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In pattern recognition, the membership of an object to classes is often measured by labels. This article mainly deals with the mathematical foundations of labels combination operators, built on t-norms, that extend previous ambiguity measures of objects by dealing not only with 2 classes ambiguities but also with k classes, k lying between 1 and the number of classes c. Mathematical properties of this family of combination operators are established and a weighted extension is proposed, allowing to give more or less importance to a given class. A classifier with reject options built on the proposed measure is presented and applied on synthetic data. A critical analysis of the results led to derivate some new operators by aggregating previous measures. A modified classifier is proposed and applied to synthetic data as well as to standard real data.

Introduction

The aim of this article is to define an ambiguity measure within the framework of pattern recognition, and more specifically supervised and unsupervised classification. For this purpose, we propose a new operator based on triangular norms. This family of operators essentially soften the concept of k-th highest component of a vector. We provide here well established mathematical definitions, check and prove properties of these operators. Some synthetic and real examples are exhibited.

The core of this paper is divided into three parts. In the first part we recall some basic properties of aggregation functions as well as previous works on ambiguity measurement. In the second part we define a class of operators based on triangular norms that combine labels, which are also called membership functions µ(x): the k-order fuzzy OR, here denoted fOR-k for the sake of brevity , which is suitable for k-order ambiguity measurement (i.e. ambiguity between k classes). Classical properties of such aggregation operators are checked, others are proved. Weighted operators based on weighted t-norms are proposed as well. In the third part, we define a generic way for adding reject options, specially ambiguity rejection, to usual supervised classifiers. The resulting (generic) classifier is said to follow a "mixture first" strategy [START_REF] Dubuisson | A statistical decision rule with incomplete knowledge about classes[END_REF][START_REF] Mascarilla | A class of reject-first possibilistic classifiers based on dual triples[END_REF] based on this new ambiguity measure.

Various experiments on synthetic data sets show the good properties of the approach but reveal some drawbacks related to thresholds setting. This lead us to define other operators on top of the k-order fuzzy OR and consequently a new classification algorithm. Their application to classical real data sets is given with quite satisfactory results.

It worth noting that, although we do not develop here other problematic than rejection in classification application, we have done such a work in case of k = 2 (fOR-2 operator). For example, we have investigated variable selection in various image processing and pattern recognition frameworks: see [START_REF] Semani | Feature selection using an ambiguity measure based on fuzzy OR-2 operators, International Fuzzy Systems Association[END_REF] where it was associated to a Sequential Forward Floating Search (SFFS) algorithm and [START_REF] Bichot | Filtrage particulaire sur les informations de mouvement et de couleur pour le suivi d'objets non rigides en milieu perturbé. application au projet aqu@thèque[END_REF] for a real-time dynamic color space selection for improving non-rigid objects tracking based on a Particle Filter approach. This special case also has been used to define a new cluster validity measure for fuzzy clustering [START_REF] Frélicot | A new cluster validity index for fuzzy clustering based on combination of dual triples[END_REF]. All these applications have provided good performance results either on synthetic data or standard (UCI) data. This paper is focused on classification with reject options using the generalization to higher orders (fOR-k).

Background

Basic operators

An aggregation function is a mapping Φ : I n → ℜ, where I is a real interval. In many fields, e.g. decision making, values to be aggregated often are in [0, 1] and consequent families Φ [0,1] : [0, 1] n → [0, 1] have been defined. Among them, triangular norms (briefly t-norms) and conorms (briefly t-conorms) play an important role in fuzzy logic as multi-valued extensions of crisp sets' intersection ∩ and union ∪ operators, as well as boolean logic AND, OR connectives. A t-norm is a mapping ⊤ : [0, 1] 2 → [0, 1] satisfying the following four axioms: ∀x, y, z ∈ [0, 1]

x⊤y = y⊤x (1) 
y ≤ z ⇒ x⊤y ≤ x⊤z (2) 
x⊤(y⊤z) = (x⊤y)⊤z (3)

x⊤1 = x (4) 
The dual t-conorm ⊥ is defined as:

x⊥y = x ⊤ y (5) 
One usually takes x = 1x. A t-conorm then satisfies axioms (1), ( 2), (3) as well as:

x⊥0 = x (6) 
Axioms ( 2), ( 4) and ( 6) imply:

x⊤y ≤ x (7) 
x ≤ x⊥y

It ensues: i) 0 is an absorbing element for any t-norm, ii) min is the largest t-norm, iii) 1 is an absorbing element for any t-conorm, iv) max is the smallest t-conorm. Four basic t-norms and t-conorms are reported in Table 1 but there exist many others, in particular parametrized families, here exemplified by the Hamacher's one (see [START_REF] Klir | Fuzzy Sets and Fuzzy Logic: Theory and Applications[END_REF] and [START_REF]Logical, algebraic, analytic and probabilistic aspects of triangular norms[END_REF]).

