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Abstract

In pattern recognition, the membership of an object to classes is often measured by labels. This article mainly deals

with the mathematical foundations of labels combination operators, built on t-norms, that extend previous ambiguity

measures of objects by dealing not only with 2 classes ambiguities but also with k classes, k lying between 1 and the

number of classes c. Mathematical properties of this family of combination operators are established and a weighted

extension is proposed, allowing to give more or less importance to a given class. A classifier with reject options built

on the proposed measure is presented and applied on synthetic data. A critical analysis of the results led to derivate

some new operators by aggregating previous measures. A modified classifier is proposed and applied to synthetic

data as well as to standard real data.

Key words: triangular norms, ambiguity measure, classification with reject options

1. Introduction

The aim of this article is to define an ambiguity measure within the framework of pattern recognition, and
more specifically supervised and unsupervised classification. For this purpose, we propose a new operator
based on triangular norms. This family of operators essentially soften the concept of k-th highest component
of a vector. We provide here well established mathematical definitions, check and prove properties of these
operators. Some synthetic and real examples are exhibited.

The core of this paper is divided into three parts. In the first part we recall some basic properties of
aggregation functions as well as previous works on ambiguity measurement. In the second part we define
a class of operators based on triangular norms that combine labels, which are also called membership
functions µ(x): the k-order fuzzy OR, here denoted fOR-k for the sake of brevity , which is suitable for
k-order ambiguity measurement (i.e. ambiguity between k classes). Classical properties of such aggregation
operators are checked, others are proved. Weighted operators based on weighted t-norms are proposed as
well. In the third part, we define a generic way for adding reject options, specially ambiguity rejection, to
usual supervised classifiers. The resulting (generic) classifier is said to follow a ”mixture first” strategy [9,17]
based on this new ambiguity measure.

Various experiments on synthetic data sets show the good properties of the approach but reveal some
drawbacks related to thresholds setting. This lead us to define other operators on top of the k-order fuzzy

Preprint submitted to Elsevier 22 October 2007



OR and consequently a new classification algorithm. Their application to classical real data sets is given
with quite satisfactory results.

It worth noting that, although we do not develop here other problematic than rejection in classification
application, we have done such a work in case of k = 2 (fOR-2 operator). For example, we have investigated
variable selection in various image processing and pattern recognition frameworks: see [18] where it was
associated to a Sequential Forward Floating Search (SFFS) algorithm and [3] for a real-time dynamic color
space selection for improving non-rigid objects tracking based on a Particle Filter approach. This special case
also has been used to define a new cluster validity measure for fuzzy clustering [11]. All these applications
have provided good performance results either on synthetic data or standard (UCI) data. This paper is
focused on classification with reject options using the generalization to higher orders (fOR-k).

2. Background

2.1. Basic operators

An aggregation function is a mapping Φ : In → ℜ, where I is a real interval. In many fields, e.g. decision
making, values to be aggregated often are in [0, 1] and consequent families Φ[0,1] : [0, 1]n → [0, 1] have been
defined. Among them, triangular norms (briefly t-norms) and conorms (briefly t-conorms) play an important
role in fuzzy logic as multi-valued extensions of crisp sets’ intersection ∩ and union ∪ operators, as well as
boolean logic AND, OR connectives. A t-norm is a mapping ⊤ : [0, 1]2 → [0, 1] satisfying the following four
axioms: ∀x, y, z ∈ [0, 1]

x⊤y = y⊤x (1)

y ≤ z ⇒ x⊤y ≤ x⊤z (2)

x⊤(y⊤z) = (x⊤y)⊤z (3)

x⊤1 = x (4)

The dual t-conorm ⊥ is defined as:

x⊥y = x ⊤ y (5)

One usually takes x = 1 − x. A t-conorm then satisfies axioms (1), (2), (3) as well as:

x⊥0 = x (6)

Axioms (2), (4) and (6) imply:

x⊤y ≤ x (7)

x ≤ x⊥y (8)

It ensues:
i) 0 is an absorbing element for any t-norm,
ii) min is the largest t-norm,
iii) 1 is an absorbing element for any t-conorm,
iv) max is the smallest t-conorm.
Four basic t-norms and t-conorms are reported in Table 1 but there exist many others, in particular
parametrized families, here exemplified by the Hamacher’s one (see [16] and [15]).

2.2. Previous work

Suppose that values to be aggregated are labels µi = µi(x),∈ [0, 1], i = 1, c and assume for writing
convenience that they are sorted in decreasing order (µ1 ≥ ... ≥ µc). In a context of decision-making,
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Table 1
Basic t-norms (⊤) and t-conorms (⊥)

Standard
⊤S = min(x, y)

⊥S = max(x, y)

Algebraic
⊤A = xy

⊥A = x + y − xy

 Lukasiewicz
⊤L = max(0, x + y − 1)

⊥L = min(x + y, 1)

Drastic

⊤D = 0 if (x, y) ∈ [0, 1[2,

min(x, y) otherwise

⊥D = 1 if (x, y) ∈]0, 1]2,

max(x, y) otherwise

Hamacher ⊤H,γ = x y
γ + (1− γ) (x + y− x y)

0 ≤ γ ≤ +∞ ⊥H,γ =
x + y− x y− (1− γ) x y

1− (1− γ) x y

ambiguity straightforward relates to the comparison of µ1 and µ2. In [13], we proposed an operator, based
on the combination of a dual couple (⊤,⊥), suitable for such a comparison. It was defined by:

2

⊥
i=1,c

µi = ⊤
i=1,c

(

⊥
j 6=i

µj

)

(9)

This so-called Fuzzy OR-2 operator (briefly fOR-2) have some mathematical properties resulting from those
of ⊤ and ⊥, specifically:
i) boundary conditions,
ii) monotony,
iii) symmetry,
iv) idempotency of ⊤ 1 ,
v) continuity with respect to each operand if ⊤ is continuous.

