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We investigate the scattering of a quantum matter wave soliton on a barrier in a one dimensional
geometry and we show that it can lead to mesoscopic Schrödinger cat states, where the atomic gas
is in a coherent superposition of being in the half-space to the left of the barrier and being in the
half-space to the right of the barrier. We propose an interferometric method to reveal the coherent
nature of this superposition and we discuss in details the experimental feasibility.

PACS numbers: 03.75.Gg, 03.75.Lm, 34.50.-s

It is now possible to control the strength of the atomic
interaction in a gas, with Feshbach resonances. This has
allowed the observation of single matter wave bright soli-
tons with thousands of atoms [1] or a train of solitons
[2] with 7Li atoms trapped in a one-dimensional (1D)
geometry. These solitons are quantum bound states of
a mesoscopic gas, which opens up fascinating possibili-
ties: Apart from testing mean field predictions in these
systems [3], one can address truly quantum problems, is-
suing from the quantum nature of the gas center of mass.

In particular, it was recently proposed to use a Bose-
Einstein condensate in interferometric experiments to
test the existence of decoherence mechanisms not pre-
dicted by usual quantum mechanics and that would show
up for very massive particles [4]. Experiments have suc-
ceeded in observing interferences with molecules as big as
fullerenes and there is a need for more massive interfero-
metric objects [5]. A soliton with a small number of 100
7Li atoms has the same mass as C60, with appealing new
features: It does not have internal bound states other
than its ground state, it can be reversibly dissociated in
an unbound atomic gas via a Feshbach resonance, and it
allows the exploration of a new regime, in which the cen-
ter of mass kinetic energy of the interfering object is of
the same order as the binding energy of its constituents.

Furthermore, thanks to the extremely low tempera-
tures accessible in atomic gases, down to 0.45nK [6], and
the weak decoherence present in these systems [7], one
may hope to split the center of mass wavefunction of the
solitonic gas in two wavepackets that would keep their
mutual coherence over mesoscopic distances, say a frac-
tion of a millimeter, much larger than the size of the soli-
ton. The gas would then have simultaneously non-zero
probability amplitudes of being in two different spatial
locations, thus forming a mesoscopic Schrödinger cat in
real space. One may then ascertain the presence of a cat
state by recombining and interfering these two mesoscop-
ically different quantum states of the gas. This would
constitute a generalization to many atoms of the one-
ion experiment of [8]. While mesoscopic Schrödinger cat
states have been reported for radiation fields [9] they have
not been reported yet with ultracold atoms, and atom op-

tics with a quantum soliton is a promising alternative to
existing ideas for cat production in these systems [10].

The dynamics of the center of mass wavepacket during
the scattering of the soliton on a barrier raises non trivial
theoretical issues, since the presence of the barrier makes
the 1D many-body problem non integrable via the Bethe
Ansatz. We thus construct an approximate effective low-
energy Hamiltonian for the center of mass of the gas, and
we derive a rigorous upper bound on the resulting error.

The starting point is the many-body Hamiltonian in
1D, for N bosonic particles of mass m interacting via

the usual contact interaction of coupling constant g, in
presence of the barrier potential U(x) ≥ 0:

H =

N
∑

i=1

[

p2
i

2m
+ U(xi)

]

+ g
∑

i<j

δ(xi − xj). (1)

This is conveniently rewritten as H = P 2/(2M)+Hin+V ,
singling out the kinetic energy of the center of mass
(M = Nm is the total mass and P the total momen-
tum of the gas), the so-called internal Hamiltonian Hin

and the sum of the N barrier potentials, V . Without
a barrier (V ≡ 0) there is full separability between the
center of mass and the internal variables, so that we split
the Hilbert space as a tensorial product of center of mass
and internal variables. Hin is diagonalized with the Bethe
ansatz [11]: For N fixed, its ground state is its single dis-
crete eigenstate, the quantum soliton |φ〉 of energy E0(N)
[12], separated from a continuum of solitonic fragments
by an energy gap which is minus the chemical potential,

|µ| = E0(N − 1) − E0(N) =
mg2N(N − 1)

