
HAL Id: hal-00289575
https://hal.science/hal-00289575v1

Submitted on 22 Jun 2008 (v1), last revised 20 Dec 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Scheduling of File Transfers with Divisible Sizes
on Multiple Disjoint Paths

Mugurel Ionut Andreica

To cite this version:
Mugurel Ionut Andreica. Optimal Scheduling of File Transfers with Divisible Sizes on Multiple Disjoint
Paths. Proceedings of the IEEE Romania International Conference ”Communications”, 2008., Jun
2008, Bucharest, Romania. pp.155-158. �hal-00289575v1�

https://hal.science/hal-00289575v1
https://hal.archives-ouvertes.fr

OPTIMAL SCHEDULING OF FILE TRANSFERS WITH DIVISIBLE SIZES ON

MULTIPLE DISJOINT PATHS

Mugurel Ionut Andreica

Computer Science Department, Politehnica University of Bucharest

Splaiul Independentei 313, 060042, Bucharest, Romania

phone: + (40) 722803022, email: mugurel.andreica@cs.pub.ro

web: https://mail.cs.pub.ro/~mugurel.andreica

ABSTRACT

In this paper I investigate several offline and online data

transfer scheduling problems and propose efficient algo-

rithms and techniques for addressing them. In the offline

case, I present a novel, heuristic, algorithm for scheduling

files with divisible sizes on multiple disjoint paths, in order

to maximize the total profit (the problem is equivalent to the

multiple knapsack problem with divisible item sizes). I then

consider a cost optimization problem for transferring a se-

quence of identical files, subject to time constraints imposed

by the data transfer providers. For the online case I propose

an algorithmic framework based on the block partitioning

method, which can speed up the process of resource alloca-

tion and reservation.

1. INTRODUCTION

The importance of data transfer scheduling techniques in

achieving good communication performance has increased

recently, with the world-wide development and deployment

of distributed systems, services and applications. In this pa-

per I study several offline and online data transfer schedul-

ing problems and propose novel, efficient techniques for

addressing these problems. First, I present an efficient heu-

ristic algorithm for scheduling files with divisible sizes on

multiple disjoint paths, in order to maximize the total profit.

This problem is equivalent to the multiple knapsack problem

with divisible item sizes. Then, I present an optimal algo-

rithm for minimizing costs when a sequence of identical

files must be transferred from a source to a destination, sub-

ject to time constraints imposed by the data transfer provid-

ers. I also propose an online algorithmic framework for the

block partitioning method, which can be used to efficiently

handle online resource allocation and reservation requests.

The rest of this paper is organized as follows: in Sections 2

and 3 I discuss the offline scheduling problems I mentioned

above and present the developed solutions. In Section 4 I

propose an algorithmic framework for online resource allo-

cation and reservation. In Section 5 I discuss related work

and in Section 6 I draw some conclusions.

2. MAXIMUM PROFIT DATA TRANSFERS

We are given n file transfer requests. For each request i, its

file size (szi>0) and profit (pi>0) are known. Each file must

be transferred between the same source and destination. We

consider the file sizes sorted in ascending order sz1≤sz2≤…

≤szn. The file sizes are integers and divisible, i.e. szi=qi·szi-1

(2≤i≤n), where qi≥1 is an integer number. Each file transfer

must be scheduled non-preemptively on one of the k paths

available. The paths are disjoint and identical, except that

each path j is available only during a time interval [0,Tj]. All

the paths have unit transfer rate, so the time taken to transfer

a file with size szi is szi time units. A file transfer request

may be accepted or rejected. Accepting a request i means

assigning it a path j and a time interval [t,t+szi) fully in-

cluded in [0,Tj]. At any moment, at most one file can be

transferred on a path, i.e. the time intervals of the requests

assigned to the same path must be disjoint. The total profit is

the sum of the profits brought by each accepted request (if a

request is rejected, it contributes nothing to the total profit).