Moreover, it has been shown that:
– if (⊤S ,⊥S) are taken, then

2

⊥
i=1,c

µi = µ2 (10)

– whatever c ≥ 2,

⊤
i=1,c

µi ≤

2

⊥
i=1,c

µi ≤ ⊥
i=1,c

µi (11)

Referring to the compensation property of some aggregation functions, generically called Φ:

min(x1, ..., xc) ≤ Φ(x1, ..., xc) ≤ max(x1, ..., xc)

we called (11) the weak compensation property.

3. The k-order Fuzzy OR Operator

The natural extension of what we can call the 2-order ambiguity concept leads to the definition of a k-order
fOR operator. Let P be the powerset of C = {1, ..., c} and Pk = {A ∈ P : |A| = k} where |A| denotes the
cardinality of subset A. We propose to define the k-order fuzzy OR operator (briefly fOR-k) as:

k

⊥
i=1,c

µi = ⊤
A∈Pk−1

(

⊥
j∈C\A

µj

)

(12)

1 ⊤S and ⊥S are the only idempotent t-norm and t-conorm
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Obviously, this definition agrees with (9) for k = 2. Let us review the mathematical properties fOR-k
checks. Some of them result from those of ⊤ and ⊥, proofs being straightforward:

boundary conditions:

k

⊥
i=1,c

0 = 0 and

k

⊥
i=1,c

1 = 1 (13)

monotony: if λi ≤ µi, ∀i = 1, c, then:

k

⊥
i=1,c

λi ≤

k

⊥
i=1,c

µi (14)

symmetry: for any permutation σ of C

k

⊥
i=1,c

µσ(i) =

k

⊥
i=1,c

µi (15)

Moreover, the particular role of 0 can be emphasized:

k

⊥(µ1, . . . , µc−1, 0) =



 ⊤
A∈Pk−1;

c∈A

(

⊥
j∈C\A

µj

)



⊤



 ⊤
A∈Pk−1;

c6∈A

(

⊥
j∈C\A

µj

)



 (16)

and if we denote C ′ = {1, . . . , c − 1} and P ′
k the set of subsets of C ′ with k elements:

k

⊥(µ1, . . . , µc−1, 0)=



 ⊤
B∈P′

k−2



 ⊥
j∈C\

(B∪{c})

µj







⊤

[

⊤
A∈P′

k−1

(

⊥
j∈C′\A

µj

)

]

(17)

=



 ⊤
B∈P′

k−2



⊥
j∈C′\

B

µj







⊤





k

⊥(µ1, . . . , µc−1)



 (18)

=





k−1

⊥(µ1, . . . , µc−1)



⊤





k

⊥(µ1, . . . , µc−1)



 (19)

Since fOR-k aggregates c (= |C|) values, a sequence {
1

⊥,
2

⊥, . . . ,
c

⊥} of c different fOR-k can always be

constructed. From (12), we can derive simpler forms for
1

⊥ as:

1

⊥
i=1,c

µi = ⊤
A∈P0

(

⊥
j∈C\A

µj

)

=⊤
∅

(

⊥
j∈C

µj

)

=⊥
j∈C

µj (20)

and
c

⊥ as:
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c

⊥
i=1,c

µi = ⊤
A∈Pc−1

(

⊥
j∈C\A

µj

)

= ⊤
C\{i}

i=1,...,c

µi

=⊤
i∈C

µi (21)

Now, let us show what properties (10-11) become for the fOR-k operator.

Property 1: Let {µ1, ..., µc} be a set of numbers in [0, 1]. If (⊤S ,⊥S) are taken, then

k

⊥
i=1,c

µi = µk, the k-th

highest value.

Proof:

We write

k

⊥
i=1,c

µi defined by (12) as:

k

⊥
i=1,c

µi =

[

⊥
j∈C\κ

µj

]

⊤

[

⊤
A∈Pk−1\κ

(

⊥
j∈C\A

µj

)]

where κ = {1, . . . , k − 1}.
If A ∈ Pk−1 \ κ there exists i0 in κ ∩ (C \ A), therefore

⊥
j∈C\A

µj ≥ µi0 ≥ µk.

As

⊥
j∈C\κ

µj = µk

and

⊤
A∈Pk−1\κ

(

⊥
j∈C\A

µj

)

≥ µk

this concludes the proof.

