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ABSTRACT 

In this paper I investigate several offline and online data 

transfer scheduling problems and propose efficient algo-

rithms and techniques for addressing them. In the offline 

case, I present a novel, heuristic, algorithm for scheduling 

files with divisible sizes on multiple disjoint paths, in order 

to maximize the total profit (the problem is equivalent to the 

multiple knapsack problem with divisible item sizes). I then 

consider a cost optimization problem for transferring a se-

quence of identical files, subject to time constraints imposed 

by the data transfer providers. For the online case I propose 

an algorithmic framework based on the block partitioning 

method, which can speed up the process of resource alloca-

tion and reservation. 

1. INTRODUCTION 

The importance of data transfer scheduling techniques in 

achieving good communication performance has increased 

recently, with the world-wide development and deployment 

of distributed systems, services and applications. In this pa-

per I study several offline and online data transfer schedul-

ing problems and propose novel, efficient techniques for 

addressing these problems. First, I present an efficient heu-

ristic algorithm for scheduling files with divisible sizes on 

multiple disjoint paths, in order to maximize the total profit. 

This problem is equivalent to the multiple knapsack problem 

with divisible item sizes. Then, I present an optimal algo-

rithm for minimizing costs when a sequence of identical 

files must be transferred from a source to a destination, sub-

ject to time constraints imposed by the data transfer provid-

ers. I also propose an online algorithmic framework for the 

block partitioning method, which can be used to efficiently 

handle online resource allocation and reservation requests. 

The rest of this paper is organized as follows: in Sections 2 

and 3 I discuss the offline scheduling problems I mentioned 

above and present the developed solutions. In Section 4 I 

propose an algorithmic framework for online resource allo-

cation and reservation. In Section 5 I discuss related work 

and in Section 6 I draw some conclusions. 

2. MAXIMUM PROFIT DATA TRANSFERS 

We are given n file transfer requests. For each request i, its 

file size (szi>0) and profit (pi>0) are known. Each file must 

be transferred between the same source and destination. We 

consider the file sizes sorted in ascending order sz1≤sz2≤… 

≤szn. The file sizes are integers and divisible, i.e. szi=qi·szi-1 

(2≤i≤n), where qi≥1 is an integer number. Each file transfer 

must be scheduled non-preemptively on one of the k paths 

available. The paths are disjoint and identical, except that 

each path j is available only during a time interval [0,Tj]. All 

the paths have unit transfer rate, so the time taken to transfer 

a file with size szi is szi time units. A file transfer request 

may be accepted or rejected. Accepting a request i means 

assigning it a path j and a time interval [t,t+szi) fully in-

cluded in [0,Tj]. At any moment, at most one file can be 

transferred on a path, i.e. the time intervals of the requests 

assigned to the same path must be disjoint. The total profit is 

the sum of the profits brought by each accepted request (if a 

request is rejected, it contributes nothing to the total profit). 

Obviously, we would like to accept those requests which 

bring a maximum total profit. This problem is equivalent to 

the multiple knapsack problem with divisible item sizes. 

Each path j is a knapsack of a given capacity Tj. The file 

transfer requests are items whose sizes are divisible and we 

are interested in finding a maximum profit subset of items, 

such that each item in the set is placed in some knapsack and 

the sum of the item sizes in any knapsack does not exceed 

its capacity. The multiple knapsack problem is NP-hard, thus 

a polynomial time algorithm is unlikely to exist. Even for 

this particular case with divisible item sizes, we present only 

a pseudopolynomial O(n·S·min{n,S·log(S)}) time algorithm, 

where S is the maximum size of an item. A direct solution 

obtained by extending the standard dynamic programming 

algorithm for the single knapsack case takes O(n·max{Tj}
k
) 

time (where k is the number of knapsacks) and computes a 

multidimensional array Pm[i,s1,s2,…,sk]=the maximum profit 

which can be achieved by choosing a subset of the first i 

items and filling each knapsack j up to size sj (at most). We 

have Pm[0,s1,…,sk]=0 (for all the values sj) and 
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For Pm[i,s1,…,sk], the choices are to either ignore the i
th
 

item or place it in one of the k knapsacks (the item can be 

placed in knapsack j if sj≥szi). The maximum profit is given 



by Pm[n,T1,…,Tk]. However, this solution is inefficient. Fater 

algorithms make use of heuristics. The most natural heuristic 

is the following one, based on a greedy algorithm: 