Obviously, we would like to accept those requests which

bring a maximum total profit. This problem is equivalent to

the multiple knapsack problem with divisible item sizes.

Each path j is a knapsack of a given capacity Tj. The file

transfer requests are items whose sizes are divisible and we

are interested in finding a maximum profit subset of items,

such that each item in the set is placed in some knapsack and

the sum of the item sizes in any knapsack does not exceed

its capacity. The multiple knapsack problem is NP-hard, thus

a polynomial time algorithm is unlikely to exist. Even for

this particular case with divisible item sizes, we present only

a pseudopolynomial O(n·S·min{n,S·log(S)}) time algorithm,

where S is the maximum size of an item. A direct solution

obtained by extending the standard dynamic programming

algorithm for the single knapsack case takes O(n·max{Tj}
k
)

time (where k is the number of knapsacks) and computes a

multidimensional array Pm[i,s1,s2,…,sk]=the maximum profit

which can be achieved by choosing a subset of the first i

items and filling each knapsack j up to size sj (at most). We

have Pm[0,s1,…,sk]=0 (for all the values sj) and

−−

−−

−−

+

−

=

],szs,...,s,s1,[iP

...,

],s,...,szs,s1,[iP

],s,...,s,szs1,[iP

maxp

]s,...,s1,[iP

max]s,...,s[i,P

ik21m

ki21m

k2i1m

i

k1m

k1m

For Pm[i,s1,…,sk], the choices are to either ignore the i
th

item or place it in one of the k knapsacks (the item can be

placed in knapsack j if sj≥szi). The maximum profit is given

by Pm[n,T1,…,Tk]. However, this solution is inefficient. Fater

algorithms make use of heuristics. The most natural heuristic

is the following one, based on a greedy algorithm:

Greedy1MultipleKnapsack(item_set, knapsack_set):
k=|knapsack_set|

fill the first knapsack optimally with a subset item_sol of the items

if (k=1) then

return profit(item_sol)

else if (|item_set \ item_sol|>0) then

 return profit(item_sol) + Greedy1MultipleKnapsack(item_set \

item_sol, knapsack_set \ {first knapsack})

Other heuristic algorithms consist of sorting the items

according to some criterion (e.g. profit/size) and inserting

them using the First Fit heuristic. I will now present a very

different approach, which provides the optimal solution in

many cases. We will split the items into groups: two items

belong to the same group if they have the same size; thus, all

the items in group i have size sgi. We consider the groups

sorted in decreasing order of the item sizes, i.e.

sg1>sg2>…>sgG (where G is the total number of distinct item

sizes). Within a group i, the items are sorted in decreasing

order of their profits, i.e. pri,1≥pri,2≥…≥pri,ni, where ni is the

number of items in group i and pri,j is the profit of the j
th
 item

in the i
th
 group. In the first step of the algorithm, we will in-

sert the items into the knapsacks using the First Fit heuristic.

The items are traversed in increasing order of the group

number and, within a group, in increasing order of the item

number. For each item (i,j) (the j
th
 item in the i

th
 group), if it

can be inserted into a knapsack p without exceeding its ca-

pacity, we will insert it into p. The knapsack index p is not

important. Because the item sizes are divisible, we will be

able to insert the same set of items during this first stage, no

matter which knapsack p we choose for a specific item. We

will then successively improve the initial solution, by replac-

ing items with subsets of items which could not be inserted

during the first stage and whose total profit is larger than the

individual profit of the replaced item. The algorithm is

sketched below:

MultipleKnapsackWithDivisibleItemSizes():
for i=1 to G do

for j=1 to ni do

 knapsack[(i,j)]=0

 for p=1 to k do

 if (Tp≥sgi) then // insert item (i,j) into knapsack p

 knapsack[(i,j)]=p; Tp=Tp-sgi; break

improved_solution=true

while (improved_solution) do

 smax=the maximum size of an item inside a knapsack

nitems=0

for i=G downto 1 do

 if (sgi<smax) then

 nchosen=0; j=firstItem(i)

 while ((isValidItem(i, j)) and (nchosen<floor(smax/sgi))) do

 nitems=nitems+1; cand[nitems]=(i,j)

 csz[nitems]=sgi ; nchosen=nchosen+1

 j=nextItem(i, j)