Property 2: Let b = c
2 + 1 if c is even and b = c+3

2 if c is odd. We have

⊥
i=1,c

µi =

1

⊥
i=1,c

µi ≥

2

⊥
i=1,c

µi ≥ · · · ≥

b

⊥
i=1,c

µi. (22)

Proof:

Letting 2 ≤ k ≤ b, we are going to prove that

k−1

⊥
i=1,c

µi ≥

k

⊥
i=1,c

µi. By definition (12), we write:

k−1

⊥
i=1,c

µi = ⊤
A∈Pk−2

( ⊥
j∈C\A

µj)

k−1

⊥
i=1,c

µi = ⊤
{i1,...,ic−k+2}

(µi1⊥µi2⊥ . . .⊥µic−k+2
)

and
k

⊥
i=1,c

µi = ⊤
{j1,...,jc−k+1}

(µj1⊥ . . .⊥µjc−k+1
)
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We know that
(

c
k−2

)

≤
(

c
k−1

)

. Using a partition of P into symmetric chains [5], we construct an injection τ of
Pc−k+2 into Pc−k+1 such that τ(A) ⊂ A for all A in Pc−k+2. We write τ({i1, . . . , ic−k+2}) = {l1, . . . , lc−k+1}.
From (8) and (2) we have:

k−1

⊥
i=1,c

µi ≥ ⊤
{l1,...,lc−k+1}

(µl1⊥ . . .⊥µlc−k+1
)

and from (7) we obtain

⊤
{l1,...,lc−k+1}

(µl1⊥ . . .⊥µlc−k+1
) ≥

k

⊥
i=1,c

µi

and that concludes the proof.
Keeping in mind (20-21), it is finally worthnoting that if (⊤S ,⊥S) are taken, (22) becomes:

µ1 = ⊥
i=1,c

µi =

1

⊥
i=1,c

µi ≥

2

⊥
i=1,c

µi ≥ · · · ≥

c

⊥
i=1,c

µi = ⊤
i=1,c

µi = µc

In this particular case the weak compensation property holds not only up to a bound b for k.

3.1. Weighted operators

For some applications, it can be of interest to introduce unequal importance between the various label µi

by means of associated weights wi. This can be seen as a way to adjust the cost of misclassifications between
classes (e.g. if the cost of misclassification on a class is high, a higher weight could be put on it). That
for, one has to modify the t-norms (and t-conorms) definitions. In the general case, no unified approach is
found in the literature. However, in the particular case of strict archimedian operators some possibilities are
enumerated in [8]. For instance, in the case of Hamacher operators we can define:

⊤
i=1,c

{µi, wi}=
1

1 + c
∑

i=1,c wi
1−µi

µi

(23)

⊥
i=1,c

{µi, wi}=
1

1 + 1

c
∑

i=1,c
wi

µi
1−µi

(24)

with the constraint
∑

i=1,c wi = 1. Of course, unweighted operators (see Table 1) are found in case of
uniform weighting, ∀i = 1, c, {µi, 1/c}. Standard t-norms (min,max) do not belong to this framework and
the commonly used variants are [8]:

⊤
i=1,c

{µi, wi}= min
i=1,c

(max(1 − wi, µi)) (25)

⊥
i=1,c

{µi, wi}= max
i=1,c

(min(wi, µi)) (26)

with the constraint maxj=i,c wi = 1. In case of uniform weighting, ∀i = 1, c, {µi, 1}, we find again the
unweighted operators (1). However, these operators have to be combined to produce a fOR-k and no well
established strategies to calculate the necessary weights are available. We propose to use the following
weighting which ensures to find unweighted fOR-k when using uniform weights:

k

⊥
i=1,c

{µi, wi} = ⊤
A∈Pk−1

{(

⊥
j∈C\A

{

µj , w
′

j

}

)

, w
′′

A

}

(27)

where w
′

j et w
′′

A are normalized weights (i.e. sum equal to 1) calculated from initial weights wi:
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w
′

j =
wj

∑

j∈C\A wj

(28)

w
′′

A =
σA

∑

A∈Pk−1
wA

, and σA =
∑

l∈A

wl (29)

One can see the effect of such weighting in Fig. 1 for a four classes two-dimensional synthetic example. It
can be observed that the class ω1 with highest weight provides greatest fOR-1, while other fOR-k, for this
same class, are lowered compared to the unweighted case, then revealing less ambiguity. This is consistent
because patterns belonging to the class with the highest weight will be more easily exclusively classified (due
to the great values of fOR-1) and consequently less easily ambiguity rejected.

A special case is the one of the standard t-norm, for which the different normalization constraint leads to:

w
′

j =
wj

maxj∈C\A wj

(30)

w
′′

A =
πA

maxA∈Pk−1
wA

, and πA = max
l∈A

wl (31)

4. K-order Ambiguity in Pattern Classification

4.1. Classifier design

Let x be a pattern described by p features, and Ω = {ω1, ..., ωc} be a set of c classes. The aim of classifier
design is to define rules (classifiers) that can associate an unknown pattern vector x from a feature space
with one class of Ω. It generally consists in defining a couple (H,L) composed of a labeling function and a
hardening function:
– L : ℜp → L•c,

x 7→ µ(x) = t (µ1(x), ..., µc(x))
depending on the mathematical framework the classifier relies on (probabilistic, fuzzy or possibilistic). If
µi(x) is the posterior probability that x belongs to ωi or a membership function to a fuzzy set associated
with ωi, then L•c = Lfc = {µ(x) ∈ [0, 1]c :

∑c
i=1 µi(x) = 1}. Otherwise, µi(x) measures the typicality of

x to class ωi, e.g. by:

µi(x) =
1

1 + d(x,mi)
(32)

where mi is a class-prototype obtained from a learning set of patterns, therefore L•c = Lpc = [0, 1]c. For
illustration purposes this is the function of choice in the remaining of this paper. Let us notice that, in the
following, we only use the µi(x) measures as an input for the hardening function, which is in charge for
decision making (namely exclusive classification or rejection) and described in the next item. The intrinsic
quality of the various µi(x) is beyond the scope of this article (see for example classical book like [10]).