Greedy1MultipleKnapsack(item_set, knapsack_set): 
k=|knapsack_set|  

fill the first knapsack optimally with a subset item_sol of the items 

if (k=1) then 

return profit(item_sol) 

else if (|item_set \ item_sol|>0) then 

  return profit(item_sol) + Greedy1MultipleKnapsack(item_set \  

item_sol,  knapsack_set \ {first knapsack})  

Other heuristic algorithms consist of sorting the items 

according to some criterion (e.g. profit/size) and inserting 

them using the First Fit heuristic. I will now present a very 

different approach, which provides the optimal solution in 

many cases. We will split the items into groups: two items 

belong to the same group if they have the same size; thus, all 

the items in group i have size sgi. We consider the groups 

sorted in decreasing order of the item sizes, i.e. 

sg1>sg2>…>sgG (where G is the total number of distinct item 

sizes). Within a group i, the items are sorted in decreasing 

order of their profits, i.e. pri,1≥pri,2≥…≥pri,ni, where ni is the 

number of items in group i and pri,j is the profit of the j
th
 item 

in the i
th
 group. In the first step of the algorithm, we will in-

sert the items into the knapsacks using the First Fit heuristic. 

The items are traversed in increasing order of the group 

number and, within a group, in increasing order of the item 

number. For each item (i,j) (the j
th
 item in the i

th
 group), if it 

can be inserted into a knapsack p without exceeding its ca-

pacity, we will insert it into p. The knapsack index p is not 

important. Because the item sizes are divisible, we will be 

able to insert the same set of items during this first stage, no 

matter which knapsack p we choose for a specific item. We 

will then successively improve the initial solution, by replac-

ing items with subsets of items which could not be inserted 

during the first stage and whose total profit is larger than the 

individual profit of the replaced item. The algorithm is 

sketched below: 

MultipleKnapsackWithDivisibleItemSizes(): 
for i=1 to G do 

for j=1 to ni do 

  knapsack[(i,j)]=0 

    for p=1 to k do 

      if (Tp≥sgi) then // insert item (i,j) into knapsack p 

        knapsack[(i,j)]=p; Tp=Tp-sgi; break 

improved_solution=true 

while (improved_solution) do 

  smax=the maximum size of an item inside a knapsack 

nitems=0 

for i=G downto 1 do 

  if (sgi<smax) then 

    nchosen=0; j=firstItem(i) 

    while ((isValidItem(i, j)) and (nchosen<floor(smax/sgi))) do 

      nitems=nitems+1; cand[nitems]=(i,j) 

        csz[nitems]=sgi ; nchosen=nchosen+1 

        j=nextItem(i, j) 

Pmax[i,C]=0, for  0≤i≤nitems, 0≤C≤smax 

for i=1 to nitems do 

  Pmax[i,C]=Pmax[i-1,C], for any 0≤C≤smax 

  for C=csz[i] to smax do 

    Pmax[i,C]=max{Pmax[i-1,C], Pmax[i-1,C-csz[i]]+prcand[i]} 

maxdif=max{Pmax[nitems,sgi]-pri,j | knapsack[(i,j)]>0} 

if (maxdif>0) then 

  (ir,jr)=the item to be replaced (for which maxdif is maximum) 