Pmax[i,C]=0, for 0≤i≤nitems, 0≤C≤smax

for i=1 to nitems do

 Pmax[i,C]=Pmax[i-1,C], for any 0≤C≤smax

 for C=csz[i] to smax do

 Pmax[i,C]=max{Pmax[i-1,C], Pmax[i-1,C-csz[i]]+prcand[i]}

maxdif=max{Pmax[nitems,sgi]-pri,j | knapsack[(i,j)]>0}

if (maxdif>0) then

 (ir,jr)=the item to be replaced (for which maxdif is maximum)

 Q=the subset of items in cand, corresponding to Pmax[nitems,sgir]

 for (i,j) in Q do knapsack[(i,j)]= knapsack[(ir,jr)]

 knapsack[(ir,jr)]=-1; improved_solution=true

else improved_solution=false

At the end, for each item (i,j) we have three options:

• knapsack[(i,j)]>0, indicating the knapsack into which

the item is placed

• knapsack[(i,j)]=-1 : the item was inserted inside a knap-

sack during the first stage, but was replaced afterwards

• knapsack[(i,j)]=0 : the item was never inserted inside

any knapsack

During the second stage of the algorithm, we choose

nitems items which have never been inserted into any knap-

sack and compute the maximum profit obtained by choosing

a subset of these items whose sum is sum (for each sum=1 to

smax); these values are stored in Pmax[nitems, sum]. We then

replace an item (ir,jr) from a knapsack for which the profit

increase Pmax[nitems, sgir]-prir,jr is maximum. The replaced

item is ignored from now on, as it cannot be part of an opti-

mal solution. By maintaining a linked list with the items in

each group, from which we remove (in O(1) time) an item

when it is inserted into a knapsack, we can implement the

firstItem, nextItem and isValidItem functions in O(1) time.

The optimality of the algorithm is justified by the following

facts: any valid solution for the multiple knapsack can be

successively improved to an optimal solution by replacing a

subset of items S1 in one of the knapsacks with a subset of

items S2 outside of any knapsack. Because the item sizes are

divisible, the set S1 can always contain only one item. The

first stage of the algorithm takes O(n·k) time and O(n) items

can be inserted then. The while loop can be executed a num-

ber of times equal to the number of items inserted in the first

stage. Each iteration of the while loop takes O(nitems·smax)

time. Two upper limits for nitems are O(n) and

.log(smax))O(smax
i

smax1-smax

1i
⋅=∑ =

Since smax is bounded by S, the largest size of an item,

the overall time complexity is O(n·S·min{n,S·log(S)}).

I compared the proposed algorithm with three other al-

gorithms: the single knapsack extension to multiple knap-

sacks, the Greedy1MultipleKnapsack algorithm and a greedy

algorithm which sorted the items according to several criteria

and then used the First Fit heuristic. I considered many test

scenarios and most of them were solved optimally by the

new algorithm. However, I was also able to find test cases

where the algorithm could not find the optimal solution.

However, in terms of performance (quality of the obtained

solution and running time), the algorithm I proposed is a

clear winner, followed by the Greedy1MultipleKnapsack

algorithm.