– H : L•c → Lhc

µ(x) 7→ l(x) = t (l1(x), ..., lc(x)):
li(x) ∈ {0, 1} and

∑c
i=1 li(x) = 1.

The common function reduces to the class of maximum label selection.
Such an exclusive classification rule is not efficient in practice because it supposes that:
i) Ω is exhaustively defined (closed-world assumption),
ii) classes do not overlap (separability assumption)

4.2. Reject options

In order to overcome the above mentioned limits and to reduce the misclassification risk, reject options can
be used. Two kinds of rejection have been defined. The first one, called distance rejection [9] is dedicated to
outlying patterns and allows to associate a vector x to no class. The second one, called ambiguity rejection,
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allows x to be classified in several or all the classes [7,14] ; it deals with inlying patterns. Formally, including
reject options consists in modifying the hardening function H such that l(x) can take any value of the set of
vertices of the unit hypercube Lc

hc = {0, 1}c. Thus, given its label vector µ(x), an unknown pattern x will
be either:
– distance rejected when l(x) = 0, or
– exclusively classified when l(x) ∈ Lhc ⊂ Lc

hc, or
– ambiguity rejected between a subset of classes ω = {ωj : lj(x) = 1} when l(x) is any of the other vertices.

It must be noticed that, in case the membership function is normalized (i.e.
∑c

i=1 µi(x) = 1), no distance
rejection is possible. In the general case, the design of classifiers with reject options can be made according
to well-identified strategies operating in two sequential steps (H1,H2) [12], where H1 is a function focusing
on one of the three possible classification results at hand. In particular, when H1 deals with ambiguity
rejection, the classifier is said to follow a ”mixture-first” strategy.

4.3. The proposed generic classifier

The fOR-k (12) can be used to define a generic classifier following a modified ”mixture-first“ strategy
as shown in Algorithm 1, where cmax is predefined, µk and tk (k = 1, cmax) are user-specified thresholds.
Note that cmax can be set such that the weak compensation property holds, i.e. cmax ≤ b in (22), but not
necessarily. One must notice that we do not discuss the labeling function L here. The choice of the method
to compute the membership values is left to the user choice (see e.g. [10] for some introduction) and is out
of interest for now.

Algorithm 1: hardening function H = (H1,H2) : Lpc → Lc
hc, µ(x) 7→ l(x)

// H1 : ambiguity rejection ?
for k = cmax down to 2 do

k

⊥ :=

k

⊥
i=1,c

µi(x)

if
k

⊥ > tk then
select J = {j ∈ C : µj(x) ≥ µk}

let l(x) such that li(x) =

{

1 if i ∈ J

0 otherwise

exit

// H2 : x is not ambiguity rejected

if
1

⊥ > t1 then // exclusive classification

let l(x) such that li(x) =

{

1 if i = 1

0 otherwise

else // distance rejection
l(x) = 0

Examples of label vectors µ(x) ∈ [0, 1]c for a c = 6-classes problem and resulting classification vectors
l(x) ∈ {0, 1}c are given in Table 2 for different dual couples: S = (⊤S ,⊥S), A = (⊤A,⊥A) and the
parametrized family due to Hamacher, with its γ parameter set to 0 H = (⊤H,0,⊥H,0).

Thresholds were set to t1 = 0.7, t2 = 0.5, t3 = 0.3, and µk = 0.7, k ∈ {1, 2, 3} in order to give the same
classification results whatever (⊤,⊥). To allow all the reported values to appear properly in the table, we
set cmax = 3 ≤ b = 4, where b is the one of the property 2. That is to say we only report values for which
the order is always preserved whatever the t-norm.
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Table 2
Classification examples with t-norms Standard, Algebraic and Hamacher (γ = 0)

µ(x) (⊤,⊥) and
k

⊥ (k = 1, 3) l(x) µ(x) (⊤,⊥) and
k

⊥ (k = 1, 3) l(x)






















0.10

0.75

0.20

0.85

0.80

0.05























1

⊥
2

⊥
3

⊥

S : 0.85 0.80 0.75

A : 0.99 0.91 0.48

H : 0.93 0.63 0.34























0

1

0

1

1

0













































0.10

0.25

0.20

0.85

0.80

0.05























1

⊥
2

⊥
3

⊥

S : 0.85 0.80 0.25

A : 0.98 0.77 0.17

H : 0.91 0.57 0.22























0

0

0

1

1

0













































0.10

0.25

0.20

0.15

0.80

0.05












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







4.4. Classification areas of an artificial data set

The following example aims at showing that such a classifier based on the ambiguity measure
k

⊥ can result
in defining well-adapted classification boundaries. A learning set of c = 4 classes of 25 artificial gaussian
two-dimensional samples each was generated such that three classes slightly overlap while the fourth one is
well-separated from the others:
– ω1 ∼ N ( t(−1 − 1), I),
– ω2 ∼ N ( t(−1 1), I),
– ω3 ∼ N ( t(1 1), I) and
– ω4 ∼ N ( t(−3 3), I).

Contour plots of
2

⊥,
3

⊥ and
4

⊥ using S = (⊤S ,⊥S) are shown in Fig. 1 (left column). Areas are as dark as
k

⊥
is high. To simplify the choice of the thresholds tk they where set according to a predetermined fraction of

the actual maximum value of the corresponding
k

⊥ computed on the data samples. In this example, we took

80% of each of the
2

⊥,
3

⊥ and
4

⊥ maximum values and 20% of the
1

⊥ maximum values, such that classification
areas were good looking. Corresponding classification areas are plotted in Fig. 2: exclusive classification in
one of the four classes in blue, the 3 kind of ambiguities reject areas in yellow, orange and brown, and
distance reject area in white.