  Q=the subset of items in cand, corresponding to Pmax[nitems,sgir] 

  for (i,j) in Q do knapsack[(i,j)]= knapsack[(ir,jr)] 

  knapsack[(ir,jr)]=-1; improved_solution=true 

else improved_solution=false 

At the end, for each item (i,j) we have three options: 

 knapsack[(i,j)]>0, indicating the knapsack into which 

the item is placed 

 knapsack[(i,j)]=-1 : the item was inserted inside a knap-

sack during the first stage, but was replaced afterwards 

 knapsack[(i,j)]=0 : the item was never inserted inside 

any knapsack 

During the second stage of the algorithm, we choose 

nitems items which have never been inserted into any knap-

sack and compute the maximum profit obtained by choosing 

a subset of these items whose sum is sum (for each sum=1 to 

smax); these values are stored in Pmax[nitems, sum]. We then 

replace an item (ir,jr) from a knapsack for which the profit 

increase Pmax[nitems, sgir]-prir,jr is maximum. The replaced 

item is ignored from now on, as it cannot be part of an opti-

mal solution. By maintaining a linked list with the items in 

each group, from which we remove (in O(1) time) an item 

when it is inserted into a knapsack, we can implement the 

firstItem, nextItem and isValidItem functions in O(1) time. 

The optimality of the algorithm is justified by the following 

facts: any valid solution for the multiple knapsack can be 

successively improved to an optimal solution by replacing a 

subset of items S1 in one of the knapsacks with a subset of 

items S2 outside of any knapsack. Because the item sizes are 

divisible, the set S1 can always contain only one item. The 

first stage of the algorithm takes O(n·k) time and O(n) items 

can be inserted then. The while loop can be executed a num-

ber of times equal to the number of items inserted in the first 

stage. Each iteration of the while loop takes O(nitems·smax) 

time. Two upper limits for nitems are O(n) and 

.log(smax))O(smax
i

smax1-smax

1i
 

 

Since smax is bounded by S, the largest size of an item, 

the overall time complexity is O(n·S·min{n,S·log(S)}). 

I compared the proposed algorithm with three other al-

gorithms: the single knapsack extension to multiple knap-

sacks, the Greedy1MultipleKnapsack algorithm and a greedy 

algorithm which sorted the items according to several criteria 

and then used the First Fit heuristic. I considered many test 

scenarios and most of them were solved optimally by the 

new algorithm. However, I was also able to find test cases 

where the algorithm could not find the optimal solution. 

However, in terms of performance (quality of the obtained 

solution and running time), the algorithm I proposed is a 

clear winner, followed by the Greedy1MultipleKnapsack 

algorithm. 

3. MINIMUM COST DATA TRANSFERS 

We are given a sequence of n similar files, which need to be 

sent consecutively from a source to a destination. The trans-

fer of each file takes 1 time unit (thus, file i is transferred 

from time i-1 to time i). There are k data transfer providers; 

a provider j charges a fixed price Cj per time unit for trans-

ferring data and leases his services for at most Tmax,i time 

units. Because of several factors, each provider j asks that 

the leased time interval includes a specified time interval 

[T1,j, T2,j) (T2,i-T1,i≤Tmax,i). Since files cannot be transferred 

simultaneously, the time intervals rented from each provider 

will be disjoint. We may also use a default network link for 

transferring a file i, which would cost us Li. Of course, we 

are interested in paying the minimum total cost for the file 



transfers. We present here an O(k·n) dynamic programming 

algorithm for solving this problem. We will sort the data 

transfer providers in increasing order of T2,i, i.e. 

T2,1≤T2,2≤…≤T2,k. We will compute the values Cmin[i,j]=the 

minimum total cost for sending the first j files using a subset 

of the first i providers (in the sorted order). Initially, 

Cmin[0,0]=0 and Cmin[0,j]=+∞, for j>0. For i>0, we have: 
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When computing Cmin[i,j], we have the choice of using 

the services of the i
th
 data transfer provider or not. If we do 

not use them, then the cost is equal to min{Cmin[i-1,j], 

Cmin[i,j-1]+Lj}. If we want to use the i
th
 provider, but j vio-

lates the time constraints imposed by the provider ((j>T1,i 

+Tmax,i) or (j<T2,i)), then the cost is +∞; otherwise, j is the end 

time moment of the leased time interval and we need to 

choose the first time moment of the interval (p). Using the 

equation above, an O(k·n
2
) algorithm can be implemented 

easily (taking O(n) time for each pair (i,j)). We will show 

how to compute all the values Cmin[i,j] in O(n) time for each 

value of i (thus, in O(1) time for every pair (i,j)). For each 

1≤i≤k, we are only interested in the values of j within the 

interval [T2,i, T1,i+Tmax,i] (the others are easy to handle); thus, 

we will compute an array minpi, where  

 
ii1,

Tpq
i

Cp)(Tp]1,Cmin[imin[q]minp
i1,




 