3. MINIMUM COST DATA TRANSFERS

We are given a sequence of n similar files, which need to be

sent consecutively from a source to a destination. The trans-

fer of each file takes 1 time unit (thus, file i is transferred

from time i-1 to time i). There are k data transfer providers;

a provider j charges a fixed price Cj per time unit for trans-

ferring data and leases his services for at most Tmax,i time

units. Because of several factors, each provider j asks that

the leased time interval includes a specified time interval

[T1,j, T2,j) (T2,i-T1,i≤Tmax,i). Since files cannot be transferred

simultaneously, the time intervals rented from each provider

will be disjoint. We may also use a default network link for

transferring a file i, which would cost us Li. Of course, we

are interested in paying the minimum total cost for the file

transfers. We present here an O(k·n) dynamic programming

algorithm for solving this problem. We will sort the data

transfer providers in increasing order of T2,i, i.e.

T2,1≤T2,2≤…≤T2,k. We will compute the values Cmin[i,j]=the

minimum total cost for sending the first j files using a subset

of the first i providers (in the sorted order). Initially,

Cmin[0,0]=0 and Cmin[0,j]=+∞, for j>0. For i>0, we have:

{ }

⋅−+−

+⋅−

<+>∞+

>+

=

≤≤−
ii1,

TpTj

ii1,

i2,imax,i1,

j

Cp)(Tp]1,Cmin[imin

C)T(j

)T(jor)TT(j if ,

0)(j if ,L1]-jCmin[i,

j]1,-Cmin[i

minj]Cmin[i,

i1,imax,

When computing Cmin[i,j], we have the choice of using

the services of the i
th
 data transfer provider or not. If we do

not use them, then the cost is equal to min{Cmin[i-1,j],

Cmin[i,j-1]+Lj}. If we want to use the i
th
 provider, but j vio-

lates the time constraints imposed by the provider ((j>T1,i

+Tmax,i) or (j<T2,i)), then the cost is +∞; otherwise, j is the end

time moment of the leased time interval and we need to

choose the first time moment of the interval (p). Using the

equation above, an O(k·n
2
) algorithm can be implemented

easily (taking O(n) time for each pair (i,j)). We will show

how to compute all the values Cmin[i,j] in O(n) time for each

value of i (thus, in O(1) time for every pair (i,j)). For each

1≤i≤k, we are only interested in the values of j within the

interval [T2,i, T1,i+Tmax,i] (the others are easy to handle); thus,

we will compute an array minpi, where

{ }ii1,
Tpq

i Cp)(Tp]1,Cmin[imin[q]minp
i1,

⋅−+−=
≤≤

We have minpi[T1,i]=Cmin[i-1,T1,i]. Each of the other

values can be computed in O(1) time (in order, from T1,i-1

downto T2,i-Tmax,i):

{ }ii1,ii Cq)(Tq]1,Cmin[i1],[qminpmin[q]minp ⋅−+−+= .

After computing the array minpi in O(n) time, we can

compute in O(1) time each value Cmin[i,j], with j in [T2,i,

T1,i+Tmax,i]: Cmin[i,j]=min{Cmin[i-1,j], Cmin[i,j-1]+Lj, (j-

T1,i)·Ci+minpi[j-Tmax,i]}. The total cost is Cmin[k, n].

4. ONLINE RESOURCE MANAGEMENT

We consider the following scenario: a resource manager

receives resource allocation and reservation requests (data

transfer requests) which need to be processed in real time (as

soon as they arrive or in batches). A request asks for a cer-

tain amount of resources (e.g. bandwidth), subject to several

types of time constraints (e.g. fixed duration, earliest start

time, latest finish time). Many models and algorithms have

been developed for online scheduling problems [1]. We con-

sider here the following assumptions: time is divided into

discrete, equally-sized time slots and the resource manager

must handle many requests simultaneously, providing low

response times. Because of the stringent time constraints, the

scheduler needs some efficient data structures to help it

check if the request’s constraints can be satisfied and to

choose appropriate reservation parameters (if the request is

accepted). In order to speed up the processing of requests,

we introduce an algorithmic framework for the block parti-

tioning method: We have an array of n cells, where each cell

has a value vi (each cell corresponds to a time slot). We will

divide the n cells into n/k blocks of size k (we assume that k

is a divisor of n; if it is not, n can be extended to be a multi-

ple of k or the last block may contain fewer cells). The

blocks are numbered from 0 to (n/k)-1. The cells 0, …, k-1

belong to block 0, the cells k, …, 2·k-1 belong to block 1,

…, the cells (i-1)·k, …, (i·k)-1 belong to block i-1. Thus,

cell j belongs to block (j div k) (integer division). For sim-

plicity, we store for each block B the first and last cells of

the block (left[B] and right[B]). Using this partitioning, we

can support several update and query functions in O(k+n/k)