Previous work

Suppose that values to be aggregated are labels µ i = µ i (x), ∈ [0, 1], i = 1, c and assume for writing convenience that they are sorted in decreasing order (µ 1 ≥ ... ≥ µ c ). In a context of decision-making, 

⊥ S = max(x, y) Algebraic ⊤ A = xy ⊥ A = x + y -xy Lukasiewicz ⊤ L = max(0, x + y -1) ⊥ L = min(x + y, 1)
Drastic

⊤ D = 0 if (x, y) ∈ [0, 1[ 2 ,
min(x, y) otherwise

⊥ D = 1 if (x, y) ∈]0, 1] 2 , max(x, y) otherwise Hamacher ⊤ H,γ = x y γ + (1 -γ) (x + y -x y) 0 ≤ γ ≤ +∞ ⊥ H,γ = x + y -x y -(1 -γ) x y 1-(1 -γ) x y
ambiguity straightforward relates to the comparison of µ 1 and µ 2 . In [START_REF] Frélicot | An ambiguity measure for pattern recognition problems using triangular-norms combination[END_REF], we proposed an operator, based on the combination of a dual couple (⊤, ⊥), suitable for such a comparison. It was defined by:

2 ⊥ i=1,c µ i = ⊤ i=1,c ⊥ j =i µ j (9) 
This so-called Fuzzy OR-2 operator (briefly fOR-2) have some mathematical properties resulting from those of ⊤ and ⊥, specifically: i) boundary conditions, ii) monotony, iii) symmetry, iv) idempotency of ⊤1 , v) continuity with respect to each operand if ⊤ is continuous. Moreover, it has been shown that: -if (⊤ S , ⊥ S ) are taken, then

2 ⊥ i=1,c µ i = µ 2 (10) -whatever c ≥ 2, ⊤ i=1,c µ i ≤ 2 ⊥ i=1,c µ i ≤ ⊥ i=1,c µ i (11) 
Referring to the compensation property of some aggregation functions, generically called Φ:

min(x 1 , ..., x c ) ≤ Φ(x 1 , ..., x c ) ≤ max(x 1 , ..., x c )
we called [START_REF] Frélicot | A new cluster validity index for fuzzy clustering based on combination of dual triples[END_REF] the weak compensation property.

The k-order Fuzzy OR Operator

The natural extension of what we can call the 2-order ambiguity concept leads to the definition of a k-order fOR operator. Let P be the powerset of C = {1, ..., c} and P k = {A ∈ P : |A| = k} where |A| denotes the cardinality of subset A. We propose to define the k-order fuzzy OR operator (briefly fOR-k) as:

k ⊥ i=1,c µ i = ⊤ A∈P k-1 ⊥ j∈C\A µ j (12) 
Obviously, this definition agrees with (9) for k = 2. Let us review the mathematical properties fOR-k checks. Some of them result from those of ⊤ and ⊥, proofs being straightforward: boundary conditions:

k ⊥ i=1,c 0 = 0 and k ⊥ i=1,c 1 = 1 (13) monotony: if λ i ≤ µ i , ∀i = 1, c, then: k ⊥ i=1,c λ i ≤ k ⊥ i=1,c µ i (14) 
symmetry: for any permutation σ of

C k ⊥ i=1,c µ σ(i) = k ⊥ i=1,c µ i (15) 
Moreover, the particular role of 0 can be emphasized:

k ⊥(µ 1 , . . . , µ c-1 , 0) =   ⊤ A∈P k-1 ; c∈A ⊥ j∈C\A µ j   ⊤   ⊤ A∈P k-1 ; c ∈A ⊥ j∈C\A µ j   (16) 
and if we denote C ′ = {1, . . . , c -1} and P ′ k the set of subsets of C ′ with k elements:

k ⊥(µ 1 , . . . , µ c-1 , 0)=   ⊤ B∈P ′ k-2   ⊥ j∈C\ (B∪{c}) µ j     ⊤ ⊤ A∈P ′ k-1 ⊥ j∈C ′ \A µ j (17) =   ⊤ B∈P ′ k-2   ⊥ j∈C ′ \ B µ j     ⊤   k ⊥(µ 1 , . . . , µ c-1 )   (18) =   k-1 ⊥(µ 1 , . . . , µ c-1 )   ⊤   k ⊥(µ 1 , . . . , µ c-1 )   (19) 
Since fOR-k aggregates c (= |C|) values, a sequence

{ 1 ⊥, 2 ⊥, . . . , c
⊥} of c different fOR-k can always be constructed. From [START_REF] Frélicot | A third way to design pattern classifiers with reject options[END_REF], we can derive simpler forms for 1 ⊥ as: Proof:

1 ⊥ i=1,c µ i = ⊤ A∈P0 ⊥ j∈C\A µ j = ⊤ ∅ ⊥ j∈C µ j = ⊥ j∈C µ j ( 
We write k ⊥ i=1,c
µ i defined by [START_REF] Frélicot | A third way to design pattern classifiers with reject options[END_REF] as:

k ⊥ i=1,c µ i = ⊥ j∈C\κ µ j ⊤ ⊤ A∈P k-1 \κ ⊥ j∈C\A µ j where κ = {1, . . . , k -1}. If A ∈ P k-1 \ κ there exists i 0 in κ ∩ (C \ A), therefore ⊥ j∈C\A µ j ≥ µ i0 ≥ µ k . As ⊥ j∈C\κ µ j = µ k and ⊤ A∈P k-1 \κ ⊥ j∈C\A µ j ≥ µ k
this concludes the proof.