Let us notice that this choice of thresholds reveals an ambiguity reject area between 4 classes inside
an exclusive classification area (see Fig. 2). It is obvious that this area should be eliminated by a better
thresholds choice. However, we chose such thresholds to visualize the relative positions of the reject areas
and show their relevance. In a real application, the erroneous area would be easily removed because, in this

case, the values of the
4

⊥ being significantly low relatively to the others
k

⊥.
A last example on these 2-dimensional data is made of the plotting of the fOR-k (k = 1, 3) based on

Hamacher t-norms with γ = 0 (see Fig. 1, middle column). As one can observe, fOR-1 reveals peaks around
class centers mostly in the same way as the first order operator based on standard column. More surprisingly,
the higher order operators (3 and beyond) tend to put ambiguity area not only between class centers but
also close to them. This is due to the way our operators are made: by aggregating the whole label vector
values it takes into account not only values of rank k and above but also the highest value, related to
fOR-1. Hence, fOR-k, k ≤ 2 become greater as fOR-1 increases. To exemplify this tendency let us take



1

⊥ Contour plot

2

⊥ Contour plot

3

⊥ Contour plot

4

⊥ Contour plot

Fig. 1. Some fOR−k, with Euclidean distance based membership functions (Equation 32), on the data set: (⊤S ,⊥S) based

(left column), (⊤H,0,⊥H,0) based: unweighted (middle column) and weighted w = t
(

1
2

1
6

1
6

1
6

)

(right column).
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Fig. 2. Standard
k

⊥ classification result (Class centers are represented by white circles).

2

⊥(0.5, 0.1, 0.01) = 0.1. The result is numerically consistent in being close to the second value of the vector.

However, by increasing the highest value of the vector
2

⊥(0.9, 0.1, 0.01) = 0.2 one gets a greater value which is
still numerically consistent but influenced by the greatest value. Thus, to some extend the second maximum

value is attracted by the first one. More generally,
1

⊥ attracts
2

⊥,. . . ,
c

⊥ toward classes centers. A visual
example can be given in taking a level curve along the line drawn in Fig. 3(a).

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
fOR−1
fOR−2
fOR−3
fOR−4

threshold 2

threshold 1

(a) Line cut on fOR-2 (b) Associated level curves

Fig. 3. Illustration of the difficulty of thresholds’ setting with fOR-k based on Hamacher t-norm (γ = 0).

It can be checked, Fig. 3(b), that any threshold on fOR-2 will either place ambiguity areas around class
centers, as with threshold 1 sets to 0.2, or completely ignore areas between classes, as with threshold 2 sets
to 0.3. As such, this is not problematic but, from our point of view, which is thresholding fOR-k values to
ensure classification or reject decisions, this behavior clearly introduces some bias toward class centers. We
show in the next section some way to overcome this difficulty.

Finally, the last column of Fig. 1 exhibits weighting results on the fOR-k based on Hamacher norms
(γ = 0). We choose to reinforce the class ω1 by increasing its associated weight: w = t

(

1
2

1
6

1
6

1
6

)

.

One can observe that the
1

⊥ of class ω1 is favored compared to the one of the other classes: its maximal
value is higher than the other ones and its spread is wider. Patterns belonging to ω1 will clearly be more
easily exclusively classified. On the contrary, for orders higher than two, ω1 is to some extent isolated: it

11



has less ambiguity than the others. This behavior is consistent as this class is more easily classified and
shares less ambiguity with the others. As a consequence, ambiguity areas move toward the other classes
centers. The next section presents the method we develop to ensure good reject areas even in the case of
strict Archimedian t-norm, e.g. the Hamacher one.

4.5. Practical use: reducing from k thresholds to a single one.

The
k

⊥ operator we have defined exhibits well established properties. In particular, they are sorted in

decreasing order from
2

⊥ to
b

⊥ (see Equation (22)). From a practical point of view, reject areas determination
is made complicated:
– generally, by the number of thresholds to be tuned (potentially as many as the classes number for ambiguity

rejection plus a threshold for distance rejection),
– specifically, for some t-norms, like Hamacher’s one, by:

- thresholds dynamic: values can be small while difference between the various
k

⊥ is non linear,

- reject areas are peaked around class centers as shown in previous examples.

This is why we aim at providing a simple way of thresholding by use of a single threshold instead of the k
thresholds values that would be used when directly using the fOR-k.

To counter the problems presented in the start of this section we chose to define operators based on the
fOR-k with an approach close to the one followed for the definition of the fXOR in [17]: we will combine
our operators to define more relevant reject areas that also are easier to obtain by a single thresholding. Let
us recall that a fuzzy eXclusive OR operator (briefly fXOR) extends the crisp XOR operator to the fuzzy
context. Such an operator has been shown to be suitable for revealing if µ1 is significantly high and µ2 is
significantly low while remaining greater than lower degrees. It is a mapping from [0, 1]c to [0, 1], defined by:

⊥
i=1,c

µi =

(

⊥
i=1,c

µi

)

⊤





2

⊥
i=1,c

µi

/

⊥
i=1,c

µi



 (33)