time. By choosing k=sqrt(n), we have O(k+n/k)=O(sqrt(n)).

Queries consist of computing a function on the values of a

range of cells [a,b] (range query) or on retrieving the value

of a single cell (point query).

Range Query(a, b): compute qFunc(va, va+1, …, vb).

Analogously, we have point and range updates:

Range Update(u, a, b): vi=uFunc(u, vi), a≤i≤b.

The qFunc function must be binary and associative, i.e.

qFunc(va,..,vb)=qFunc(va,qFunc(va+1,..,qFunc(vb-1, vb)..)) and

qFunc(a,qFunc(b,c))=qFunc(qFunc(a,b),c). We must also

have uFunc(x,y)=uFunc(y,x). Only values vi with O(1) size

are considered (numbers and tuples with a fixed number of

elements). uFunc and qFunc must be able to handle uninitia-

lized arguments. If one of their arguments is uninitialized,

they must simply return the other argument; this part will be

intentionally left out of the functions’ descriptions. The algo-

rithmic framework consists of the functions from Table 1.

Table 1. Algorithmic Framework FunctionsTable 1. Algorithmic Framework FunctionsTable 1. Algorithmic Framework FunctionsTable 1. Algorithmic Framework Functions

Update Functions Query Functions

BPpointUpdate

BPrangeUpdate

BPrangeUpdatePoints

BPrangeUpdatePartialBlock

BPrangeUpdateFullBlock

BPpointQuery

BPrangeQuery

BPrangeQueryPoints

BPrangeQueryPartialBlock

BPrangeQueryFullBlock

In order to perform a range update, we will call the

BPrangeUpdate function with the corresponding parameters

(the update value u and the update interval [a,b]). This func-

tion splits the update interval into three zones: the first block

Ba intersected by the interval (containing the cell a), the last

block Bb intersected by the interval (containing the cell b)

and all the blocks in between Ba and Bb (the inner blocks).

The blocks Ba and Bb may not be fully contained inside the

interval: they will be updated in O(k) time (partial update).

All the inner blocks are fully contained inside [a,b]: they will

be updated in O(1) time each (full update). Since there are

O(n/k) such blocks, the overall complexity of a range update

is O(k+n/k). The range query function (BPrangeQuery)

works similarly. For each block B we will maintain two val-

ues: uagg and qagg. uagg is the aggregate of the update pa-

rameters of the function calls which updated all the elements

of B (for which B was an inner block). uagg is reset to an

uninitialized value on each partial update of the block. qagg

is the answer to the query function called on all the elements

of B. The point update and query functions are: BPpointUp-

date and BPpointQuery. The framework also uses a “multi-

plication” operator mop, which computes the effects of an

update operation upon the query result on a range of cells.

This operator must exist when range queries and range up-

dates are used together, but can be ignored otherwise. When

the data structure is initialized, the uagg value of each block

is set to uninitialized (qagg is initialized with the query result

on the range of the block’s cells). This framework is similar

to the segment tree framework introduced in [6] and can sup-

port all the combinations of point and range query and update

functions mentioned there.