Property 2: Let b = c 2 + 1 if c is even and b = c+3 2 if c is odd. We have ⊥ i=1,c µ i = 1 ⊥ i=1,c µ i ≥ 2 ⊥ i=1,c µ i ≥ • • • ≥ b ⊥ i=1,c µ i . (22) 
Proof:

Letting 2 ≤ k ≤ b, we are going to prove that

k-1 ⊥ i=1,c µ i ≥ k ⊥ i=1,c
µ i . By definition [START_REF] Frélicot | A third way to design pattern classifiers with reject options[END_REF], we write:

k-1 ⊥ i=1,c µ i = ⊤ A∈P k-2 ( ⊥ j∈C\A µ j ) k-1 ⊥ i=1,c µ i = ⊤ {i1,...,i c-k+2 } (µ i1 ⊥µ i2 ⊥ . . . ⊥µ i c-k+2 ) and k ⊥ i=1,c µ i = ⊤ {j1,...,j c-k+1 } (µ j1 ⊥ . . . ⊥µ j c-k+1 )
We know that c k-2 ≤ c k-1 . Using a partition of P into symmetric chains [START_REF] Bruijn | On the set of divisors of a number[END_REF], we construct an injection τ of P c-k+2 into P c-k+1 such that τ (A) ⊂ A for all A in P c-k+2 . We write τ ({i 1 , . . . , i c-k+2 }) = {l 1 , . . . , l c-k+1 }. From ( 8) and (2) we have:

k-1 ⊥ i=1,c µ i ≥ ⊤ {l1,...,l c-k+1 } (µ l1 ⊥ . . . ⊥µ l c-k+1 )
and from [START_REF] Chow | On optimum recognition error and reject tradeoff[END_REF] we obtain

⊤ {l1,...,l c-k+1 } (µ l1 ⊥ . . . ⊥µ l c-k+1 ) ≥ k ⊥ i=1,c µ i
and that concludes the proof.

Keeping in mind (20-21), it is finally worthnoting that if (⊤ S , ⊥ S ) are taken, (22) becomes:

µ 1 = ⊥ i=1,c µ i = 1 ⊥ i=1,c µ i ≥ 2 ⊥ i=1,c µ i ≥ • • • ≥ c ⊥ i=1,c µ i = ⊤ i=1,c µ i = µ c
In this particular case the weak compensation property holds not only up to a bound b for k.

Weighted operators

For some applications, it can be of interest to introduce unequal importance between the various label µ i by means of associated weights w i . This can be seen as a way to adjust the cost of misclassifications between classes (e.g. if the cost of misclassification on a class is high, a higher weight could be put on it). That for, one has to modify the t-norms (and t-conorms) definitions. In the general case, no unified approach is found in the literature. However, in the particular case of strict archimedian operators some possibilities are enumerated in [START_REF] Dubois | A review of fuzzy sets aggregation connectives[END_REF]. For instance, in the case of Hamacher operators we can define:

⊤ i=1,c {µ i , w i } = 1 1 + c i=1,c w i 1-µi µi (23) ⊥ i=1,c {µ i , w i } = 1 1 + 1 c i=1,c wi µ i 1-µ i (24)
with the constraint i=1,c w i = 1. Of course, unweighted operators (see Table 1) are found in case of uniform weighting, ∀i = 1, c, {µ i , 1/c}. Standard t-norms (min, max) do not belong to this framework and the commonly used variants are [START_REF] Dubois | A review of fuzzy sets aggregation connectives[END_REF]:

⊤ i=1,c {µ i , w i } = min i=1,c (max(1 -w i , µ i )) (25) ⊥ i=1,c {µ i , w i } = max i=1,c (min(w i , µ i )) (26) 
with the constraint max j=i,c w i = 1. In case of uniform weighting, ∀i = 1, c, {µ i , 1}, we find again the unweighted operators (1). However, these operators have to be combined to produce a fOR-k and no well established strategies to calculate the necessary weights are available. We propose to use the following weighting which ensures to find unweighted fOR-k when using uniform weights:

k ⊥ i=1,c {µ i , w i } = ⊤ A∈P k-1 ⊥ j∈C\A µ j , w ′ j , w ′′ A (27) 
where w ′ j et w ′′ A are normalized weights (i.e. sum equal to 1) calculated from initial weights w i :

w ′ j = w j j∈C\A w j (28) w ′′ A = σ A A∈P k-1 w A , and σ A = l∈A w l (29)
One can see the effect of such weighting in Fig. 1 for a four classes two-dimensional synthetic example. It can be observed that the class ω 1 with highest weight provides greatest fOR-1, while other fOR-k, for this same class, are lowered compared to the unweighted case, then revealing less ambiguity. This is consistent because patterns belonging to the class with the highest weight will be more easily exclusively classified (due to the great values of fOR-1) and consequently less easily ambiguity rejected.