There exist other combinations of dual triples (⊤,⊥, . ), where . denotes a fuzzy complement, that are
fXOR operators, e.g. in [17]. The term at the right hand side of ⊤ in (33) acts as a penalty one which
weakens the fOR operator. Thanks to the monotony property and neutral elements of ⊤ and ⊥, we have
whatever (⊤,⊥):

⊤
i=1,c

µi ≤ ⊥
i=1,c

µi ≤ ⊥
i=1,c

µi (34)

For instance, when the standard norms (⊤S ,⊥S) and the usual complement: u = 1 − u, are used, fXOR
reduces to min{µ1, 1− µ2/µ1} and equals 0 whenever µ1 = µ2. This fXOR applied to unsupervised classifi-
cation for the cluster validity problem, favorably compares to well established criteria (see [11] for a deeper
inspection). The first stage of the procedure we propose consists in defining an operator ak which determines
if a pattern xj to be classified has a label vector µ((x)) which is ambiguous for the order k and for this order
only. This is done by aggregating by one fuzzy AND two terms which fulfill these roles respectively: the first
one, which is the ratio of fOR-k on fOR-1, determines if fOR-k is large relatively to the fOR-1 ; the second
one, by the negation of ak+1 removes ambiguity with higher orders. Let us notice that this last term makes
it possible to concentrate the ambiguity areas on a fixed order. In particular it avoids a mixture between,
on the one hand, areas related to ambiguity of order 2 and higher, and on the other hand, areas of exclusive
classification as characterized by a high value of fOR-1. These terms are built in an iterative way according
to the following scheme:
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for all x ∈ Rp to be classified


































































ac+1(x) = 0

ac(x) =

(

c

⊥µ(x)/
1

⊥ µ(x)

)

⊤ ac+1(x) =

(

c

⊥µ(x)/
1

⊥ µ(x)

)

...

ak(x) =

(

k

⊥µ(x)/
1

⊥ µ(x)

)

⊤ ak+1(x)

...

a2(x) =

(

2

⊥µ(x)/
1

⊥ µ(x)

)

⊤ a3(x)

The second stage in the construction of our measure consists in aggregating by one fuzzy OR the various
ak to find a measure which characterizes the ambiguities of order k or higher. Here, our aim is to be able to
fix a possibly unique global threshold to isolate all the possible ambiguity areas:







































α′
c(x) = ac(x)

...

α′
k(x) = ⊥

i=k,c
ai(x)

...

α′
2(x) = a2(x)⊥a3(x) . . .⊥ac(x)

Let us notice that, by (8), we have ∀k, α′
k ≤ α′

k−1.
The last stage is a kind of normalization relatively to order 2. Indeed, thanks to the previous property,

the α′
k are stacked in descending order, and thus a possible strategy to fix reject thresholds is to give a value

to the threshold on the fOR-2 and decreasing values for the higher orders. Even if it provides an operational
framework, there remain nevertheless c − 1 thresholds to be fixed to reveal all ambiguity areas. In order to
reduce this choice to a single threshold, we propose the following heuristics, amongst many other candidates:
the various fOR-k, k ≥ 2 are translated so that the highest computed values of these fOR-k touch fOR-2.
More formally:
let jmax = argmaxj=1,n (α′

2(xj)) , where the xj ’s are the n patterns to be classified,















αk(x) = α′
k(x) + (α′

2(xjmax
) − α′

k(xjmax
)) ,

...

α2(x) = α′
2(xj)

Then, the practical use of αk is the following one: as αk are made comparable by normalization, a single
threshold on α2 is enough to isolate ambiguity areas of order 2 or higher. Then, with the same threshold
on α3 one can isolate the ambiguity areas of order 3 or higher and so on until order k. The corresponding
classifier with reject options, according to the ”mixture-first” strategy, is given in Algorithm 2. Only two
threshold t1, for distance rejection, and t2 for ambiguity rejection, of any order, is required. As for the
previous Algorithm 1, it can reduce to an exclusive classifier (with not reject option) by an appropriate
choice of thresholds, e.g. here t1 = t2 = 1.

By taking again the previous four classes example, one can visually check in Fig. 4 that areas associated
to ambiguities are now correctly located between classes and no more toward centers.

It can be checked on Fig. 5 that the ambiguity area is correctly placed between classes and no more around
class centers as in Fig. 3.



Algorithm 2: hardening function H = (H1,H2) : Lpc → Lc
hc, µ(x) 7→ l(x)

// H1 : ambiguity rejection ?
for k = 2 to cmax do

αk := αk(x)
if αk > t2 then

select J = {j ∈ C : µj(x) ≥ µk}

let l(x) such that li(x) =

{

1 if i ∈ J

0 otherwise

exit

// H2 : x is not ambiguity rejected

if
1

⊥ > t1 then // exclusive classification

let l(x) such that li(x) =

{

1 if i = 1

0 otherwise

else // distance rejection
l(x) = 0

4.6. Real cases study

To validate the proposed operator and classification procedure we made some experiments on two real
data sets. They are both taken from the well known UCI database [4]. The first one is the three classes Iris
data set and the second one the six classes Glass Identification data set.