8~2
. (2)

In presence of a barrier, we consider the scattering state
|Ψ〉 of the soliton with an incoming center of mass
wavevector K > 0. We restrict to a low incoming ki-
netic energy to have elastic scattering,

E − E0 ≡ ~
2K2

2M
< |µ|. (3)

Far from the barrier, one can then observe only a non-
fragmented soliton, to the right with the transmission
amplitude t, to the left with the reflection amplitude r.
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In this elastic regime, an effective hermitian Hamiltonian
may be defined, introducing the projector P = ICoM ⊗
|φ〉〈φ| acting as the identity on the center of mass and
projecting the internal state on its ground state, so that

P|Ψ〉 = |Φ〉 ⊗ |φ〉. (4)

Far from the barrier, Φ(X) is simply the center of mass
wavefunction, X being the center of mass position. The
so-called PGP formalism, where G is the resolvent of the
full Hamiltonian [13], then gives the exact equation

~
2K2

2M
|Φ〉 =

[

P 2

2M
+ V̄ (X) + δV

]

|Φ〉. (5)

The first contribution to the effective potential, in the
right hand side of (5), is the convolution of the barrier
potential with the internal density profile of the soliton:

V̄ (X) = 〈φ|V |φ〉 =

∫ +∞

−∞

dx U(X − x)ρ(x|0) (6)

where ρ(x|0) is the mean density of particles in the soli-
ton knowing that the center of mass is localized in X = 0.
It was calculated with the Bethe ansatz [14] and is well
approximated for N ≫ 1 by the mean field density profile
ρ(x|0) ≃ N/[4ξ cosh2(x/2ξ)], where the mean field soli-
ton size is ξ = ~

2/(m|g|N). The second contribution in
(5) involves virtual transitions to internal excited states:

δV = 〈φ|V Q Q
EQ−QHQQV |φ〉 (7)

where Q = I −P . We shall neglect this contribution but
not without a justification. From the fact that QHQ ≥
E0 + |µ|, a consequence of the positivity of P 2/2M and
V , and of the energy gap of Hin, we see in the regime (3)
that the operator −δV is positive and bounded as

−δV ≤ W (X) ≡ 〈φ|V 2|φ〉 − V̄ (X)2

|µ| − ~2K2/2M
. (8)

When one neglects δV in (5), the exact Φ(X) is replaced
by Φ0(X), which involves the same incoming wave eiKX ,
but with outgoing waves eiK|X| whose transmission and
reflection amplitudes t0 and r0 are only approximate. We
have rigorously bounded the resulting errors. We discuss
here only the experimentally relevant case of an even bar-
rier U(x) = U(−x). Introducing the “small parameter”,
ǫ ≡ M〈Φ0|W (X)|Φ0〉/(~2K|t0|), we have for ǫ < 1/2 the
following theorem:

|t − t0| and |r − r0| ≤
|t0|ǫ

1 − 2ǫ
. (9)

It remains to calculate W (X). We have derived from the
Bethe ansatz the large N asymptotic expression [15]

W (X) ≃ 2Nξ4

|µ| − ~2K2

2M

∫ +∞

−∞

dx

∫ +∞

x

dy U ′′(X + xξ)

× U ′′(X + yξ)
2 + y − x

(ey + 1)(e−x + 1)
. (10)

In practice, the barrier U(x) is produced with a Gaus-
sian laser beam, U(x) = U0 exp(−2x2/b2), with a waist
b much larger than the soliton size ξ. Then the mean
potential V̄ (X) is close to NU(X). We shall also assume
that the incoming kinetic energy ~

