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Abstract: This study investigated 14 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, 14 

Pb, Se, V and Zn) in the tissues of the giant squid Architeuthis dux from the Mediterranean 15 

and Atlantic Spanish waters. As for other families of cephalopods, the digestive gland and 16 

the branchial hearts of Architeuthis showed the highest concentrations of Ag, Cd, Co, Cu, Fe, 17 

Ni, Se, V and Zn, highlighting their major role in the bioaccumulation and detoxification 18 

processes. With the exception of Hg, the muscles showed relatively low trace element 19 

concentrations. Nevertheless, this tissue contained the main proportion of the total As, Cr, Hg, 20 

Mn, Ni, and Zn body burden because muscles represent the main proportion of the squid 21 

mass. These findings suggest that the metal metabolism is overall the same as other 22 

cephalopod families from neritic waters. In females, Zn concentrations increased in the 23 

digestive gland with the squid’s weight likely reflecting physiological changes during sexual 24 

maturation. Comparing the trace element concentrations in the tissues of Architeuthis, higher 25 

Ag, Cu, Hg and Zn concentrations in the squid from the Mediterranean reflected different 26 

exposure conditions. In comparison to other meso-pelagic squids from the Bay of Biscay, Cd 27 

concentrations recorded in the digestive gland suggest that Architeuthis might feed on more 28 

contaminated prey or that it displays a longer life span that other cephalopods. 29 

 30 
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1. Introduction 32 

 33 

Cephalopods play a key role in marine ecosystems both as predators and prey. They 34 

constitute a class of marine molluscs which are found in a great variety of habitats from 35 

coastal waters to very deep-ocean environments (Boyle and Rodhouse, 2005). Independently of 36 

the species, the habitat or the life span they display, cephalopods share the ability to 37 

accumulate inorganic and organic pollutants such as metals, PCBs or organochlorine 38 

pesticides (e.g. Martin and Flegal, 1975; Tanabe et al., 1984; Miramand and Bentley, 1992; 39 

Yamada et al., 1997; Bustamante et al., 2000, 2006a; Ueno et al., 2003; Storelli et al., 2006). 40 

Consequently, they were reported to constitute a significant vector of contaminants to the 41 

species feeding on them, in particular seabirds and marine mammals (e.g. Honda et al., 1983; 42 

Muirhead and Furness 1988; Bustamante et al., 1998; Lahaye et al., 2005). However, most 43 

studies focused on commercially targeted species which are 1) easy to sample and 2) of high 44 

economic and health interest concerning human consumption. Many of these cephalopod 45 

species are also consumed by top marine predators, but there is a gap in the information 46 

concerning non-targeted species. This lack of data on bioaccumulation of contaminants is 47 

particularly obvious for oceanic and deep-sea species, like the giant squid Architeuthis. 48 

 49 

Overall, the biology, behaviour and life cycle of Architeuthis are still poorly known in many 50 

aspects even if this squid has received considerable attention over the last decade (see 51 

González et al., 2002; Guerra et al., 2004, 2006; Kubodera and Mori 2005). Most of the 52 

information available on this squid comes from dead stranded animals and from predator 53 

trophic ecology studies. Indeed, squid flesh and beaks are often recorded in the stomach of 54 

sperm whales, but also of seabirds and sharks (Roper and Boss 1982; Clarke 1996; Santos et 55 

al., 2002; Cherel and Hobson 2005). Giant squids are also increasingly captured by trawling 56 
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nets because of the development of deep-sea fisheries (Guerra et al., 2006). In deep water 57 

conditions, the giant squid would have a particular diet and exposure conditions to trace 58 

elements and metals. For example, Hg bioavailability seems to be enhanced in these deep 59 

environments because the absence of solar radiation and the low oxygen concentrations in 60 

the deep environment favors a high methylation rate by bacteria (Monteiro et al., 1996). Also, 61 