We have minpi[T1,i]=Cmin[i-1,T1,i]. Each of the other 

values can be computed in O(1) time (in order, from T1,i-1 

downto T2,i-Tmax,i): 

 
ii1,ii

Cq)(Tq]1,Cmin[i1],[qminpmin[q]minp  . 

After computing the array minpi in O(n) time, we can 

compute in O(1) time each value Cmin[i,j], with j in [T2,i, 

T1,i+Tmax,i]: Cmin[i,j]=min{Cmin[i-1,j], Cmin[i,j-1]+Lj, (j-

T1,i)·Ci+minpi[j-Tmax,i]}. The total cost is Cmin[k, n]. 

4. ONLINE RESOURCE MANAGEMENT 

We consider the following scenario: a resource manager 

receives resource allocation and reservation requests (data 

transfer requests) which need to be processed in real time (as 

soon as they arrive or in batches). A request asks for a cer-

tain amount of resources (e.g. bandwidth), subject to several 

types of time constraints (e.g. fixed duration, earliest start 

time, latest finish time). Many models and algorithms have 

been developed for online scheduling problems [1]. We con-

sider here the following assumptions: time is divided into 

discrete, equally-sized time slots and the resource manager 

must handle many requests simultaneously, providing low 

response times. Because of the stringent time constraints, the 

scheduler needs some efficient data structures to help it 

check if the request’s constraints can be satisfied and to 

choose appropriate reservation parameters (if the request is 

accepted). In order to speed up the processing of requests, 

we introduce an algorithmic framework for the block parti-

tioning method: We have an array of n cells, where each cell 

has a value vi (each cell corresponds to a time slot). We will 

divide the n cells into n/k blocks of size k (we assume that k 

is a divisor of n; if it is not, n can be extended to be a multi-

ple of k or the last block may contain fewer cells). The 

blocks are numbered from 0 to (n/k)-1. The cells 0, …, k-1 

belong to block 0, the cells k, …, 2·k-1 belong to block 1, 

…, the cells (i-1)·k, …, (i·k)-1 belong to block i-1. Thus, 

cell j belongs to block (j div k) (integer division). For sim-

plicity, we store for each block B the first and last cells of 

the block (left[B] and right[B]). Using this partitioning, we 

can support several update and query functions in O(k+n/k) 

time. By choosing k=sqrt(n), we have O(k+n/k)=O(sqrt(n)). 

Queries consist of computing a function on the values of a 

range of cells [a,b] (range query) or on retrieving the value 

of a single cell (point query). 

Range Query(a, b): compute qFunc(va, va+1, …, vb). 

Analogously, we have point and range updates: 

Range Update(u, a, b): vi=uFunc(u, vi), a≤i≤b. 

The qFunc function must be binary and associative, i.e. 

qFunc(va,..,vb)=qFunc(va,qFunc(va+1,..,qFunc(vb-1, vb)..)) and 

qFunc(a,qFunc(b,c))=qFunc(qFunc(a,b),c). We must also 

have uFunc(x,y)=uFunc(y,x). Only values vi with O(1) size 

are considered (numbers and tuples with a fixed number of 

elements). uFunc and qFunc must be able to handle uninitia-

lized arguments. If one of their arguments is uninitialized, 

they must simply return the other argument; this part will be 

intentionally left out of the functions’ descriptions. The algo-

rithmic framework consists of the functions from Table 1. 