2K2/2M is about half
the gap |µ| ≃ ~

2/8mξ2, so that (3) is satisfied without
paying the price of very slow soliton velocities. Then
Kb ≫ 1 and the scattering is in the semi-classical regime
[17], where approximate expressions can be obtained for
t0 and r0. A transmission probability 1/2 is predicted to
be achieved for an incident wavevector K0 such that

~
2K2

0

2M
= max

X
V̄ (X) ≃ NU0. (11)

In the vicinity of K = K0, the transmission probability
varies sharply from zero to unity,

|t0|2 ≃ 1

1 + exp[K0−K
δK ]

with δK ≃ 1

π
√

2b
. (12)

It remains to estimate the bound (9). One may take
U ′′ ≃ U ′′(X) in (10), since b ≫ ξ, so that

W (X) ≃ Nξ4

|µ| − ~2K2

2M

[U ′′(X)]
2
[

2π2

3
+ 4ζ(3)

]

. (13)

In K = K0, for ǫ ≪ 1, a semi-classical calculation gives

|t − t0| .
10(ξ/b)3

N1/2
ln

(

Nb2/ξ2
)

, (14)

a quantity checked to be ≪ 1 in what follows.
We now study the experimental feasibility. An axial

Gaussian laser beam confines N ≃ 100 atoms of 7Li in
the y − z plane, with a resulting transverse harmonic
oscillator length a⊥ = (~/mω⊥)1/2 ≃ 0.54µm, where
ω⊥ ≃ 2π×4.8KHz is the transverse oscillation frequency.
In this optical wave guide, the interacting gas has a one
dimensional character if 2ξ ≫ a⊥. In order to make
cooling of the gas not too challenging, we take a not too
large soliton length ξ ≃ 0.9µm; the resulting 3D scat-
tering length, a ≃ −a2

⊥/(2Nξ) ≃ −1.72nm is in the in-
terval of values (−∞,−1.5nm) accessible with the Fesh-
bach resonance [1]. Initially the gas is also harmonically
trapped along x with an oscillation frequency ω. The gas
is assumed to be cooled to the temperature T = 0.45nK
[6]. This axial trap is so weak that it very weakly af-
fects the internal solitonic variables, ~ω < |µ|/10, but it
is strong enough that the center of mass of the gas, still
separable in a harmonic trap, has a negligible probability
exp(−~ω/kBT ) < 1/10 to be in an excited state. These
two constraints impose the weak value ω ≃ 2π × 23.5Hz.
They also imply |µ|/kBT ≃ 25, so that the internal vari-
ables of the soliton are frozen in their ground state.

At t = 0, the gas is launched with a total momentum
~K0 such that

~
2K2

0

2M
=

|µ|
2

≃ ~
2

16mξ2
. (15)
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The corresponding velocity is ~K0/M ≃ 0.37mm/s. Si-
multaneously the axial trap is switched off, to free the
center of mass of the gas, with an initial wavepacket

Φ(X) ∝ eiK0Xe−(X−X0)
2(∆K)2 . (16)

With a sudden opening of the axial trap [18],
~

2(∆K)2/2M = ~ω/4 and ∆K/K0 ≃ 0.22 ≪ 1: This
wavepacket is quasi-monochromatic. Smaller values of
∆K may be obtained by a more clever opening procedure
of the trap, within times ∼ 1/ω [19]. The wavepacket is
then scattered on a broad Gaussian barrier centered in
x = 0 (here X0 < 0), a beam-splitter, created by a laser
beam of waist b = 5ξ ≫ ξ and of intensity adjusted to
satisfy the half-transmission probability condition (11).
In any realistic case, ∆K remains much larger than δK,
so the wavepacket experiences a mere filtering in Fourier
space, the components with K > K0 being transmitted
and the ones with K < K0 being reflected [20]. As a
consequence, the wavepacket also splits in real space in
a transmitted part and a reflected part, that nicely sep-
arate since their mean velocity exceeds their spreading
velocity: A mesoscopic Schrödinger cat is born.