Cd is enriched in mesopelagic waters while depleted in the surface ocean because of its 62 

regeneration from sinking biological debris from epipelagic zone and its uptake by organisms 63 

at the surface (Boyle et al., 1976). 64 

 65 

In this framework, the objectives of this study were to provide baseline data on a wide range 66 

of trace elements in the giant squid Architeuthis dux from the Spanish waters. To this end, the 67 

concentrations and tissue distribution of 12 metals (Ag, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, 68 

V and Zn) and 2 metalloids (As and Se) were determined in the tissues and organs of fished 69 

and stranded specimens. The recorded values were then compared to the data from the 70 

current literature for other cephalopod species. 71 

 72 

2. Material and methods 73 

 74 

2.1. Sampling and sample preparation 75 

Six specimens of giant squid were collected between 2001 and 2005. Table 1 shows the main 76 

data of the specimens as well as the sampling site, date, and mode of capture. Five specimens 77 

were caught in the Bay of Biscay (Asturias, North Spain) and one in the western 78 

Mediterranean Sea. Two of them were mature males and four were immature or maturing 79 

females. 80 

 81 
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Collected specimens were immediately frozen prior to dissection. In the laboratory, each 82 

individual was weighed and measured (mantle length ML, total length TL), and the sex and 83 

maturity stage determined. The digestive gland, gills, ink sack, branchial hearts and their 84 

appendages, systemic heart and brain were totally removed. In addition, pieces of muscle, 85 

skin, digestive and genital tissues (i.e. oviduct gland, ovary and testis), were sampled to 86 

determine trace element concentrations. As it was not possible to separate the different 87 

tissues and to weigh them, the total concentrations in the whole Architeuthis specimens were 88 

estimated according to the measured concentrations in the different tissues and to their 89 

relative weight in fishery targeted squids. 90 

 91 

2.2. Analytical procedure 92 

All samples were freeze-dried for several days then grounded. Aliquots of the samples 93 

ranging from 50 to 300 mg were digested using a 3:1 v:v nitric-hydrochloric acid mixture 94 

with 65% HNO3 (Merck, suprapur quality) and 70% HCl (Merck, suprapur quality). Acidic 95 

digestion was performed overnight under ambient temperature and then heated in a 96 

microwave during 30 min with increasing temperature until 105°C, and 15 min at 105°C 97 

(1200 W). After the mineralization process, each sample was diluted to 30 or 50 ml with 98 

milli-Q quality water, according to the volume of acid added to the mineralization (3.0 ml or 99 

4.5 ml). 100 

Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni Pb, Se, V and Zn were analysed either by Inductively 101 

Coupled Plasma-Optical Emission Spectrometry (Varian® Vista-Pro) or Inductively Coupled 102 

Plasma-Mass Spectrometry (Varian® Ultra Mass 700). For Hg, two aliquots ranging from 10 103 

to 50 mg of dried material were directly analysed in an Advanced Mercury Analyser 104 

spectrophotometer (Altec® AMA 254). 105 
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Reference tissues (dogfish liver DOLT-3, NRCC, and lobster hepatopancreas TORT-2, 106 

NRCC) were treated and analysed in the same way as the samples. Results were in good 107 

agreement with the certified values, and the standard deviations were low, proving good 108 

repeatability of the method (Table 2). The results for standard reference materials displayed 109 

recoveries of the elements ranging from 88% to 116% (n=10). 110 

The detection limits (µg.g-1 dry wt) for ICP-OES were 8.3 (As, Fe, Zn), 3.3 (Ag, Se), 1.67 111 

(Pb, V), 0.83 (Cd, Co, Cr, Cu, Mn, Ni), and were 0.167 (Ni, V), 0.083 (Cd, Co, Cr, Cu, Mn, 112 

Pb), 0.033 (Ag) for ICP-MS. Trace element concentrations are given relative to the dry 113 

weight (µg.g-1 dry wt) while the distribution percentages are calculated for wet weight. 114 

 115 

3. Results 116 

 117 

3.1. Trace element concentrations in soft tissues 118 

Trace element concentrations in the tissues and organs of Architeuthis are reported in Figure 119 