A special case is the one of the standard t-norm, for which the different normalization constraint leads to:

w ′ j = w j max j∈C\A w j (30) w ′′ A = π A max A∈P k-1 w A , and π A = max l∈A w l (31)
4. K-order Ambiguity in Pattern Classification

Classifier design

Let x be a pattern described by p features, and Ω = {ω 1 , ..., ω c } be a set of c classes. The aim of classifier design is to define rules (classifiers) that can associate an unknown pattern vector x from a feature space with one class of Ω. It generally consists in defining a couple (H, L) composed of a labeling function and a hardening function:

-L : ℜ p → L •c , x → µ(x) = t (µ 1 (x), ..., µ c (x)
) depending on the mathematical framework the classifier relies on (probabilistic, fuzzy or possibilistic). If µ i (x) is the posterior probability that x belongs to ω i or a membership function to a fuzzy set associated with ω i , then

L •c = L f c = {µ(x) ∈ [0, 1] c : c i=1 µ i (x) = 1}.
Otherwise, µ i (x) measures the typicality of x to class ω i , e.g. by:

µ i (x) = 1 1 + d(x, m i ) (32)
where m i is a class-prototype obtained from a learning set of patterns, therefore

L •c = L pc = [0, 1] c .
For illustration purposes this is the function of choice in the remaining of this paper. Let us notice that, in the following, we only use the µ i (x) measures as an input for the hardening function, which is in charge for decision making (namely exclusive classification or rejection) and described in the next item. The intrinsic quality of the various µ i (x) is beyond the scope of this article (see for example classical book like [START_REF] Duda | Pattern Classification[END_REF]).

-H : L •c → L hc µ(x) → l(x) = t (l 1 (x), ..., l c (x)): l i (x) ∈ {0, 1} and c i=1 l i (x) = 1.
The common function reduces to the class of maximum label selection. Such an exclusive classification rule is not efficient in practice because it supposes that: i) Ω is exhaustively defined (closed-world assumption), ii) classes do not overlap (separability assumption)

Reject options

In order to overcome the above mentioned limits and to reduce the misclassification risk, reject options can be used. Two kinds of rejection have been defined. The first one, called distance rejection [START_REF] Dubuisson | A statistical decision rule with incomplete knowledge about classes[END_REF] is dedicated to outlying patterns and allows to associate a vector x to no class. The second one, called ambiguity rejection, allows x to be classified in several or all the classes [START_REF] Chow | On optimum recognition error and reject tradeoff[END_REF][START_REF] Ha | The optimum class-selective rejection rule[END_REF] ; it deals with inlying patterns. Formally, including reject options consists in modifying the hardening function H such that l(x) can take any value of the set of vertices of the unit hypercube L c hc = {0, 1} c . Thus, given its label vector µ(x), an unknown pattern x will be either: -distance rejected when l(x) = 0, or -exclusively classified when l(x) ∈ L hc ⊂ L c hc , or -ambiguity rejected between a subset of classes ω = {ω j : l j (x) = 1} when l(x) is any of the other vertices.

It must be noticed that, in case the membership function is normalized (i.e. c i=1 µ i (x) = 1), no distance rejection is possible. In the general case, the design of classifiers with reject options can be made according to well-identified strategies operating in two sequential steps (H 1 , H 2 ) [START_REF] Frélicot | A third way to design pattern classifiers with reject options[END_REF], where H 1 is a function focusing on one of the three possible classification results at hand. In particular, when H 1 deals with ambiguity rejection, the classifier is said to follow a "mixture-first" strategy.

The proposed generic classifier

The fOR-k ( 12) can be used to define a generic classifier following a modified "mixture-first" strategy as shown in Algorithm 1, where c max is predefined, µ k and t k (k = 1, c max ) are user-specified thresholds. Note that c max can be set such that the weak compensation property holds, i.e. c max ≤ b in (22), but not necessarily. One must notice that we do not discuss the labeling function L here. The choice of the method to compute the membership values is left to the user choice (see e.g. [START_REF] Duda | Pattern Classification[END_REF] for some introduction) and is out of interest for now.

Algorithm 1: hardening function H = (H 1 , H 2 ) : L pc → L c hc , µ(x) → l(x) // H1 : ambiguity rejection ? for k = c max down to 2 do k ⊥ := k ⊥ i=1,c µ i (x) if k ⊥ > t k then select J = {j ∈ C : µ j (x) ≥ µ k } let l(x) such that l i (x) = 1 if i ∈ J 0 otherwise exit // H2 : x is not ambiguity rejected if 1 ⊥ > t 1 then // exclusive classification let l(x) such that l i (x) = 1 if i = 1 0 otherwise else // distance rejection l(x) = 0
Examples of label vectors µ(x) ∈ [0, 1] c for a c = 6-classes problem and resulting classification vectors l(x) ∈ {0, 1} c are given in Table 2 for different dual couples: S = (⊤ S , ⊥ S ), A = (⊤ A , ⊥ A ) and the parametrized family due to Hamacher, with its γ parameter set to 0 H = (⊤ H,0 , ⊥ H,0 ).