BPpointUpdate(u, i):
vi=uFunc(u,vi)

B=the block to which the cell i belongs

qagg[B]=BPrangeQueryPoints(left[B], right[B])

BPrangeUpdate(u, a, b):
Ba, Bb=the blocks of cells a and b

if (Ba=Bb) then

 if ((a=left[Ba]) and (b=right[Ba])) then

 BPrangeUpdateFullBlock(Ba, u)

 else BPrangeUpdatePartialBlock(Ba, u, a, b)

else

 BPrangeUpdatePartialBlock(Ba, u, a, right[Ba])

 BPrangeUpdatePartialBlock(Bb, u, left[Bb], b)

 for block=Ba+1 to Bb-1 do

 BPrangeUpdateFullBlock(block, u)

BPrangeUpdatePoints(u, a, b):
for p=a to b do vp=uFunc(u, vp)

BPrangeUpdatePartialBlock(B, u, a, b):
BPrangeUpdatePoints(uagg[B], left[B], right[B])

uagg[B]=uninitialized

BPrangeUpdatePoints(u, a, b)

qagg[B]=BPrangeQueryPoints(left[B], right[B])

BPrangeUpdateFullBlock(B, u):
uagg[B]=uFunc(u, uagg[B])

qagg[B]=uFunc(mop(u, 1eft[B], right[B]), qagg[B])

BPpointQuery(i):
B=the block to which the cell i belongs

return uFunc(uagg[B], vi)

BPrangeQuery(a, b):
Ba, Bb=the blocks of cells a and b

if (Ba=Bb) then

 return BPrangeQueryPartialBlock(Ba, a, b)

else
 qa=BPrangeQueryPartialBlock(Ba, a, right[Ba])

 qb=BPrangeQueryPartialBlock(Bb, left[Bb], b)

 q=uninitialized

 for block=Ba+1 to Bb-1 do

 q=qFunc(q, BPrangeQueryFullBlock(block))

return qFunc(qa, qFunc(q, qb))

BPrangeQueryPoints(a, b):
q=uninitialized

for p=a to b do q=qFunc(q, vp)

return q

BPrangeQueryPartialBlock(B, a, b):
BPrangeUpdatePoints(uagg[B], left[B], right[B])

uagg[B]=uninitialized

return BPrangeQueryPoints(a, b)

BPrangeQueryFullBlock(B):
return qagg[B]

In the case of point queries with range updates, only the

uagg values are meaningful; similarly, only the qagg values

are meaningful in the case of point updates with range que-

ries. Common update and query functions can be easily in-

tegrated into the framework. For example, with

uFunc(x,y)=(x+y), qFunc(x,y)=(x+y) and mop(u,a,b)= u·(b-

a+1), we can support point and range sum queries, together

with point and range addition updates. For uFunc(x,y)=x+y,

qFunc(x,y)=min(x,y) and mop(u,a,b)=u, we can support

point and range minimum (or maximum) queries, together

with point and range addition updates. We can also consider

point and range multiplication updates, uFunc(x,y)=x·y, with

point and range queries: qFunc(x,y)=x·y (with

mop(u,a,b)=u
b-a+1

), qFunc(x,y)=min(x,y) and qFunc(x,y)=

(x+y) (with mop(u,a,b)=u). With mop(u,a,b)=u, we can

support range queries and updates for some bit functions

(where vi=0 or 1). For uFunc(x,y)=(x or y) and

uFunc(x,y)=(x and y), we can have qFunc(x,y)=(x and y)

and qFunc(x,y)=(x or y). For the and update, we can also

have qFunc(x,y)=(x xor y). We can support range xor up-

dates and queries (uFunc(x,y) = qFunc(x,y)=(x xor y)), but

with mop(u,a,b)=(if (((b-a+1) mod 2)=0) then 0 else u). In

order to obtain any combination of bit functions, we notice

that the result of a query depends only on the number of 0

and 1 values (cnt0, cnt1) in the query range: if (cnt1>0) then

or returns 1; if (cnt1 mod 2=1) then xor returns 1; if (cnt0=0)