1. Among the sampled tissues, the digestive gland was the major site of concentration for Ag, 120 

Cd, Co, Cu, Fe and Se with 1.13-14.0 µg Ag.g-1, 27.2-134 µg Cd.g-1, 2.0-4.8 µg Co.g-1, 64-121 

1218 µg Cu.g-1, 52-1862 µg Fe.g-1 and 9.7-19.5 µg Se.g-1 (Figure 1). The digestive gland also 122 

concentrated Ni, V and Zn at concentrations closed to the highest concentrations recorded in 123 

the other tissues with 0.11-1.42 µg Ni.g-1, 0.60-4.34 µg V.g-1, and 34-219 µg Zn.g-1. 124 

Interestingly, the digestive gland also exhibited the lowest concentrations of As, Cr and Hg 125 

with 31-65 µg As.g-1, 0.41-1.40 µg Cr.g-1, and 0.32-1.56 µg Hg.g-1 (Figure 1). 126 

The concentrations of As, Co, Hg, Ni, Se and V were also remarkable in branchial hearts, 127 

which play an important excretory role in cephalopods. In this tissue, the concentrations of 128 

trace elements were the highest for Ni or very close to the highest for As, Co, Hg, Se and V. 129 

Branchial hearts concentrated As from 86 to 111 µg.g-1, Co from 3.15 to 3.22 µg.g-1, Hg 130 
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from 0.71 to 4.37 µg.g-1, Ni from 0.74 to 2.60 µg.g-1, Se from 8.2 to 9.3 µg.g-1 and V from 131 

1.50 to 2.46 µg.g-1 (Figure 1). 132 

Muscles exhibited generally among the lowest concentrations for all trace elements except 133 

for Hg which exhibited the highest values in this tissue (1.86-3.32 µg Hg.g-1 dry weight; 134 

Figure 1). Cr and Zn were highly concentrated in the ovary with concentrations ranging from 135 

0.65 to 6.12 µg.g-1 and 131 to 149 µg.g-1, respectively. The oviduct gland also displayed high 136 

concentrations of As and Mn as well as the digestive gland appendages had high 137 

concentrations of Cr and Pb (Figure 1). 138 

 139 

3.2. Distribution of the trace elements in soft tissues 140 

The proportions of the whole body burden of the trace elements contained in each organ and 141 

tissue are shown in Figure 2. With the exception of As, Cr, Hg and Mn which were mainly 142 

found in the body muscular parts (69 ± 9%, 68 ± 20%, 87 ± 5%, and 55 ± 22%, respectively), 143 

the digestive gland contained the largest quantities of all trace elements : 98 ± 1% of Ag, 99 144 

± 1% of Cd, 97 ± 2% of Co, 92 ± 5% of Cu, 85 ± 16 % of Fe, 53 ± 28% of Ni, 69 ± 22% of 145 

Pb, 77 ± 5% of Se, 71 ± 19% of V, and 53 ± 17% of Zn (Figure 2). 146 

Although the concentrations of some trace elements were high in the branchial hearts or in 147 

the gills, these tissues contained in fact low amounts of the considered elements because of 148 

their small masses relative to the whole body weight (Figure 2). 149 

 150 

3.3. Influence of the size/weight and origin 151 

The size/weight only influenced Zn concentrations in the digestive gland (R²=0.934, p=0.020) 152 

and Cr and Ni concentrations in the gills (R²=0.968 p=0.007 and R²=0.969 p=0.007). 153 

No statistical tests were performed to compare the influence of the origin on the accumulated 154 

trace elements because our sampling only included one specimen from the Mediterranean. 155 
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However, this giant squid clearly displayed higher concentrations of Hg than any of those 156 

from the Bay of Biscay with 1.56 vs 0.47 ± 0.13 µg.g-1 in the digestive gland (see Table 3), 157 

2.97 vs 1.38 ± 0.34 µg.g-1 in the gills, and 3.32 vs 2.07 ± 0.19 µg.g-1 in the mantle muscle 158 