4.6.1. Iris data set
The iris data set [1] contains n = 150 observations from three 4-dimensional classes (iris virginica, iris

versicolor and iris setosa) of 50 points each. It is one of the most used benchmarks in pattern recognition,
and is known to have two classes, numbered 2 and 3, with a substantial overlap in the feature space while
the first one is well separated from the others. Therefore, one can expect to mostly find ambiguity of order
2 in some area and very few, if any, ambiguity of higher order. For visualization purposes, and following [2],
only the third and fourth two features (petal width and petal length) were considered in this analysis. As
the classes are known to have a hyperellipsoidal shape, we used the Mahalanobis based distance instead of
the Euclidean distance in the membership function (32). The three mean vectors and covariance matrices
are estimated on the data set. Although we did not aim at discussing here the relative merits of the various
classification approaches (probabilistic, fuzzy or possibilistic), we compare the results of our simple classifier
(Poss) without rejection to the ones obtained by two classical methods: the Quadratic Bayes classifier
(QB) with Maximum A Posteriori classification and the k-Nearest Neighbor (k-NN). For this last classifier
best results are obtained using a single neighbor (1-NN), on these data. We provide results obtained by
a resubstitution (Table 3(a)) and by a leave-one-out 2 procedure (Table 3(b)) using Duda et al. classical
book [10] associated MATLAB c© software.

Our simple Possibilistic classifier based on Equation (32) labeling function provides resubstitution results
between the ones of the Quadratic Bayes and of the 1-NN classifiers. These results ensure the effectiveness
of our basic classifier, however we must point out that this choice of labeling function is not imposed by our
approach. Any membership function can be used as well in the L part of our design for classifiers with reject
options (see section 4.1 and Algorithm 1). Having clarified this point, we now deal with ambiguity rejection,
i.e. the H part. Results obtained with the Hamacher t-norm (γ = 0) are provided in Fig. 6. Fig.6(a) gives
typicality degrees centered around class prototypes. Fig. 6(b) reveals order 2 ambiguity area between class
2 and 3 thanks to fOR-2. Fig. 6(c) exhibits one ambiguity area setting in front of class 1 in the direction of

2 It must be noticed that in the case of a 1-NN classifier results of a leave-one-out procedure are obviously the same as in the
resubstitution case. Both results are given here to facilitate the reading.
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Contour plot of
2

⊥ and α2

Contour plot of
3

⊥ and α3

Contour plot of
4

⊥ and α4

Fig. 4. fOR-k (left) versus αk (right) - Hamacher case (γ = 0).

Table 3
Iris data - Classification results without ambiguity rejection.

correct error reject

Poss 146 4 0

QB 147 3 0

1-NN 143 7 0

correct error reject

Poss 145 5 0

QB 145 5 0

1-NN 143 7 0

(a) resubstitution (b) leave-one-out
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Fig. 5. αk based on Hamacher t-norm (γ = 0) for the same line cut as in Fig.3.

the 2 other classes. All these ambiguities are geometrically well placed and order 3 ambiguity is of very small
value, thus hardly selected by sensitive thresholds. However, it can be checked that these areas are attracted
by classes centers. Thus, as expected, poorly tuned thresholds can lead to erroneously reject patterns with
high membership values.

(a) Contour plot of
1

⊥ (b) Contour plot of
2

⊥ (c) Contour plot of
3

⊥

Fig. 6. Some
k

⊥ (based on Hamacher t-norm, with γ = 0) on the Iris dataset - Classes 1 to 3 are respectively represented by ◦,
* and ⊳ symbols .

Therefore we used αk instead of fOR-k to reveal ambiguity areas. It can be checked on Fig. 7(a) that
ambiguity of order 2, as calculated with Hamacher t-norms, is well placed relatively to class centers. Mean-
while, Fig. 7(b) shows ambiguity of order 3 far away from class centers, thus leading not to reject between
3 classes. When applying the Algorithm 2 to these data, we choose to make no distance rejection, as this
is not the core of the paper. By setting t2 threshold to 0.28 and t1 to 1, we ensured good ambiguity reject
results without distance rejection. In Fig. 7(a), the four rejected points are darken while the erroneous ones
are circled.

Classification rates, obtained by applying the Algorithm 2 are shown in Table 4 as well as the various
values for t2 thresholds ; t1 was set to 1 in order to disable distance rejection and to focus on ambiguity
rejection. In the case of Hamacher t-norms (γ = 0), four points were rejected at the order 2, and none at the
order 3. Three of the rejected points are ill-classified points, thus only one erroneous point remains. These
results are quite good: roughly speaking for two rejected points we avoid one error point. Furthermore, we
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(a) Contour plot of α2. The four ambiguity rejected points
are crossed while the four erroneously classified points are
circled.

(b) Contour plot of α3. No ambiguity rejection found.

Fig. 7. Contour plots of αi, i = 2, 3 with erroneously classified and rejected points.

found that, in accordance to visual inspection, no order 3 ambiguity is found. Rejection using standard
t-norm behave in the same way (see Table 4). However, when using resubstitution, best results are obtained
with Hamacher t-norm (4 rejected points save 3 error points).

Finally, we can check on Fig. 6(b) that the rejected points are geometrically reasonably well placed.

Table 4
Iris data - Classification results with ambiguity rejection.

