriction of w to ∆(I ′) and

∆(J ′) is still a subsolution (resp. supersolution, solution) of (1.1) in IRN ×∆(I ′)×∆(J ′).

Remarks :

1. In particular, if w is a solution of (1.1), then, for any i ∈ I and j ∈ J , the map

x → w(x, ei, e
′
j) is a supersolution of the usual Hamilton-Jacobi equation

w + H(x,Dw,D2w) = 0

where (ei) and (e′j) are the standard basis of IRI and IRJ .

2. The result extends with the same proof to evolution equations and to equations stated

in bounded domains in the x variable.

Proof : Let w′ be the restriction of w and assume that (x, p′, q′) → w′(x, p′, q′)−φ(x, p′, q′)

has a maximum at some point (x̄, p̄′, q̄′) ∈ Int(∆(I ′)) × ∆(J ′) for some smooth function

φ : IRN ×∆(I ′)×∆(J ′). Without loss of generality we can assume that

w′(x, p′, q′) < φ(x, p′, q′) ∀(x, p′, q′) ∈ ∆(I ′)×∆(J ′)

with an equality at (x̄, p̄′, q̄′). We also suppose that there is some α > 0 such that

λmax

(
q̄′,

∂2φ

∂q2
(x̄, p̄′, q̄′)

)
≤ −2α . (4.13)

Then we have to prove that

w′ + H(x,Dφ,D2φ) ≤ 0 and λmin

(
p̄′,

∂2φ

∂p2

)
≥ 0

at (x̄, p̄′, q̄′). Let µ ∈ IRI and ν ∈ IRJ be such that µi = 0 if i ∈ I ′, µi = 1 otherwise and

νj = 0 if j ∈ J ′, µj = 1 otherwise. For (p, q) ∈ ∆(I) ×∆(J) we denote by Π1 and Π2 the

projections of p and q onto ∆(I ′) and ∆(J ′) respectively. Note that

Π1(p)i =

{
pi + (

∑
j /∈I′ pj)/|I ′| if i ∈ I ′

0 otherwise
and Π2(q)i =

{
qi + (

∑
j /∈J ′ qj)/|J ′| if j ∈ J ′

0 otherwise

10



where |I ′| and |J ′| denote the cardinal of I ′ and J ′. Since w is k−Lipschitz continuous with

respect to p and q uniformly with respect to x, we have

w(x, p, q) ≤ w′(x, Π1(p),Π2(q)) + (k + 1)(|Π1(p)− p|+ |Π2(q)− q|)

with equality only at (x̄, p̄′, q̄′). So, for any (p, q) ∈ ∆(I)×∆(J), we get

w(x, p, q) ≤ φ(x,Π1(p),Π2(q)) + 2(k + 1)(〈ν, p〉+ 〈µ, q〉)

(with equality only at (x̄, p̄′, q̄′)) because

|Π1(p)− p| ≤
∑
i∈I′

|Π1(p)i − pi|+
∑
j /∈I′

pi = (1 + 1/|I ′|)
∑
j /∈I′

pi ≤ 2〈ν, p〉 .

Let now ε > 0 be small and let us look at the problem

max
x ∈ IRN ,

(p, q) ∈ ∆(I)×∆(J)

w(x, p, q)− {φ(x, Π1(p),Π2(q)) + 2(k + 1)(〈ν, p〉+ 〈µ, q〉)− εσ(p)}

where

σ(p) =
∑

i∈I\I′
ln(pi(1− pi)) .

For ε sufficiently small, this problem has a maximum (xε, pε, qε) which converges to (x̄, p̄′, q̄′)

as ε → 0. Moreover, from the definition of σ and the fact that p̄′ ∈ Int(∆(I ′)), we have

pε ∈ Int(∆(I)). Since w is a subsolution, we get

max

{
min

{
w + H(x,Dφ̃,D2φ̃) ; −λmax

(
qε,

∂2φ̃

∂q2

)}
; −λmin

(
pε,

∂2φ̃

∂p2

)}
≤ 0 (4.14)

at (xε, pε, qε), where

φ̃(x, p, q) = φ(x,Π1(p),Π2(q)) + 2(k + 1)(〈ν, p〉+ 〈µ, q〉)− εσ(p) .