(data not shown). Important differences also appeared for Ag, Cu and Zn with 14.0 vs 1.90 ± 159 

0.47 µg Ag.g-1, 1218 vs 108 ± 83 µg Cu.g-1, and 219 vs 103 ± 51 µg Zn.g-1 in the digestive 160 

gland (Table 3), and 4.80 vs 0.31 ± 0.11 µg Ag.g-1, 206 vs 31 ± 24 µg Cu.g-1 and 111 vs 60 ± 161 

35 µg Zn.g-1 in the gills (data not shown). 162 

 163 

4. Discussion 164 

 165 

Previous studies have demonstrated the ability of cephalopods to accumulate high 166 

concentrations of trace elements in their tissues but very little data is available in the current 167 

literature for non-targeted and/or deep-waters species such as the giant squid Architeuthis. 168 

Although globally poorly documented, metal and metalloid concentrations in cephalopod 169 

tissues have received increasing interest over the last decades, particularly in Europe and 170 

Japan, as these molluscs play a major role both as predators and food items in marine 171 

ecosystems (see the reviews by Clarke 1996; Croxall and Prince 1996; Klages 1996; Smale 172 

1996; Boyle and Rodhouse, 2005). The central role of the digestive gland in trace element 173 

bioaccumulation and detoxification has been highlighted many times, particularly for toxic 174 

metals such as Ag and Cd (e.g. Martin and Flegal 1975; Miramand and Bentley 1992; 175 

Bustamante et al., 2002, 2004; Ichiashi et al., 2001a; Miramand et al., 2006). Beside the 176 

digestive gland, which also plays a major role in the energetic metabolism of cephalopods 177 

(e.g. Rosa et al., 2005; Moltschaniwskyj and Johnston 2006), the branchial hearts and their 178 

appendages are involved in trace element excretion processes, allowing the depuration and/or 179 

the storage of various metals and radionuclides (e.g. Nardi and Steinberg 1974; Miramand 180 
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and Guary 1980; Guary et al., 1981; Miramand and Bentley 1992; González et al., 1998; 181 

Bustamante et al., 2002, 2006b). As for coastal and/or oceanic targeted cephalopods, the 182 

digestive gland and the branchial hearts of Architeuthis generally contained the highest 183 

concentrations of most of the considered elements, i.e. Ag, Cd, Co, Cu, Fe, Ni, Se, V and Zn 184 

(Figure 1). This finding strongly suggests that the metabolism of trace elements in 185 

Architeuthis is very close to, or even the same as other families of cephalopods. This is 186 

supported by the fact that trace element concentrations in the digestive gland of Architeuthis 187 

closely fall within the same range than for other cephalopod species (Table 3), indicating that 188 

the potential of Architeuthis for their bioaccumulation is relatively similar. Moreover, 189 

according to the elevated proportions of the total element body burden, the digestive gland of 190 

Architeuthis might play a central role in the detoxification and storage of most of the 191 

analysed elements, i.e. Ag, Cd, Co, Cu, Fe, Ni, Pb, Se, V and Zn (Figure 2). It would be a 192 

great interest to investigate the detoxification strategies in the digestive gland of Architeuthis 193 

in comparison to that of other families of cephalopods. 194 

Besides the digestive gland, muscles contained very high proportions of total body burdens 195 

of As, Cr, Hg, Mn, Ni, and Zn (Figure 2). With the exception of Hg, trace element 196 

concentrations in Architeuthis muscles were relatively low and these high proportions 197 

resulted from the elevated muscular mass respective to the whole body weight. For Hg, the 198 

concentrations recorded in the muscles were the highest among the different organs and 199 

tissues (Figure 1). Previous studies have reported relatively similar Hg concentrations 200 

between the different tissues of different squid species from the Northern Atlantic waters 201 