Thresholds were set to t 1 = 0.7, t 2 = 0.5, t 3 = 0.3, and µ k = 0.7, k ∈ {1, 2, 3} in order to give the same classification results whatever (⊤, ⊥). To allow all the reported values to appear properly in the table, we set c max = 3 ≤ b = 4, where b is the one of the property 2. That is to say we only report values for which the order is always preserved whatever the t-norm. A : 0.98 0.77 0.17 

µ(x) (⊤, ⊥) and k ⊥ (k = 1, 3) l(x) µ(x) (⊤, ⊥) and k ⊥ (k = 1, 3) l(x)            0.
           0 1 0 1 1 0                       0 
H : 0.91 0.57 0.22            0 0 0 1 1 0                       0 
           0 0 0 0 1 0                       0 
           0 0 0 0 0 0           

Classification areas of an artificial data set

The following example aims at showing that such a classifier based on the ambiguity measure k ⊥ can result in defining well-adapted classification boundaries. A learning set of c = 4 classes of 25 artificial gaussian two-dimensional samples each was generated such that three classes slightly overlap while the fourth one is well-separated from the others: Let us notice that this choice of thresholds reveals an ambiguity reject area between 4 classes inside an exclusive classification area (see Fig. 2). It is obvious that this area should be eliminated by a better thresholds choice. However, we chose such thresholds to visualize the relative positions of the reject areas and show their relevance. In a real application, the erroneous area would be easily removed because, in this case, the values of the 4 ⊥ being significantly low relatively to the others k ⊥.

ω 1 ∼ N ( t (-1 -1), I), -ω 2 ∼ N ( t (-1 1), I), -ω 3 ∼ N ( t ( 1 
A last example on these 2-dimensional data is made of the plotting of the fOR-k (k = 1, 3) based on Hamacher t-norms with γ = 0 (see Fig. 1, middle column). As one can observe, fOR-1 reveals peaks around class centers mostly in the same way as the first order operator based on standard column. More surprisingly, the higher order operators (3 and beyond) tend to put ambiguity area not only between class centers but also close to them. This is due to the way our operators are made: by aggregating the whole label vector values it takes into account not only values of rank k and above but also the highest value, related to fOR-1. Hence, fOR-k, k ≤ 2 become greater as fOR-1 increases. To exemplify this tendency let us take However, by increasing the highest value of the vector 2 ⊥(0.9, 0.1, 0.01) = 0.2 one gets a greater value which is still numerically consistent but influenced by the greatest value. Thus, to some extend the second maximum value is attracted by the first one. More generally, It can be checked, Fig. 3(b), that any threshold on fOR-2 will either place ambiguity areas around class centers, as with threshold 1 sets to 0.2, or completely ignore areas between classes, as with threshold 2 sets to 0.3. As such, this is not problematic but, from our point of view, which is thresholding fOR-k values to ensure classification or reject decisions, this behavior clearly introduces some bias toward class centers. We show in the next section some way to overcome this difficulty.

Finally, the last column of Fig. 1 exhibits weighting results on the fOR-k based on Hamacher norms (γ = 0). We choose to reinforce the class ω 1 by increasing its associated weight: w = t 1 2 1 6 1 6 1 6 . One can observe that the 1 ⊥ of class ω 1 is favored compared to the one of the other classes: its maximal value is higher than the other ones and its spread is wider. Patterns belonging to ω 1 will clearly be more easily exclusively classified. On the contrary, for orders higher than two, ω 1 is to some extent isolated: it has less ambiguity than the others. This behavior is consistent as this class is more easily classified and shares less ambiguity with the others. As a consequence, ambiguity areas move toward the other classes centers. The next section presents the method we develop to ensure good reject areas even in the case of strict Archimedian t-norm, e.g. the Hamacher one. 22)). From a practical point of view, reject areas determination is made complicated: -generally, by the number of thresholds to be tuned (potentially as many as the classes number for ambiguity rejection plus a threshold for distance rejection), -specifically, for some t-norms, like Hamacher's one, by:

thresholds dynamic: values can be small while difference between the various k ⊥ is non linear, reject areas are peaked around class centers as shown in previous examples. This is why we aim at providing a simple way of thresholding by use of a single threshold instead of the k thresholds values that would be used when directly using the fOR-k.

To counter the problems presented in the start of this section we chose to define operators based on the fOR-k with an approach close to the one followed for the definition of the fXOR in [START_REF] Mascarilla | A class of reject-first possibilistic classifiers based on dual triples[END_REF]: we will combine our operators to define more relevant reject areas that also are easier to obtain by a single thresholding. Let us recall that a fuzzy eXclusive OR operator (briefly f XOR) extends the crisp XOR operator to the fuzzy context. Such an operator has been shown to be suitable for revealing if µ 1 is significantly high and µ 2 is significantly low while remaining greater than lower degrees. It is a mapping from [0, 1] c to [0, 1], defined by: ⊥ i=1,c

µ i = ⊥ i=1,c µ i ⊤   2 ⊥ i=1,c µ i ⊥ i=1,c µ i   (33)
There exist other combinations of dual triples (⊤, ⊥, . ), where . denotes a fuzzy complement, that are fXOR operators, e.g. in [START_REF] Mascarilla | A class of reject-first possibilistic classifiers based on dual triples[END_REF]. The term at the right hand side of ⊤ in (33) acts as a penalty one which weakens the fOR operator. Thanks to the monotony property and neutral elements of ⊤ and ⊥, we have whatever (⊤, ⊥):