Note that Π1 is affine in ∆(I) and that Π1(p′) = p′ on ∆(I ′). Since σ(p) does not depend

on pi for i ∈ I ′, we get

lim infε→0 λmin

(
pε,

∂2φ̃
∂p2 (xε, pε, qε)

)
≤ lim infε→0 minz∈T∆(I′)(p̄

′)\{0}〈∂2φ̃
∂p2 (xε, pε, qε)z, z〉/|z|2

= lim infε→0 minz∈T∆(I′)(p̄
′)\{0}〈∂2φ

∂p2 (xε,Π1(pε),Π2(qε))z, z〉/|z|2

= λmin

(
p̄′, ∂2φ

∂p2 (x̄, p̄′, q̄′)
)

11



Since from (4.14),

λmin

(
pε,

∂2φ̃

∂p2
(xε, pε, qε)

)
≥ 0 ,

we get

λmin

(
p̄′,

∂2φ

∂p2
(x̄, p̄′, q̄′)

)
≥ 0 .

Moreover, since Π2 is affine in ∆(J) and Π2(q) ∈ ∆(J ′) for any q ∈ ∆(J) and since (4.13)

holds, we have, for any z ∈ T∆(J)(qε)\{0} and at (xε, pε, qε)

〈∂
2φ̃

∂q2
z, z〉 = 〈∂

2φ

∂q2
dΠ2(qε)(z), dΠ2(qε)(z)〉 ≤ −α|dΠ2(qε)(z)|2

as soon as ε is small enough. We note that z ∈ T∆(J)(qε)\{0} implies that
∑

i zi = 0, so

that dΠ2(qε)(z) cannot vanish unless z = 0. So

λmax

(
qε,

∂2φ̃

∂q2
(xε, pε, qε)

)
< 0 .

Then (4.14) implies that

w + H(x,Dφ̃,D2φ̃) ≤ 0 at (xε, pε, qε).

We get the desired inequality by letting ε → 0. 2

5 A comparison principle

Let H : IRN × IRN × SN ×∆(I)×∆(J) → IR be continuous and satisfy

H(y, ξ2, X2, p, q)−H(x, ξ1, X1, p, q) ≤
ω
(
|ξ1 − ξ2|+ a|x− y|2 + b + |x− y|(1 + |ξ1|+ |ξ2|)

) (5.15)

where ω is continuous and non decreasing with ω(0) = 0, for any a, b ≥ 0, (p, q) ∈ ∆(I) ×
∆(J), x, y, ξ1, ξ2 ∈ IRN and X1, X2 ∈ SN such that(

X1 0

0 −X2

)
≤ a

(
I −I

−I I

)
+ bI

In this section we give a proof of following result:
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Theorem 5.1 Let us assume that H satisfies the structure condition (5.15). Let w1 be a

bounded, uniformly continuous subsolution of (1.1) which is uniformly Lipschitz continuous

w.r. to p and q and w2 be a bounded, uniformly continuous supersolution of (1.1) which is

uniformly Lipschitz continuous w.r. to p and q. Then

w1(x, p, q) ≤ w2(x, p, q) ∀(x, p, q) ∈ IRN ×∆(I)×∆(J) .

Proof of Theorem 5.1 : Quite surprizingly, we have to do the proof by induction on

|I| + |J |. For |I| + |J | = 2, i.e., when (1.1) reduces to the ordinary Hamilton-Jacobi

equation

wt + H(x,Dw,D2w) = 0 in IRN ,

then the result holds from standard theory of viscosity solutions (see [5]). We now assume

that the result holds true whenever |I| + |J | ≤ n, for some n ≥ 2. Let I, J be such

that |I| + |J | = n + 1, and let w1 and w2 be as in the Theorem. From Proposition 4.1

the restriction of w1 and w2 to any face of ∆(I) and ∆(J) is still a subsolution (resp.

supersolution) of (1.1). From the recurrence condition, this implies that

w1 ≤ w2 on IRN × [(∂∆(I)×∆(J)) ∪ (∆(I)× ∂∆(J))] . (5.16)

We now start the proof of the inequality w1 ≤ w2 in IRN × ∆(I) × ∆(J) in the usual

way, by assuming that

sup
x,p,q

(w1 − w2) > 0 .