(Bustamante et al., 2006a; Pierce et al., 2008). It is therefore noteworthy that muscular Hg 202 

concentrations in Architeuthis were 2 to 4 times higher than in the digestive gland. In 203 

comparison with Ag, Cd, Co, Cu, Fe, Ni, Pb, Se, V and Zn, the role of the digestive gland in 204 

the storage of Hg appeared to be relatively limited in Architeuthis. This may be due to an 205 
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excretion function of Hg by the digestive gland, and/or a preferential redistribution of Hg to 206 

muscular tissues where it binds to the sulphydryl groups of proteins (Bloom, 1992; 207 

Bustamante et al., 2006a). Such a redistribution might indicate that most of the Hg ingested 208 

from the prey would be in the organic form such as fish in which Hg content is virtually 209 

100% in the methylated form (Bloom, 1992).  Little is known about the diet of Architeuthis, 210 

it includes other cephalopods (Pérez-Gándaras and Guerra, 1978, 1989), crustaceans (e.g. 211 

Nephros norvergicus) as well as a large proportion of fish of different families accordingly to 212 

the available prey in the area (for instance Trachurus trachurus, Maurolicus muelleri and 213 

Micromesistius poutassou in Ireland waters and equivalent species from Namibia and New 214 

Zealand) (see Guerra et al., 2006 for a review). Further studies therefore should focus on 215 

trace elements in the typical prey of Architeuthis to provide insights on this aspect. 216 

As in other cephalopod species, trace element concentrations in Architeuthis may vary with 217 

biological and environmental factors such as age (size/weight), sex, and geographical origin 218 

(e.g. Monteiro et al., 1992; Bustamante et al., 1998; Raimundo et al., 2004; Pierce et al., 219 

2008). Our limited sampling did not allow making comparisons for all these factors. 220 

However, considering the 5 specimens from the Bay of Biscay, it appears that size/weight 221 

poorly influenced trace element concentrations in Architeuthis tissues. The increase of Zn 222 

concentrations from 34 to 160 µg.g-1 dwt in the digestive gland might be related to metal 223 

physiological changes related to the sexual maturation as reported for other cephalopod 224 

species like Sepia officinalis from the English Channel (Miramand et al., 2006). In females, 225 

high concentrations of Zn in the ovary of Architeuthis (120 ± 38 µg.g-1 dwt) were close to 226 

that in the genital tract of Sepia officinalis (123 ± 3 µg.g-1 dwt; Miramand and Bentley, 227 

1992). Within the ovary, essential elements such as Zn are stored in metal-containing 228 

enzymes and metalloproteins (Gerpe et al., 2000) and transferred to the yolk of the eggs 229 

(Villanueva and Bustamante, 2006, Lacoue-Labarthe et al., 2008). Cr and Ni in the gills also 230 



 11 

displayed a significant increase with size/weight. In the current literature, very little data is 231 

available on the variation of Cr and Ni concentrations in cephalopod tissues. For example, in 232 

the squid Sthenoteuthis oualaniensis Cr concentrations were higher in juveniles than in 233 

adults, whereas juveniles displayed lower Ni concentrations than adults (Ichihashi et al., 234 

2001a). Such a difference for S. oualaniensis was explained by the evolution of food habits 235 

between the juvenile and adult stages, juvenile feeding more on crustaceans while adults 236 

primarily preyed on fish. According to the lack of significant variation in the digestive gland, 237 

such a switch is not likely to occur in the size range of Architeuthis we analysed. 238 

Furthermore, even if the diet could represent the main pathway for many elements - as 239 

experimentally shown for Am, Cd, Co and Zn (Koyama et al., 2000; Bustamante et al., 2002, 240 

2004, 2006b) - seawater could also be an important uptake pathway, as elements pass 241 

through the skin and through the gills. For instance, seawater represents the main pathway for 242 

Ag in Sepia officinalis (Bustamante et al., 2004). Therefore, Cr and Ni bioaccumulation in 243 

gills might also result from a direct uptake from seawater all along the lifespan of 244 

Architeuthis. 245 

Trace element concentrations in cephalopods could also vary according the location where 246 

individuals were captured (Bustamante et al., 1998; Seixas et al., 2005ab; Pierce et al., 2008). 247 