⊤ i=1,c µ i ≤ ⊥ i=1,c µ i ≤ ⊥ i=1,c µ i (34)
For instance, when the standard norms (⊤ S , ⊥ S ) and the usual complement: u = 1u, are used, fXOR reduces to min{µ 1 , 1µ 2 /µ 1 } and equals 0 whenever µ 1 = µ 2 . This fXOR applied to unsupervised classification for the cluster validity problem, favorably compares to well established criteria (see [START_REF] Frélicot | A new cluster validity index for fuzzy clustering based on combination of dual triples[END_REF] for a deeper inspection). The first stage of the procedure we propose consists in defining an operator a k which determines if a pattern x j to be classified has a label vector µ((x)) which is ambiguous for the order k and for this order only. This is done by aggregating by one fuzzy AND two terms which fulfill these roles respectively: the first one, which is the ratio of fOR-k on fOR-1, determines if fOR-k is large relatively to the fOR-1 ; the second one, by the negation of a k+1 removes ambiguity with higher orders. Let us notice that this last term makes it possible to concentrate the ambiguity areas on a fixed order. In particular it avoids a mixture between, on the one hand, areas related to ambiguity of order 2 and higher, and on the other hand, areas of exclusive classification as characterized by a high value of fOR-1. These terms are built in an iterative way according to the following scheme: for all x ∈ R p to be classified

                                 a c+1 (x) = 0 a c (x) = c ⊥µ(x)/ 1 ⊥ µ(x) ⊤ a c+1 (x) = c ⊥µ(x)/ 1 ⊥ µ(x)
. . .

a k (x) = k ⊥µ(x)/ 1 ⊥ µ(x) ⊤ a k+1 (x)
. . .

a 2 (x) = 2 ⊥µ(x)/ 1 ⊥ µ(x) ⊤ a 3 (x)
The second stage in the construction of our measure consists in aggregating by one fuzzy OR the various a k to find a measure which characterizes the ambiguities of order k or higher. Here, our aim is to be able to fix a possibly unique global threshold to isolate all the possible ambiguity areas:

                   α ′ c (x) = a c (x) . . . α ′ k (x) = ⊥ i=k,c a i (x) . . . α ′ 2 (x) = a 2 (x)⊥a 3 (x) . . . ⊥a c (x)
Let us notice that, by ( 8), we have ∀k,

α ′ k ≤ α ′ k-1 .
The last stage is a kind of normalization relatively to order 2. Indeed, thanks to the previous property, the α ′ k are stacked in descending order, and thus a possible strategy to fix reject thresholds is to give a value to the threshold on the fOR-2 and decreasing values for the higher orders. Even if it provides an operational framework, there remain nevertheless c -1 thresholds to be fixed to reveal all ambiguity areas. In order to reduce this choice to a single threshold, we propose the following heuristics, amongst many other candidates: the various fOR-k, k ≥ 2 are translated so that the highest computed values of these fOR-k touch fOR-2. More formally: let j max = argmax j=1,n (α ′ 2 (x j )) , where the x j 's are the n patterns to be classified,

       α k (x) = α ′ k (x) + (α ′ 2 (x jmax ) -α ′ k (x jmax )) , . . . α 2 (x) = α ′ 2 (x j )
Then, the practical use of α k is the following one: as α k are made comparable by normalization, a single threshold on α 2 is enough to isolate ambiguity areas of order 2 or higher. Then, with the same threshold on α 3 one can isolate the ambiguity areas of order 3 or higher and so on until order k. The corresponding classifier with reject options, according to the "mixture-first" strategy, is given in Algorithm 2. Only two threshold t 1 , for distance rejection, and t 2 for ambiguity rejection, of any order, is required. As for the previous Algorithm 1, it can reduce to an exclusive classifier (with not reject option) by an appropriate choice of thresholds, e.g. here t 1 = t 2 = 1.

By taking again the previous four classes example, one can visually check in Fig. 4 that areas associated to ambiguities are now correctly located between classes and no more toward centers.

It can be checked on Fig. 5 that the ambiguity area is correctly placed between classes and no more around class centers as in Fig. 3.

Algorithm 2: hardening function H = (H 1 , H 2 ) : L pc → L c hc , µ(x) → l(x) // H1 : ambiguity rejection ? for k = 2 to c max do α k := α k (x) if α k > t 2 then select J = {j ∈ C : µ j (x) ≥ µ k } let l(x) such that l i (x) = 1 if i ∈ J 0 otherwise exit // H2 : x is not ambiguity rejected if 1 ⊥ > t 1 then // exclusive classification let l(x) such that l i (x) = 1 if i = 1 0 otherwise else // distance rejection l(x) = 0 4.6

. Real cases study

To validate the proposed operator and classification procedure we made some experiments on two real data sets. They are both taken from the well known UCI database [START_REF] Blake | UCI repository of machine learning databases[END_REF]. The first one is the three classes Iris data set and the second one the six classes Glass Identification data set.