Since w1 and w2 are uniformly continuous and bounded, classical arguments show that, for

ε, α > 0,

Mε,α := sup
x,y,p,q

{
w1(x, p, q)− w2(y, p, q)− (

|x− y|2

2ε
+

α

2
(|x|2 + |y|2))

}
(5.17)

is finite and achieved at a point (x̄, ȳ, p̄, q̄). One can also show that

lim
ε,α→0+

Mε,α = sup
x,p,q

(w1 − w2) (5.18)

and that
|x̄− ȳ|2

ε2
, α|x̄|2 , α|ȳ|2 ≤ 2M∞ (5.19)

where M∞ = |w1|∞ + |w2|∞. We also note that, because of (5.16), for any maximum point

(x̄, ȳ, p̄, q̄) of (5.17), one has (p̄, q̄) ∈ Int(∆(I) ×∆(J)) as soon as Mε,α > 0 (i.e., for ε and

α small enough).
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We now introduce a new penalization: For β > 0 and δ > 0 small, the problem

Mε,α,δ := max
x, y ∈ IRN

(p, q), (p′, q′) ∈ ∆(I)×∆(J)

w1(x, p, q)− w2(y, p′, q′)− |x− y|2

2ε

−α

2
(|x|2 + |y|2)− |(p, q)− (p′, q′)|2

2δ
+

β

2
(|p|2 + |p′|2 + |q|2 + |q′|2)

(5.20)

has a maximum (x̃, ỹ, p̃, q̃, p̃′, q̃′). Since as β, δ → 0, (x̃, ỹ, p̃, q̃, p̃′, q̃′) converges (up to sub-

sequences) to some (x̄, ȳ, p̄, q̄, p̄, q̄) where (x̄, ȳ, p̄, q̄) is a maximum point of (5.17), one has

(p̃, q̃), (p̃′, q̃′) ∈ Int(∆(I))× Int(∆(J)) for β and δ sufficiently small.

From the usual maximum principle (see [5]), for any σ ∈ (0, 1) there are X1, X2 ∈ SN ,

(P1, Q1), (P2, Q2) ∈ SI ×SJ such that (denoting by P ′
i and Q′

i the restrictions of Pi and Qi

to the spaces TI = {z ∈ IRI |
∑

i zi = 0} and TJ = {z ∈ IRJ |
∑

i zi = 0}):

(
(x̃− ỹ)

ε
+ αx̃,

(p̃− p̃′)
δ

− βp̃,
(q̃ − q̃′)

δ
− βq̃, X1, P

′
1, Q

′
1) ∈ D

2,−
w1(x̃, p̃, q̃) ,

(−(ỹ − x̃)
ε

− αỹ,−(p̃′ − p̃)
δ

+ βp̃′,−(q̃′ − q̃)
δ

+ βq̃′, X2, P
′
2, Q

′
2) ∈ D

2,+
w2(ỹ, p̃′, q̃′)

and

diag

((
X1 0

0 −X2

)
,

(
P ′

1 0

0 −P ′
2

)
,

(
Q′

1 0

0 −Q′
2

))
≤ A + σA2

on IR2N × (TI)2 × (TJ)2, where

A = diag

(
1
ε

(
IN −IN

−IN IN

)
+ αI2N ,

1
δ

(
II −II

−II II

)
− βI2I ,

1
δ

(
IJ −IJ

−IJ IJ

)
− βI2J

)

Hence (
X1 0

0 −X2

)
≤ (

1
ε

+ 2
σ

ε2
+

2ασ

ε
)

(
IN −IN

−IN IN

)
+ (α + α2σ)I2N (5.21)

and

P ′
1 − P ′

2 ≤ 2(−β + σβ2)II and Q′
1 −Q′

2 ≤ 2(−β + σβ2)IJ (5.22)

on TI and TJ . Since w1 is a subsolution of (1.1) we have

max
{

min
{

w1 + H

(
x̃,

x̃− ỹ

ε
+ αx̃,X1, p̃, q̃

)
; −λmax (q̃, Q1)

}
; −λmin (p̃, P1)

}
≤ 0 .