In the case of Architeuthis, this is clearly exemplified by the much higher Hg concentrations 248 

in the tissue of the specimen from the Mediterranean. Higher Hg concentrations in 249 

Mediterranean organisms have been highlighted many times and are typically explained by 250 

high temperatures and absence of solar radiation in the deep environment. These conditions 251 

favor a high methylation rate of the metal, methyl-Hg being highly bioavailable for marine 252 

biota, which consistently biomagnifies through the food chain. Moreover, natural sources of 253 

Hg in the Mediterranean Sea may contribute to Hg enrichment through the benthic food webs, 254 

as it constitutes the richest natural reserve of this element (Bacci, 1989). Higher Ag, Cu and 255 
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Zn concentrations in the digestive gland and in the gills also indicated different exposure 256 

conditions of this specimen compared to those from the Bay of Biscay. In cephalopods, Ag 257 

bioaccumulation in the digestive gland might reflect the global contamination of the 258 

surrounding waters (e.g. Martin and Flegal, 1975; Miramand et al., 2006), seawater being the 259 

main pathway of exposure and Ag having a fast turn-over in the tissues (Bustamante et al., 260 

2004). Interestingly, Ag, Cu, Hg and Zn are metals that bind to metallothionein proteins 261 

(MTs), which play a role in the homeostasis of the essential metals (i.e. Cu and Zn) and in 262 

the detoxification of non-essential metals (i.e. Ag, Cd and Hg) (Roesijadi, 1992, 1996; 263 

Viarengo and Nott, 1993). The role of MTs in metal sequestration in cephalopods is not 264 

completely clear (Bustamante et al., 2006c) and this issue clearly deserves further 265 

investigation. 266 

Even though trace elements are generally considered for their potential toxicity in 267 

ecotoxicological studies and biomonitoring surveys, there is increasing interest in their use 268 

for providing information on life history and trophic ecology of cephalopods (Jackson et al., 269 

2007). Thus, Cd is of particular interest because it is highly bioaccumulated by cephalopods. 270 

Indeed, Cd is efficiently absorbed and strongly retained in the digestive gland (Bustamante et 271 

al., 1998, 2002). Even if most of cephalopod species display short life spans i.e. typically less 272 

than 2 years, they can accumulate very high Cd concentrations in their digestive gland 273 

reaching up 1000 µg g-1 wet wt in the squid Illex argentinus (Dorneles et al., 2007). Because 274 

of Cd incorporation by organisms in epipelagic waters and its regeneration from sinking 275 

biological debris in the mesopelagic environment (Boyle et al., 1976), deep-water 276 

cephalopods might show relatively high Cd concentrations. In the Bay of Biscay, Cd 277 

concentrations reached 9.1 and 33.1 µg.g-1 dry wt in the digestive gland of the mesopelagic 278 

squids Histioteuthis reversa and Teuthowenia megalops, respectively (unpublished data) and 279 

would be due to the consumption of prey highly contaminated with Cd. Even elevated 280 
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compared to neritic squid species (Bustamante et al., 1998), these concentrations are lower 281 

than those measured in the digestive gland of Architeuthis, suggesting that 1) the giant squid 282 

feed on more contaminated prey than Histioteuthidae and Cranchidae, or 2) it displays a 283 

much longer life span that other cephalopods. Age estimation and growth rates of giant 284 

squids are still open questions. Indeed, isotopic analysis indicated that the age for the giant 285 

squid Architeuthis sanctipauli from Tasmania was 14 years for specimens ranging from 191 286 

to 240 cm ML (Landman et al., 2004). This completely disagrees with the age estimated from 287 

growth increment counts in statoliths of Architeuthis dux and Architeuthis sp. from the 288 

Atlantic and caught off New Zealand. Specimens ranging from 43 to 161 cm ML had 289 

between 153 and 435 increments (Jackson et al., 1991; Gauldie et al., 1994; Lordan et al., 290 

1998; González et al., 2002). If the increments were daily deposited, as it occurs in other 291 

cephalopods, the age of these animals will not exceed two years. This finding implies that 292 

Architeuthis would have a very fast growth rate with intense food intakes that in turn would 293 

lead to the bioaccumulation of relatively high Cd concentrations in its digestive gland. 294 

 295 
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Table 1. Sampling information and squid biological characteristics. T: trawling; S: Stranded; F: Floating at the surface; ML: Dorsal mantle length; TL: 

Total length. 