Iris data set

The iris data set [START_REF] Anderson | The irises of the gaspe peninsula[END_REF] contains n = 150 observations from three 4-dimensional classes (iris virginica, iris versicolor and iris setosa) of 50 points each. It is one of the most used benchmarks in pattern recognition, and is known to have two classes, numbered 2 and 3, with a substantial overlap in the feature space while the first one is well separated from the others. Therefore, one can expect to mostly find ambiguity of order 2 in some area and very few, if any, ambiguity of higher order. For visualization purposes, and following [START_REF] Bezdek | Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, The Handbooks of Fuzzy Sets Series[END_REF], only the third and fourth two features (petal width and petal length) were considered in this analysis. As the classes are known to have a hyperellipsoidal shape, we used the Mahalanobis based distance instead of the Euclidean distance in the membership function (32). The three mean vectors and covariance matrices are estimated on the data set. Although we did not aim at discussing here the relative merits of the various classification approaches (probabilistic, fuzzy or possibilistic), we compare the results of our simple classifier (Poss) without rejection to the ones obtained by two classical methods: the Quadratic Bayes classifier (QB) with Maximum A Posteriori classification and the k-Nearest Neighbor (k-NN). For this last classifier best results are obtained using a single neighbor (1-NN), on these data. We provide results obtained by a resubstitution (Table 3(a)) and by a leave-one-out2 procedure (Table 3(b)) using Duda et al. classical book [START_REF] Duda | Pattern Classification[END_REF] associated MATLAB c software.

Our simple Possibilistic classifier based on Equation (32) labeling function provides resubstitution results between the ones of the Quadratic Bayes and of the 1-NN classifiers. These results ensure the effectiveness of our basic classifier, however we must point out that this choice of labeling function is not imposed by our approach. Any membership function can be used as well in the L part of our design for classifiers with reject options (see section 4.1 and Algorithm 1). Having clarified this point, we now deal with ambiguity rejection, i.e. the H part. Results obtained with the Hamacher t-norm (γ = 0) are provided in Fig. 6. Fig. 6(a) gives typicality degrees centered around class prototypes. Fig. 6(b) reveals order 2 ambiguity area between class 2 and 3 thanks to fOR-2. Fig. 6(c) exhibits one ambiguity area setting in front of class 1 in the direction of the 2 other classes. All these ambiguities are geometrically well placed and order 3 ambiguity is of very small value, thus hardly selected by sensitive thresholds. However, it can be checked that these areas are attracted by classes centers. Thus, as expected, poorly tuned thresholds can lead to erroneously reject patterns with high membership values. Therefore we used α k instead of fOR-k to reveal ambiguity areas. It can be checked on Fig. 7(a) that ambiguity of order 2, as calculated with Hamacher t-norms, is well placed relatively to class centers. Meanwhile, Fig. 7(b) shows ambiguity of order 3 far away from class centers, thus leading not to reject between 3 classes. When applying the Algorithm 2 to these data, we choose to make no distance rejection, as this is not the core of the paper. By setting t 2 threshold to 0.28 and t 1 to 1, we ensured good ambiguity reject results without distance rejection. In Fig. 7(a), the four rejected points are darken while the erroneous ones are circled.

Classification rates, obtained by applying the Algorithm 2 are shown in Table 4 as well as the various values for t 2 thresholds ; t 1 was set to 1 in order to disable distance rejection and to focus on ambiguity rejection. In the case of Hamacher t-norms (γ = 0), four points were rejected at the order 2, and none at the order 3. Three of the rejected points are ill-classified points, thus only one erroneous point remains. These results are quite good: roughly speaking for two rejected points we avoid one error point. Furthermore, we found that, in accordance to visual inspection, no order 3 ambiguity is found. Rejection using standard t-norm behave in the same way (see Table 4). However, when using resubstitution, best results are obtained with Hamacher t-norm (4 rejected points save 3 error points).

Finally, we can check on Fig. 6(b) that the rejected points are geometrically reasonably well placed. 

Glass Identification data set

The Glass Identification Database contains n = 214 observations from six 9-dimensional classes. The classes are unevenly distributed and the number of observations are 70,76,17,13,9,29 for classes from 1 to 6 respectively. These data are known to be highly non linearly separable. Our simple possibilistic prototypebased classifier using Mahalanobis distance leads to the results shown in Table 5(a) and Table 5(b) when using the resubstitution and leave-one-out method respectively. Let us notice that because of a ill-conditioned covariance matrix for class 5 (represented by only 9 points for 9 features) we must use Tikhonov regularization [START_REF] Tikhonov | Solution of incorrectly formulated problems and the regularization method[END_REF] to enable distance computation. Results provided by our simple Possibilistic classifier are a little better than the ones of the Quadratic Bayes classifier as well as the ones of the 1-Nearest Neighbor classifier when making resubstitution classification.

Due to the non linear separability of the data set, the 1-NN unsurprisingly outperforms other classifiers in the leave-one-out procedure: first two classifiers are prototype-based unlike the third one. For the rejection part, we again disabled distance rejection (t 1 = 1) to focus on ambiguity rejection. Results using resubstitution are provided in Table 6(a). A leave-one-out validation leads to the results given in Table 6(b), parameters being the same as for the resubstitution method. It can be checked that for the two different t-norms results are comparable but not equivalent: -both detect few, if any, order 3 ambiguity (2 points for Standard t-norm in resubstitution, 1 point for

Hamacher in leave-one-out); -classification rates are better for Standard in resubstitution (5 rejected points save 4 error points, for the same result Hamacher needs to reject 8 points).