Table 1. Algorithmic Framework Functions 

Update Functions Query Functions 

BPpointUpdate 

BPrangeUpdate 

BPrangeUpdatePoints 

BPrangeUpdatePartialBlock 

BPrangeUpdateFullBlock 

BPpointQuery 

BPrangeQuery 

BPrangeQueryPoints 

BPrangeQueryPartialBlock 

BPrangeQueryFullBlock 

In order to perform a range update, we will call the 

BPrangeUpdate function with the corresponding parameters 

(the update value u and the update interval [a,b]). This func-

tion splits the update interval into three zones: the first block 

Ba intersected by the interval (containing the cell a), the last 

block Bb intersected by the interval (containing the cell b) 

and all the blocks in between Ba and Bb (the inner blocks). 

The blocks Ba and Bb may not be fully contained inside the 

interval: they will be updated in O(k) time (partial update). 

All the inner blocks are fully contained inside [a,b]: they will 

be updated in O(1) time each (full update). Since there are 

O(n/k) such blocks, the overall complexity of a range update 

is O(k+n/k). The range query function (BPrangeQuery) 

works similarly. For each block B we will maintain two val-

ues: uagg and qagg. uagg is the aggregate of the update pa-

rameters of the function calls which updated all the elements 

of B (for which B was an inner block). uagg is reset to an 

uninitialized value on each partial update of the block. qagg 

is the answer to the query function called on all the elements 

of B. The point update and query functions are: BPpointUp-

date and BPpointQuery. The framework also uses a “multi-

plication” operator mop, which computes the effects of an 

update operation upon the query result on a range of cells. 

This operator must exist when range queries and range up-

dates are used together, but can be ignored otherwise. When 

the data structure is initialized, the uagg value of each block 

is set to uninitialized (qagg is initialized with the query result 

on the range of the block’s cells). This framework is similar 

to the segment tree framework introduced in [6] and can sup-

port all the combinations of point and range query and update 

functions mentioned there. 



BPpointUpdate(u, i): 
vi=uFunc(u,vi) 

B=the block to which the cell i belongs 

qagg[B]=BPrangeQueryPoints(left[B], right[B]) 

BPrangeUpdate(u, a, b): 
Ba, Bb=the blocks of cells a and b 

if (Ba=Bb) then 

  if ((a=left[Ba]) and (b=right[Ba])) then 

    BPrangeUpdateFullBlock(Ba, u) 

  else BPrangeUpdatePartialBlock(Ba, u, a, b) 

else 

  BPrangeUpdatePartialBlock(Ba, u, a, right[Ba]) 

  BPrangeUpdatePartialBlock(Bb, u, left[Bb], b) 

  for block=Ba+1 to Bb-1 do 

    BPrangeUpdateFullBlock(block, u) 

BPrangeUpdatePoints(u, a, b): 
for p=a to b do vp=uFunc(u, vp) 

BPrangeUpdatePartialBlock(B, u, a, b): 
BPrangeUpdatePoints(uagg[B], left[B], right[B])  

uagg[B]=uninitialized 

BPrangeUpdatePoints(u, a, b)  

qagg[B]=BPrangeQueryPoints(left[B], right[B]) 

BPrangeUpdateFullBlock(B, u): 
uagg[B]=uFunc(u, uagg[B]) 

qagg[B]=uFunc(mop(u, 1eft[B], right[B]), qagg[B]) 

BPpointQuery(i): 
B=the block to which the cell i belongs 

return uFunc(uagg[B], vi) 

BPrangeQuery(a, b): 
Ba, Bb=the blocks of cells a and b 

if (Ba=Bb) then 

  return BPrangeQueryPartialBlock(Ba, a, b) 

else 

  qa=BPrangeQueryPartialBlock(Ba, a, right[Ba]) 

  qb=BPrangeQueryPartialBlock(Bb, left[Bb], b) 

  q=uninitialized 

  for block=Ba+1 to Bb-1 do 

    q=qFunc(q, BPrangeQueryFullBlock(block)) 

return qFunc(qa, qFunc(q, qb)) 

BPrangeQueryPoints(a, b): 
q=uninitialized 

for p=a to b do q=qFunc(q, vp) 

return q 

BPrangeQueryPartialBlock(B, a, b): 
BPrangeUpdatePoints(uagg[B], left[B], right[B])  

uagg[B]=uninitialized 

return BPrangeQueryPoints(a, b) 