(5.23)
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In particular λmin (p̃, P1) ≥ 0 and, since p̃ ∈ Int(∆(I)), we get from (5.22):

λmin

(
p̃′, P2

)
> 0 . (5.24)

In the same way, since w2 is a supersolution of (1.2) in the dual sense, we have

max
{

min
{

w2 + H

(
ỹ,−(ỹ − x̃)

ε
− αỹ, X2, p̃

′, q̃′
)

;−λmax

(
q̃′, Q2

)}
;−λmin

(
p̃′, P2

)}
≥ 0 .

which, thanks to (5.24), entails that

w2 + H

(
ỹ,−(ỹ − x̃)

ε
− αỹ, X2, p̃

′, q̃′
)
≥ 0

and

λmax

(
q̃′, Q2

)
≤ 0 .

Since q̃′ ∈ Int(∆(J)), putting this inequality into (5.22) gives

λmax (q̃, Q1) < 0 ,

which, combined with (5.23) yields to

w1 + H

(
x̃,

x̃− ỹ

ε
+ αx̃,X1, p̃, q̃

)
≤ 0 .

We now let δ → 0 and β → 0 to obtain

w1(x̄, p̄, q̄) + H

(
x̄,

x̄− ȳ

ε
+ αx̄,X1, p̄, q̄

)
≤ 0 (5.25)

and

w2(ȳ, p̄, q̄) + H

(
ȳ,−(ȳ − x̄)

ε
− αȳ, X2, p̄, q̄

)
≥ 0 (5.26)

for some maximum point (x̄, ȳ, p̄, q̄) of (5.17). Using the structure condition (5.15) on H,

and plugging estimates (5.18), (5.19) and (5.21) into (5.25) and (5.26) yields to a contra-

diction for ε and α sufficiently small as in [5]. 2

6 Examples

6.1 Convex hull of a Lipschitz map

In [9] it is proved that, if g : IRN → IR is continuous, then the convex hull u = V ex(g) of g

is a solution of

max
{

u− g ; −λmin

(
∂2u

∂p2

) }
= 0 . (6.27)

As a consequence of Theorem 5.1 we get
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Proposition 6.1 Let g : ∆(I) → IR be Lipschitz continuous. Then u = V exp(g) is the

unique Lipschitz continuous viscosity solution of (6.27).

Remark : In IRN the solution of equation (6.27) is never unique. Indeed, any affine

map below g satisfies (6.27).

Proof : Following [9] we know that u is a solution of (6.27). Moreover it is Lipschitz

continuous since g is Lipschitz continuous and we are working on the simplex ∆(I). This

this equation has at most one Lipschitz continuous solution this proves the characterization.

2

6.2 The Φ operator of Mertens-Zamir

The above arguments extend to the Φ operator of Mertens-Zamir [8]. It is a mapping from

the set Lip(∆(I)×∆(J)) of Lipschitz continuous function on ∆(I)×∆(J) into itself defined

by: for any g ∈ Lip(∆(I)×∆(J)), u = Φ(g) is the unique solution to

u = Vexp (max{u, g}) = Cavq (min{u, g}) ,

where Vexp(φ) and Cavq(φ) denote the convex and the concave enveloppes of φ with respect

to p and q respectively.

Proposition 6.2 For any g ∈ Lip(∆(I)×∆(J)), u = Φ(g) is the unique Lipschitz contin-

uous solution of the equation

min
{

max
{

w − g ; −λmin

(
∂2w

∂p2

)}
; −λmax

(
∂2w

∂q2

)}
= 0 (6.28)

Proof : From Theorem 5.1 equation (6.28) has at most one Lipschitz continuous

solution. Hence it is enough to show that u = Φ(g) is a viscosity solution. We only

prove that it is a supersolution: the fact that it is a subsolution can be established in

the same way. Let φ be a smooth test function such that u ≥ φ in ∆(I) × ∆(J) with

an equality at (p̄, q̄) ∈ ∆(I) × Int(∆(J)). Since u is concave and q̄ ∈ Int(∆(J)) we

get λmax

(
q̄, ∂2φ

∂q2 (p̄, q̄)
)
≤ 0. Let us assume that λmin

(
p̄, ∂2φ

∂p2 (p̄, q̄)
)

> 0 and prove that

(u− g)(p̄, q̄) ≥ 0. Indeed, since u = V exp(max{u, g}) is strictly convex at (p̄, q̄), one neces-

sarily get that u(p̄, q̄) = max{u(p̄, q̄), g(p̄, q̄)}. Hence u(p̄, q̄) ≥ g(p̄, q̄). 2
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