How to prove this experimentally ? The first step is to
check the absence of fragmentation: A photo of the gas
by absorption imaging should show, for any realization
of the experiment, that all the particles are clustered in
a single lump of size ξ, randomly situated to the left
or to the right of the beam-splitter. The second step
is to check that the two wavepackets are coherent, by
recombining them and looking for interference fringes,
with a fringe spacing π/K0. The recombination of the
two wavepackets is obtained by their total reflection on
mirrors, produced by two Gaussian laser beams centered
in x = L/2 and x = −L/2, L ≫ 1/∆K, with the same
waist as the beam splitter but with a higher intensity
(say, twice as high). The reflected wavepackets interfere
around x = 0, the beam splitter being switched off [21].

We have studied the proposed experiment by a numer-
ical solution of Schrödinger’s equation for the center of
mass wavefunction, with the initial condition (16) and
the same approximate effective Hamiltonian as in scat-
tering theory:

i~∂tΦ(X, t) =

[

− ~
2

2M
∂2

X + V̄ (X, t)

]

Φ(X, t) (17)

The center of mass probability distribution |Φ(X, t)|2 is
plotted at key times in Fig.1. To quantify the contrast of
the interference fringes, we also plotted the modulus of its
Fourier transform, s(Q, t) =

∫ +∞

−∞
dX e−iQX |Φ(X, t)|2.

When the two wavepackets overlap, sharp peaks in |s(Q)|
indeed form in Q ≃ ±2K0, with a contrast |s| ≃ 0.32.
This is a high value, as the ideal case of two overlapping
plane waves Φ(X) ∝ eiK0X + e−iK0X gives 1/2.

The high contrast interference fringes in Fig.1 are how-
ever for the center of mass probability distribution, not

|Φ
(X

,t)
|2

|s
(Q

,t)
|
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FIG. 1: Evolution of the center of mass wavefunction of a
solitonic gas with N = 99 atoms, by integration of (17) for
the initial condition (16), with ∆K ≃ 0.093K0, X0 = −15ξ.
Left panel: |Φ(X, t)|2 (solid lines), effective potential V̄ (X, t)
(dashed lines). Right panel: modulus of the Fourier transform
s(Q, t) of |Φ(X, t)|2; the vertical lines are in Q = ±2K0. The
time is in units of ML/~K0. At t = 0.63 the state is a cat. At
t = 1.31 the two reflected cat components strongly interfere,
two narrow peaks of height 0.315 emerge on |s(Q)| in Q =
±2K0. Maximal interference occurs at t = 1.36. The last line
is an average over a Poisson distribution for N , with a mean
value N̄ = 99; the peak height in |s(Q)| is reduced to 0.062.

for the atomic density, which raises the question of their
observability by usual fluorescence imaging. The mean
atomic density ρ(x) is the convolution of |Φ(X)|2 with
the internal soliton density ρ(x|0); since the soliton size
ξ is as large as the fringe spacing π/K0, one finds that the
contrast of the fringes in ρ(x) is several orders of mag-
nitude smaller than in |Φ(X)|2. This problem can be
solved by increasing, just before imaging, the intensity of
the laser producing the transverse trapping by a factor
about 21, which reduces the transverse harmonic oscilla-
tor length to ã⊥ = 0.25µm and brings the soliton close
to its collapse threshold N |a|/ã⊥ ≃ 0.67 [22]. Further-
more fluorescence imaging can be optimized to measure
directly the quantity |s(2K0)|, by exciting the gas with a
laser standing wave along x, produced by the superposi-
tion of two laser waves of wavevectors ~k± = (±kx, ky, 0)

at some angle with the x axis such that ~k+−~k− = 2K0~ex.
The resulting fluorescence rate in direction ~n per unit
of solid angle is given in the Born approximation by

dΓ/dΩ ∝ 〈
∣

∣

∣

∑N
i=1 e−ik~n·~rie(~ri)