then and returns 1. Thus, we will work with (cnt0, cnt1) tu-

ples as values. We will also consider the conceptual values

cvi, which are the numerical values we conceptually work

with. We have vi=(1-cvi, cvi). A query asks for the number of

0 and 1 conceptual values in the query range and an update

changes this number according to the bit function used. Any

combination of point and range queries and updates is sup-

ported with the functions below:

bitTupleQuery((cnt0,x, cnt1,x), (cnt0,y, cnt1,y)):
return (cnt0,x+cnt0,y, cnt1,x+cnt1,y)

bitTupleUpdate((1-u, u), (cnt0, cnt1), func):
if (func=and) and (u=0) then return (cnt0+cnt1, 0)

else if (func=or) and (u=1) then return (0, cnt0+cnt1)

else if (func=xor) and (u=1) then return (cnt1, cnt0)

else return (cnt0, cnt1)

If the update function has the effect of setting all the val-

ues in a range to the same value s (range set), we will again

need to work with tuples: the values vi and the update pa-

rameters u will have the form (numerical value,

time_stamp). We need to have a timestamp() function which

returns increasing values upon successive calls. We can use

a global counter as a time stamp, which is incremented at

every call. The initial numerical values are assigned an ini-

tial time stamp and every update parameter gets a more re-

cent time stamp. The update function is:

uFunc((wx, tx), (wy, ty)):
if (tx>ty) then return (wx, tx) else return (wy, ty)

With these definitions, a point query function call on a po-

sition i will return the last update parameter of an interval

containing that position.

A useful range query function (used together with point

updates) is finding the maximum sum segment (interval of

consecutive cells) fully contained in a range of cells [a,b]

(see [9] for this problem without updates). Conceptually, the

value of a cell i is a number cvi, but in the framework we will

use tuples consisting of 4 values: (totalsum, maxlsum, maxr-

sum, maxsum). Assuming that these values correspond to an

interval of cells [c,d], we have the following definitions:

∑
=

=
d

cp

pcvtotalsum ∑
=

≤≤
=

q

cp

p
dq1-c

cvmaxmaxlsum

∑
=

+≤≤
=

d

qp

p
1dqc

cvmaxmaxrsum ∑
=≤≤

≤≤
=

r

qp

p

dr1-q
dqc

cvmaxmaxsum

In the framework, a value vi will be a tuple corresponding

to the interval [i,i]. If cvi<0, then vi=(cvi, 0, 0, 0); otherwise,

vi=(cvi, cvi, cvi, cvi). The point update function changes the

value of cvi of a cell i and then recomputes vi. The qFunc

function is given below:

qFunc((tx,mlx,mrx,mx), (ty,mly,mry,my)):

return (tx+ty , max{mlx , tx+mly}, max{mry , ty+mrx}, max{mx , my

, mrx+mly})

We can use the range set update together with the range

maximum sum segment query – this combination is not sup-

ported by the framework in [6]. Conceptually, each cell has a

numerical value cvi. Practically, the framework’s values vi

will be tuples of the following form (totalsum, maxlsum,

maxrsum, maxsum, time_stamp). The update, query and mul-

tiplication functions are given below. We must notice that the

fundamental combination (range set update, range sum

query) is also solved. However, I could not find suitable

function definitions for the combination (range addition up-

date, range maximum sum segment query).

uFunc((totalx, mlx, mrx, mx, tx), (totaly, mly, mry, my, ty)):
if (tx>ty) then return (totalx, mlx, mrx, mx, tx)

else return (totaly, mly, mry, my, ty)

qFunc((totalx, mlx, mrx, mx, tx), (totaly, mly, mry, my, ty)):
return (totalx+totaly , max{mlx , totalx+mly}, max{mry , totaly+mrx},

max{mx, my , mrx+mly}, max{tx, ty})

mop((totalx, mlx, mrx, mx, tx), a, b):
return ((b-a+1)·totalx, (b-a+1)·mlx, (b-a+1)·mrx, (b-a+1)·mx, tx)