BPrangeQueryFullBlock(B): 
return qagg[B] 

In the case of point queries with range updates, only the 

uagg values are meaningful; similarly, only the qagg values 

are meaningful in the case of point updates with range que-

ries. Common update and query functions can be easily in-

tegrated into the framework. For example, with 

uFunc(x,y)=(x+y), qFunc(x,y)=(x+y) and mop(u,a,b)= u·(b-

a+1), we can support point and range sum queries, together 

with point and range addition updates. For uFunc(x,y)=x+y, 

qFunc(x,y)=min(x,y) and mop(u,a,b)=u, we can support 

point and range minimum (or maximum) queries, together 

with point and range addition updates. We can also consider 

point and range multiplication updates, uFunc(x,y)=x·y, with 

point and range queries: qFunc(x,y)=x·y (with 

mop(u,a,b)=u
b-a+1

), qFunc(x,y)=min(x,y) and qFunc(x,y)= 

(x+y) (with mop(u,a,b)=u). With mop(u,a,b)=u, we can 

support range queries and updates for some bit functions 

(where vi=0 or 1). For uFunc(x,y)=(x or y) and 

uFunc(x,y)=(x and y), we can have qFunc(x,y)=(x and y) 

and qFunc(x,y)=(x or y). For the and update, we can also 

have qFunc(x,y)=(x xor y). We can support range xor up-

dates and queries (uFunc(x,y) = qFunc(x,y)=(x xor y)), but 

with mop(u,a,b)=(if (((b-a+1) mod 2)=0) then 0 else u). In 

order to obtain any combination of bit functions, we notice 

that the result of a query depends only on the number of 0 

and 1 values (cnt0, cnt1) in the query range: if (cnt1>0) then 

or returns 1; if (cnt1 mod 2=1) then xor returns 1; if (cnt0=0) 

then and returns 1. Thus, we will work with (cnt0, cnt1) tu-

ples as values. We will also consider the conceptual values 

cvi, which are the numerical values we conceptually work 

with. We have vi=(1-cvi, cvi). A query asks for the number of 

0 and 1 conceptual values in the query range and an update 

changes this number according to the bit function used. Any 

combination of point and range queries and updates is sup-

ported with the functions below: 

bitTupleQuery((cnt0,x, cnt1,x), (cnt0,y, cnt1,y)): 
return (cnt0,x+cnt0,y, cnt1,x+cnt1,y) 

bitTupleUpdate((1-u, u), (cnt0, cnt1), func): 
if (func=and) and (u=0) then return (cnt0+cnt1, 0) 

else if (func=or) and (u=1) then return (0, cnt0+cnt1) 

else if (func=xor) and (u=1) then return (cnt1, cnt0) 

else return (cnt0, cnt1) 

If the update function has the effect of setting all the val-

ues in a range to the same value s (range set), we will again 

need to work with tuples: the values vi and the update pa-

rameters u will have the form (numerical value, 

time_stamp). We need to have a timestamp() function which 

returns increasing values upon successive calls. We can use 

a global counter as a time stamp, which is incremented at 

every call. The initial numerical values are assigned an ini-

tial time stamp and every update parameter gets a more re-

cent time stamp. The update function is: 

uFunc((wx, tx), (wy, ty)): 
if (tx>ty) then return (wx, tx) else return (wy, ty) 

With these definitions, a point query function call on a po-

sition i will return the last update parameter of an interval 

containing that position.  