 

        N° Sampling site Sampling date Mode of capture Weight ML TL Sex / Maturation 

    (kg) (cm) (cm)  

                1 Off Luarca (Asturias, North Spain) 12 September 2001 T 90 127 710 F / Immature 

2 Ribadesella (Asturias, North Spain) 23 October 2001 S 104 150 800 F / Maturing 

3 Colunga (Asturias, North Spain) 15 September 2003 S 80 152 1200 F / Immature 

4 Off Gijón (Asturias, North Spain) 16 September 2003 F 66 122 620 M / Mature 

5 Off Gandía (Valencia, Western Mediterranean) 19 July 2005 T 50 107 600 M / Mature 

6 Off Gijón (Asturias, North Spain) 22 July 2005 T 139 146 820 F/ Maturing 
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Table 2. Comparison of certified trace elements concentrations (µg g-1 dry weight) in reference materials (n=10) with the values 

determined in the present study (nc: not certified value, nd: not determined). ICP-MS - Inductively Coupled Plasma Mass 

Spectrometry; ICP-OES - Inductively Coupled Plasma Optical Emission Spectrometry; AMA – Advanced Mercury Analyser. 

 

 

 

      TORT-2 DOLT-3 

    Measured Certified Measured Certified 
Element Method 

Mean ± SD Mean ± SD 
Recovery 

Mean ± SD Mean ± SD 
Recovery 

                            Ag ICP-MS 6.21 ± 1.69 nc - 1.21 ± 0.10 1.20 ± 0.07 101 

As ICP-OES 21.8 ± 2.4 21.6 ± 1.8 101 9.9 ± 0.3 10.2 ± 0.5 97 

Cd ICP-MS 26.4 ± 2.2 26.7 ± 0.6 99 19.3 ± 0.7 19.4 ± 0.6 99 

Co ICP-MS 0.45 ± 0.09 0.51 ± 0.09 88 0.29 ± 0.05 nc - 

Cr ICP-OES 0.69 ± 0.18 0.77 ± 0.15 90 4.02 ± 0.93 nc - 

Cu ICP-OES 95 ± 15 106 ± 10 90 31.9 ± 0.7 31.2 ± 1.0 99 

Fe ICP-OES 100 ± 10 105 ± 13 95 1349 ± 76 1484 ± 57 91 

Hg AMA 0.27 ± 0.01 0.27 ± 0.06 100 3.36 ± 0.08 3.37 ± 0.14 100 

Mn ICP-OES 13.5 ± 2.0 13.6 ± 1.2 99 9.73 ± 0.14 nc - 

Ni ICP-OES 2.44 ± 0.56 2.50 ± 0.19 98 2.46 ± 0.45 2.72 ± 0.35 90 

Pb ICP-MS 0.32 ± 0.17 0.35 ± 0.13 91 0.294 ± 0.056 0.319 ± 0.045 92 

Se ICP-MS 6.48 ± 0.48 5.63 ± 0.67 115 7.56 ± 0.65 7.06 ± 0.48 107 

V ICP-MS 1.55 ± 0.24 1.64  ± 0.19 95        nd nc - 

Zn ICP-OES 188 ± 20 180 ± 6 104 97.3 ± 1.4 86.6 ± 2.4 116 
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Table 3. Reported metal concentrations (Mean ± SD, µg g-1 dry weight) in the digestive gland of different cephalopod species. 