∣

∣

∣

2

〉, with validity conditions

discussed in [23]. Here e(~r ) is the laser electric field. The
emission rate ΓΩ of photons in the solid angle Ω of the
detection lens is an oscillating function of the location of
the antinodes of the laser standing wave with respect to
the interference pattern in |Φ(X)|2, with a contrast

Γmax
Ω − Γmin

Ω

Γmax
Ω + Γmin

Ω

= |s(2K0)|Sin(Ω). (18)
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The reduction factor Sin(Ω) is a function of the 3D static
structure factor of the soliton for fixed center of mass
position, that we approximate with the 3D mean field
theory. By using a lens of optical axis along ~k+ + ~k−
with a numerical aperture 0.4, one finds the remarkably
high value Sin(Ω) = 0.84, thanks to a superradiant effect
[23], which also concentrates 16% of the fluorescence in
the 4% solid angle fraction collected by the lens.

It remains to check that decoherence is negligible dur-
ing the transit time ttrans = ML/~K0 . 200ms of the
cat state in the interferometer. In cold atom experi-
ments, the main source of decoherence is particle losses:
A single loss event would destroy the cat, since it “mea-
sures” the positions of one or several atoms and local-
izes the center of mass of the gas within the soliton
size ξ. The usual loss rate formula for m-body loss is
dN/dt = −Km

∫

d3r nm(~r ); here one should take for n
the 3D density profile for a fixed center of mass position,
that we approximate with the mean field theory. For one-
body losses due to collisions with the background gas, one
should have a loss probability K1Nttrans < 1/10, which
imposes the reasonable lifetime K−1

1 > 200s. For three-
body losses due to formation of deeply bound dimers,
the loss constant K3 for 7Li at the considered magnetic
field B is not known. Since |a| is smaller than the Van
der Waals length 3nm, as it is for B = 0, we use the
B = 0 prediction of [24], applying the factor 6 reduction
for a condensate, K3 ≈ 3 × 10−41m6/s, which leads to a
negligible loss event probability 1

3 |dN/dt|ttrans ≈ 0.03.
In present experiments the number of atoms N fluctu-

ates from one realization to the other around the desired
mean value N̄ . Since the launch velocity ~K0/M is fixed,
K0 is proportional to N and also fluctuates [25]. A first
side effect is that the half-transmission probability con-
dition may be violated away from N = N̄ ; fortunately
this is not the case for a broad barrier b ≫ ξ, since both
terms of (11) are proportional to N . A second side effect
is that the fringe spacing π/K0 will fluctuate, which will
blur the fringes. A simple way to estimate this is to as-
sume that |Φ(X)|2 ∝ |eiK0X + e−iK0X |2e−X2/2σ2

at the
overlap time. Averaging over a Poisson distribution for
N with σ and K0/N fixed leads to, for |X | ≪ πN̄/K̄0:

〈|Φ(X)|2〉 ≃ e−X2/2σ2

(2π)1/2σ

[

1 + e−X2/2σ2

c cos(2K̄0X)
]

.

The fringes persist around the origin over a distance σc =
N̄1/2/(2K̄0) =

√
2ξ. |s(2K̄0)| is then reduced by a fac-

tor σc/(σ2 + σ2
c )1/2. Estimating σ from Fig.1 leads to a

reduction factor 5 close to the numerical one (see Fig.1).
In conclusion, we propose to produce a coherently bilo-

calized gas by scattering an atomic quantum soliton on a
barrier. We have performed a detailed analysis of this
idea, which raises challenging experimental aspects of
preparation and detection, but also non trivial theoreti-
cal aspects since this is a many-body problem. We find

that a gas with N ≃ 100 7Li atoms can be prepared in a
coherent superposition of being at two different locations
separated by ∼ 100µm, and that this can be proved by
an interferometric measurement.
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