A useful range query function (used together with point 

updates) is finding the maximum sum segment (interval of 

consecutive cells) fully contained in a range of cells [a,b] 

(see [9] for this problem without updates). Conceptually, the 

value of a cell i is a number cvi, but in the framework we will 

use tuples consisting of 4 values: (totalsum, maxlsum, maxr-

sum, maxsum). Assuming that these values correspond to an 

interval of cells [c,d], we have the following definitions: 


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
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



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






d

qp

p
1dqc

cvmaxmaxrsum  









r

qp

p

dr1-q
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In the framework, a value vi will be a tuple corresponding 

to the interval [i,i]. If cvi<0, then vi=(cvi, 0, 0, 0); otherwise, 

vi=(cvi, cvi, cvi, cvi). The point update function changes the 

value of cvi of a cell i and then recomputes vi. The qFunc 

function is given below: 

qFunc((tx,mlx,mrx,mx), (ty,mly,mry,my)): 

return (tx+ty , max{mlx , tx+mly}, max{mry , ty+mrx}, max{mx , my 

, mrx+mly}) 



We can use the range set update together with the range 

maximum sum segment query – this combination is not sup-

ported by the framework in [6]. Conceptually, each cell has a 

numerical value cvi. Practically, the framework’s values vi 

will be tuples of the following form (totalsum, maxlsum, 

maxrsum, maxsum, time_stamp). The update, query and mul-

tiplication functions are given below. We must notice that the 

fundamental combination (range set update, range sum 

query) is also solved. However, I could not find suitable 

function definitions for the combination (range addition up-

date, range maximum sum segment query). 

uFunc((totalx, mlx, mrx, mx, tx), (totaly, mly, mry, my, ty)): 
if (tx>ty) then return (totalx, mlx, mrx, mx, tx) 

else return (totaly, mly, mry, my, ty) 

qFunc((totalx, mlx, mrx, mx, tx), (totaly, mly, mry, my, ty)): 
return (totalx+totaly , max{mlx , totalx+mly}, max{mry , totaly+mrx}, 

max{mx, my , mrx+mly}, max{tx, ty}) 

mop((totalx, mlx, mrx, mx, tx), a, b): 
return ((b-a+1)·totalx, (b-a+1)·mlx, (b-a+1)·mrx, (b-a+1)·mx, tx) 

The framework’s behaviour can be improved by adding 

a dirty flag to each block. With the dirty flag, the qagg value 

will be recomputed only “on demand” and not after every 

point or partial block update. We only need to replace the 

functions BPpointUpdate, BPrangeUpdatePartialBlock and 

BPrangeQueryFullBlock with the following definitions: 

BPpointUpdate(u, i): 
vi=uFunc(u,vi) 

B=the block to which the cell i belongs 

dirty[B]=true 

BPrangeUpdatePartialBlock(B, u, a, b): 
BPrangeUpdatePoints(u, a, b)  

dirty[B]=true 

BPrangeQueryFullBlock(B): 
if (dirty[B]) then 

  BPrangeUpdatePoints(uagg[B], left[B], right[B])  

  uagg[B]=uninitialized 

  qagg[B]=BPrangeQueryPoints(left[B], right[B]) 

  dirty[B]=false 

return qagg[B] 

5. RELATED WORK 

Optimal high multiplicity scheduling algorithms for file 

transfers with divisible sizes, with the objective of minimiz-

ing the makespan, were presented in [2]. Related bin pack-

ing, knapsack and multiple knapsack problems were studied 

in [3,4,5]. Although the single knapsack problem with divisi-

ble item sizes was solved in [5], the corresponding multiple 

knapsack version does not seem to have been addressed so 

far. The algorithmic framework for the block partitioning 

technique is based on a similar framework for the segment 

tree data structure, presented in [6]. The block partitioning 

technique has been used in order to enhance the performance 

of range queries and updates in many domains, particularly 

in dynamic OLAP data cubes [7,8]. 

6. CONCLUSIONS 

In this paper I presented two efficient algorithms for two 

offline data transfer scheduling problems. The first one is 

equivalent to the multiple knapsack problem with divisible 

item sizes, for which I am unaware of any previous results. 

The second one is a minimum cost optimization problem, for 

which the proposed dynamic programming algorithm is op-

timal. For the online case I proposed an algorithmic frame-

work for the block partitioning technique. The framework 

allows to efficiently handle pairs of query and update opera-

tions whose usefulness is unquestionable in several classes of 

real-time resource managers and bandwidth brokers. 
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