Table 6 Glass data -Classification results with ambiguity rejection.

`````````t It can be shown that the choice of the t-norm make some influence on the results but in a sensible way: they agree on ambiguity order but some t-norms seem to be better adapted to some data sets. As an example, best results are obtained with Hamacher t-norm on the Iris data set, while Standard t-norm performed better on the Identification Glass data set.

Conclusion

In this paper, we have proposed a k-order Fuzzy OR operator, fOR-k, built on t-norms which is a straightforward generalization of a previously defined second order fuzzy OR operator. We have exhibited its main mathematical properties that make it suitable to define k-order ambiguity measures for classification application according to a chosen t-norm. Among these properties, we have studied the so-called weak compensation property (Equation 22) which appears of major importance. We proved that it is satisfied for the standard norms S = (⊤ S , ⊥ S ) and up to a bound b in the general case. This does not seem to be a real problem for many of the applications we have in mind, i.e. pattern recognition related applications. Since the special case of the fOR-2 has been already successfully studied in the frameworks of variable selection and cluster validity, we chose to focus on another pattern recognition application: classification with reject options, especially ambiguity rejection.

In this context, fOR-k exhibits some particular behavior: the higher orders operators are influenced by the lower ones. To encounter this difficulty, we have introduced an aggregation scheme built on top of the fOR-k, according to the fuzzy eXclusive OR operator idea. This scheme allows us to propose an ad-hoc solution to the multiple thresholds setting problem one has to face in the classification algorithm. Thus, a single threshold value is required to deal with all the ambiguity reject areas.

Since fOR-k generalizes the notion of the k th highest value, we argue that it measures the similarity between the fOR-j operator values for 1 ≤ j ≤ k. So it is a (1, k)-blockwise similarity operator [START_REF] Capitaine | Mesure de similarité par blocs via les normes triangulaires et l'intégrale de sugeno -application à la détection de contours[END_REF]. Investigating more general (j, k)-blockwise similarity operators, say Φ j,k , is promising. These operators will extend the one proposed in this paper (fOR-k). This leads us to investigate the definition of blockwise similarity and what kind of mathematical properties must be taken into account.

This and other extensions of the present work to image processing aspects, such as edge detection and mathematical morphology, are left for further study.

Property 1 :

 1 us show what properties (10-11) become for the fOR-k operator. Let {µ 1 , ..., µ c } be a set of numbers in [0, 1]. If (⊤ S , ⊥ S ) are taken, then k ⊥ i=1,c µ i = µ k , the k-th highest value.
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 1 Fig. 1. Some fOR-k, with Euclidean distance based membership functions (Equation 32), on the data set: (⊤ S , ⊥ S ) based (left column), (⊤ H,0 , ⊥ H,0 ) based: unweighted (middle column) and weighted w = t 1 2 1 6 1 6 1 6 (right column).
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 3 Fig. 3. Illustration of the difficulty of thresholds' setting with fOR-k based on Hamacher t-norm (γ = 0).
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4 Fig. 5 .

 45 Fig. 5. α k based on Hamacher t-norm (γ = 0) for the same line cut as in Fig.3.
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  (a) Contour plot of α 2 . The four ambiguity rejected points are crossed while the four erroneously classified points are circled. (b) Contour plot of α 3 . No ambiguity rejection found.
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 7 Fig. 7. Contour plots of α i , i = 2, 3 with erroneously classified and rejected points.

Table 1

 1 

	Basic t-norms (⊤) and t-conorms (⊥)	
	Standard	⊤ S = min(x, y)

Table 2

 2 Classification examples with t-norms Standard, Algebraic and Hamacher (γ = 0)

Table 4

 4 Iris data -Classification results with ambiguity rejection.

		`````````t hresholds	classification correct error reject		`````````t hresholds	classification correct error reject
	Poss	no rejection	146	4	0	Poss	no rejection	145	5	0
	Standard	α 2 = 0.75	145	2	3	Standard	α 2 = 0.75	144	3	3
		α 3 = 0.75	146	4	0		α 3 = 0.75	145	5	0
	Hamacher	α 2 = 0.28	145	1	4	Hamacher	α 2 = 0.28	142	3	5
	γ = 0	α 3 = 0.28	146	4	0	γ = 0	α 3 = 0.28	145	5	0
		(a) resubstitution					(b) leave-one-out	

Table 5

 5 Glass data -Classification results without rejection.

	correct error reject	correct error reject
	Poss 161	53	0	Poss 131	83	0
	BQ 156	58	0	BQ 127	87	0
	1-NN 157	57	0	1-NN 157	57	0
	(a) resubstitution	(b) leave-one-out	

⊤ S and ⊥ S are the only idempotent t-norm and t-conorm

It must be noticed that in the case of a 1-NN classifier results of a leave-one-out procedure are obviously the same as in the resubstitution case. Both results are given here to facilitate the reading.

Contour plot of