 
               Species Ag As Cd Co Cr Cu Fe Hg Mn Ni Pb V Zn Reference 

                              Architeuthidae               

Architeuthis dux 1.90 ± 0.47 48 ± 14 60.8 ± 46.2 3.27 ± 1.76 0.93 ± 0.41 108 ± 83 497 ± 779 0.47 ± 0.13 2.72 ± 2.12 0.62 ± 0.54 0.41 ± 0.33 2.24 ± 1.91 103 ± 51 a 

A. dux 14 44 90.7 4.8 0.49 1218 158 1.56 2.26 1.37 0.85 1.72 219 b 

Nautilidae               

Nautilus macromphalus 4.43 ± 1.95 185 ± 64 45 ± 13 5.9 ± 3.6 4.2 ± 0.8 106 ± 46 554 ± 238 - 8.9 ± 2.0 11.9 ± 7.8 - 8.0 ± 2.3 672 ± 208 c 

Sepiidae               

Sepia officinalis 6.15 ± 1.75 - 12.7 ± 0.4 3.3 ± 0.6 1.1 ± 0.1 315 ± 3 244 ± 28 - 3.3 ± 0.1 1.3±0.4 1.14 ± 0.06 5.0 ± 1.3 571 ± 47 d 

S. officinalis 13 ± 2 - 25 ± 5 10 ± 2 - 600 ± 10 390 ± 10 - - - 2.2 ± 0.5 3.3 ± 0.1 1400 ± 500 e 

Loliginidae               

Loligo opalescens 25.1 ± 12.6 - 85.0 ± 51.6 - - 5350 ± 3210 111 ± 73 - - - - - 247 ± 131 f 

L. opalescens 45.9 ± 19.0 - 122 ± 58 - - 8370 ± 3130 87 ± 49 - - - - - 449 ± 201 f 

Ommastrephidae               

Nototodarus gouldi - - 33 ± 30 - - 363 ± 238 - - - - - - 830 ± 355 g 

N. gouldi 3.3 ± 1.4 - 50 ± 25 - - 246 ± 298 745 ± 440 - 4.2 ± 1.1 - - - 696 ± 295 h 

Ommastrephes bartrami 12.1 ± 8.6 - 287 ± 202 - - 195 ± 212 399 ± 204 - - - - - 163 ± 55 f 

Stenoteuthis oualaniensis 24.1 ± 10.9 - 782 ± 255 - - 1720 ± 151 319 ± 67 - - - - - 513 ± 288 f 

S. oualaniensis* 14.0 22.4 199 3.28 0.163 558 293 0.125 1.36 1.91 1.10 1.85 128 i 

Todarodes pacificus* 3.5 7.5 60 0.78 0.375 27.5 325 0.133 3.5 7.0 0.60 13.8 195 j 

Octopodidae               

Eledone cirrhosa 3.20 ± 1.74 - 24.0 ± 1.8 2.06 ± 0.08 0.8 ± 0.1 456 ± 11 287 ± 13 - 4.2 ± 1.6 2.5 ± 0.1 1.17 ± 0.09 3.3 ± 0.5 646 ± 86 d 

Octopus vulgaris - - - 8.8 - 275 275 - 2.7 - - - 1300 k 

O. vulgaris - - 50 ± 10 - - 2500 ± 700 700 ± 130 - 7.0 ± 0.5 - - 4.5 ± 1.0 1450 ± 400 l 

O. vulgaris        0.58 ± 0.08   4.9 ± 1.9 7.2 ± 6.9  m 

                
a: Present study (Bay of Biscay); b: Present study (Mediterranean); c: Bustamante et al., (2000); d: Miramand and Bentley (1992); e: Miramand et al., (2006); f: Martin and Flegal 
(1975); g: Finger and Smith (1987); h: Smith et al., (1984); i: Ichihashi et al., (2001a); j: Ichihashi et al., (2001b); k: Ueda et al., (1979); l: Miramand and Guary (1980); m: Seixas and 
Pierce (2005ab) and Seixas et al., (2005a) 
 

* converted to dwt using a factor of 2.5 

in italics: median 
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