`
`

`
`

`
`

`
`

`
`

thresholds
classification

correct error reject

Poss no rejection 146 4 0

Standard α2 = 0.75 145 2 3

α3 = 0.75 146 4 0

Hamacher α2 = 0.28 145 1 4

γ = 0 α3 = 0.28 146 4 0

`
`

`
`

`
`

`
`

`
`

thresholds
classification

correct error reject

Poss no rejection 145 5 0

Standard α2 = 0.75 144 3 3

α3 = 0.75 145 5 0

Hamacher α2 = 0.28 142 3 5

γ = 0 α3 = 0.28 145 5 0

(a) resubstitution (b) leave-one-out

4.6.2. Glass Identification data set
The Glass Identification Database contains n = 214 observations from six 9-dimensional classes. The

classes are unevenly distributed and the number of observations are 70,76,17,13,9,29 for classes from 1 to 6
respectively. These data are known to be highly non linearly separable. Our simple possibilistic prototype-
based classifier using Mahalanobis distance leads to the results shown in Table 5(a) and Table 5(b) when
using the resubstitution and leave-one-out method respectively. Let us notice that because of a ill-conditioned
covariance matrix for class 5 (represented by only 9 points for 9 features) we must use Tikhonov regulariza-
tion [19] to enable distance computation. Results provided by our simple Possibilistic classifier are a little
better than the ones of the Quadratic Bayes classifier as well as the ones of the 1-Nearest Neighbor classifier
when making resubstitution classification.
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Due to the non linear separability of the data set, the 1-NN unsurprisingly outperforms other classifiers
in the leave-one-out procedure: first two classifiers are prototype-based unlike the third one.

Table 5
Glass data - Classification results without rejection.

correct error reject

Poss 161 53 0

BQ 156 58 0

1-NN 157 57 0

correct error reject

Poss 131 83 0

BQ 127 87 0

1-NN 157 57 0

(a) resubstitution (b) leave-one-out

For the rejection part, we again disabled distance rejection (t1 = 1) to focus on ambiguity rejection.
Results using resubstitution are provided in Table 6(a). A leave-one-out validation leads to the results given
in Table 6(b), parameters being the same as for the resubstitution method. It can be checked that for the
two different t-norms results are comparable but not equivalent:
– both detect few, if any, order 3 ambiguity (2 points for Standard t-norm in resubstitution, 1 point for

Hamacher in leave-one-out);
– classification rates are better for Standard in resubstitution (5 rejected points save 4 error points, for the

same result Hamacher needs to reject 8 points).

Table 6
Glass data - Classification results with ambiguity rejection.

`
`

`
`

`
`

`
`

`
`

thresholds
classification

correct error reject

Poss no rejection 161 53 0

Standard α2 = 0.9 160 49 5

α3 = 0.9 161 51 2

Hamacher α2 = 0.25 157 49 8

γ = 0 α3 = 0.25 161 53 0

`
`

`
`

`
`

`
`

`
`

thresholds
classification

correct error reject

Poss no rejection 131 83 0

Standard α2 = 0.9 130 81 3

α3 = 0.9 131 83 0

Hamacher α2 = 0.25 127 81 6

γ = 0 α3 = 0.25 131 82 1

(a) resubstitution (b) leave-one-out

It can be shown that the choice of the t-norm make some influence on the results but in a sensible way: they
agree on ambiguity order but some t-norms seem to be better adapted to some data sets. As an example,
best results are obtained with Hamacher t-norm on the Iris data set, while Standard t-norm performed
better on the Identification Glass data set.

5. Conclusion

In this paper, we have proposed a k−order Fuzzy OR operator, fOR−k, built on t-norms which is a
straightforward generalization of a previously defined second order fuzzy OR operator. We have exhibited its
main mathematical properties that make it suitable to define k−order ambiguity measures for classification
application according to a chosen t-norm. Among these properties, we have studied the so-called weak
compensation property (Equation 22) which appears of major importance. We proved that it is satisfied for
the standard norms S = (⊤S ,⊥S) and up to a bound b in the general case. This does not seem to be a real
problem for many of the applications we have in mind, i.e. pattern recognition related applications. Since
the special case of the fOR−2 has been already successfully studied in the frameworks of variable selection
and cluster validity, we chose to focus on another pattern recognition application: classification with reject
options, especially ambiguity rejection.

In this context, fOR−k exhibits some particular behavior: the higher orders operators are influenced by
the lower ones. To encounter this difficulty, we have introduced an aggregation scheme built on top of the
fOR−k, according to the fuzzy eXclusive OR operator idea. This scheme allows us to propose an ad-hoc
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solution to the multiple thresholds setting problem one has to face in the classification algorithm. Thus, a
single threshold value is required to deal with all the ambiguity reject areas.

Since fOR−k generalizes the notion of the kth highest value, we argue that it measures the similarity
between the fOR−j operator values for 1 ≤ j ≤ k. So it is a (1, k)-blockwise similarity operator [6].
Investigating more general (j, k)-blockwise similarity operators, say Φj,k, is promising. These operators will
extend the one proposed in this paper (fOR−k). This leads us to investigate the definition of blockwise
similarity and what kind of mathematical properties must be taken into account.

This and other extensions of the present work to image processing aspects, such as edge detection and
mathematical morphology, are left for further study.
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[4] C. Blake, C. Merz, UCI repository of machine learning databases, dept. of Information and Computer Science, University
of California, Irvine, CA, http://www.ics.uci.edu/∼mlearn/MLRepository.html (1998).

[5] N. D. Bruijn, C. van Ebbenhorst Tengbergen, D. Kruyswijk, On the set of divisors of a number, Nieuw Arch. Wiskunde
23 (2) (1951) 191–193.
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[17] L. Mascarilla, C. Frélicot, A class of reject-first possibilistic classifiers based on dual triples, in: joint 9th Int. Fuzzy

Systems Association World Congress (IFSA) and 20th Int. Conf. of the North American Fuzzy Information Processing
Society (NAFIPS), Vancouver, Canada, 2001.
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