The framework’s behaviour can be improved by adding

a dirty flag to each block. With the dirty flag, the qagg value

will be recomputed only “on demand” and not after every

point or partial block update. We only need to replace the

functions BPpointUpdate, BPrangeUpdatePartialBlock and

BPrangeQueryFullBlock with the following definitions:

BPpointUpdate(u, i):
vi=uFunc(u,vi)

B=the block to which the cell i belongs

dirty[B]=true

BPrangeUpdatePartialBlock(B, u, a, b):
BPrangeUpdatePoints(u, a, b)

dirty[B]=true

BPrangeQueryFullBlock(B):
if (dirty[B]) then

 BPrangeUpdatePoints(uagg[B], left[B], right[B])

 uagg[B]=uninitialized

 qagg[B]=BPrangeQueryPoints(left[B], right[B])

 dirty[B]=false

return qagg[B]

5. RELATED WORK

Optimal high multiplicity scheduling algorithms for file

transfers with divisible sizes, with the objective of minimiz-

ing the makespan, were presented in [2]. Related bin pack-

ing, knapsack and multiple knapsack problems were studied

in [3,4,5]. Although the single knapsack problem with divisi-

ble item sizes was solved in [5], the corresponding multiple

knapsack version does not seem to have been addressed so

far. The algorithmic framework for the block partitioning

technique is based on a similar framework for the segment

tree data structure, presented in [6]. The block partitioning

technique has been used in order to enhance the performance

of range queries and updates in many domains, particularly

in dynamic OLAP data cubes [7,8].

6. CONCLUSIONS

In this paper I presented two efficient algorithms for two

offline data transfer scheduling problems. The first one is

equivalent to the multiple knapsack problem with divisible

item sizes, for which I am unaware of any previous results.

The second one is a minimum cost optimization problem, for

which the proposed dynamic programming algorithm is op-

timal. For the online case I proposed an algorithmic frame-

work for the block partitioning technique. The framework

allows to efficiently handle pairs of query and update opera-

tions whose usefulness is unquestionable in several classes of

real-time resource managers and bandwidth brokers.

REFERENCES

[1] K. Pruhs, J. Sgall, and E. Torng, Online Scheduling, CRC

Press, 2004.

[2] M. I. Andreica, and N. Tapus, “High Multiplicity Sche-

duling of File Transfers with Divisible Sizes”, Proceedings of

the International Symposium of Consumer Electronics, 2008.

[3] E. G. Coffman, Jr., M.R. Garey, and D.S. Johnson, “Bin

packing with divisible item sizes,” Journal of Complexity,

pp. 406-428, 1987.

[4] C. Chekuri, and S. Khanna, “A PTAS for the Multiple

Knapsack Problem,” Proceedings of the 11th ACM-SIAM

Symposium on Discrete Algorithms, pp. 213-222, 2000.

[5] W. F. J. Verhaegh, and E. H. L. Aarts, “A Polynomial-

Time Algorithm for Knapsack with Divisible Item Sizes”,

Inf. Process. Lett. vol. 62(4), pp. 217-221, 1997.

[6] M. I. Andreica, and N. Tapus, “Optimal TCP Sender

Buffer Management Strategy”, Proceedings of the Interna-

tional Conference on Communication Theory, Reliability and

Quality of Service, 2008.

[7] H.-G. Li, T. W. Ling, S. Y. Lee, and Z. X. Loh, “Range

Sum Queries in Dynamic OLAP Data Cubes,” Proceedings

of the 3
rd

 International Symposium on Cooperative Database

Systems for Advanced Applications, pp. 74-81, 2001.

[8] C. K. Poon, “Dynamic Orthogonal Range Queries in

OLAP,” Theoretical Computer Science, vol. 296 (3), 2003.

[9] K.-Y. Chen, and K.-M. Chao, “On the range maximum-

sum segment query problem”, Discrete Applied Mathema-

tics, vol. 155, pp. 2043-2052, Elsevier, 2007.

