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Introduction

In recent years, the use of Lévy processes for modelling purposes has become very popular in many areas and especially in the field of finance (see e.g. [START_REF] Eberlein | Hyperbolic distributions in finance[END_REF], Barndorff-Nielsen and Shephard (2001), [START_REF] Cont | Financial modelling with jump processes[END_REF]; see also [START_REF] Bertoin | Lévy processes[END_REF] or [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF] for a comprehensive study for these processes). The distribution of a Lévy process is usually specified by its characteristic triple (drift, Gaussian component and Lévy measure) rather than by the distribution of its independent increments. Indeed, the exact distribution of these increments is most often intractable or even has no closed form formula. For this reason, the standard parametric approach by likelihood methods is a difficult task and many authors have rather considered nonparametric methods. For Lévy processes, estimating the Lévy measure is of crucial importance since this measure specifies the jumps behavior. Nonparametric estimation of the Lévy measure has been the subject of several recent contributions. The statistical approaches depend on the way observations are performed. For instance, [START_REF] Basawa | Nonparametric estimation for nondecreasing Lévy processes[END_REF] consider non decreasing Lévy processes and observations of jumps with size larger than some positive ε, or discrete observations with fixed sampling interval. They build nonparametric estimators of a distribution function linked with the Lévy measure. More recently, Figueroa-López and Houdré (2006) consider a continuous-time observation of a general Lévy process and study penalized projection estimators of the Lévy density based on integrals of functions with respect to the random Poisson measure associated with the jumps of the process. However, their approach remains theoretical since these Poisson integrals are hardly accessible.

In this paper, we consider nonparametric estimation of the Lévy measure for real-valued Lévy processes of pure jump type, i.e. without drift and Gaussian component. We rely on the common assumption that the Lévy measure admits a density n(x) on R and assume that the process is discretely observed with fixed sampling interval ∆. Let (L t ) denote the underlying Lévy process and (Z ∆ k = L k∆ -L (k-1)∆ , k = 1, . . . , n) be the observed random variables which are independent and identically distributed. Under our assumption, the characteristic function of L ∆ = Z ∆ 1 is given by the following simple formula:

(1)

ψ ∆ (u) = E(exp iuZ ∆ 1 ) = exp (∆ R (e iux -1)n(x)dx)
where the unknown function is the Lévy density n(x). It is therefore natural to investigate the nonparametric estimation of n(x) using empirical estimators of the charasteristic functions and its derivatives and then recover the Lévy density by Fourier inversion. This approach is illustrated by [START_REF] Watteel | Nonparametric estimation of the canonical measure for infinitely divisible distributions[END_REF] and Neumann and Reiss (2000). However, these authors consider general Lévy processes, with drift and Gaussian component. Hence, at least two derivatives of the characteristic function are necessary to reach the Lévy density. Moreover, the way Fourier inversion is done in concrete is not detailed in these papers. In our case, under the assumption that R |x|n(x)dx < ∞, we get the simple relation:

(2) g * (u) = e iux g(x)dx = -i ψ ′ ∆ (u) ∆ψ ∆ (u) , with g(x) = xn(x). This equation indicates that we can estimate g * (u) by using empirical counterparts of ψ ∆ (u) and ψ ′ ∆ (u) only. Then, the problem of recovering an estimator of g looks like a classical deconvolution problem. We have at hand the methods used for estimating unknown densities of random variables observed with additive independent noise. This requires the additional assumption that g belongs to L 2 (R). However, the problem of deconvolution set by equation ( 2) is not standard and looks more like deconvolution in presence of unknown errors densities. This is due to the fact that both the numerator and the denominator are unknown and have to be estimated from the same data. This is why our estimator of ψ ∆ (u) is not a simple empirical counterpart. Instead, we use a truncated version analogous to the one used in [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF] and Neumann and Reiss (2000).

Below, we show how to adapt the deconvolution method described in [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF]. We consider an adequate sequence (S m , m = 1, . . . , m n ) of subspaces of L 2 (R) and build a collection of projection estimators (ĝ m ). Then using a penalization device, we select through a data-driven procedure the best estimator in the collection. We study the L 2risk of the resulting estimator under the asymptotic framework that n tends to infinity. Although the sampling interval ∆ is fixed, we keep it as much as possible in all formulae since the distributions of the observed random variables highly depend on ∆.

In Section 2, we give assumptions and some preliminary properties. Section 3 contains examples of models included in our framework. Section 4 describes the statistical strategy. We present the projection spaces and define the collection of estimators. Proposition 4.1 gives the upper bound for the risk of a projection estimator on a fixed projection space. This proposition guides the choice of the penalty function and allows to discuss the rates of convergence of the projection estimators. Afterwards, we introduce a theoretical penalty (depending on the unknown characteristic function ψ ∆ ) and study the risk bound of a false estimator (actually not an estimator) (Theorem 4.1). Then, we replace the theoretical penalty by an estimated counterpart and give the upper bound of the risk of the resulting penalized estimator (Theorem 4.2). Section 6 gives some conclusions and open problems. Proofs are gathered in Section 6. In the Appendix, a fondamental result used in our proofs is recalled.

Framework and assumptions.

Recall that we consider the discrete time observation with sample step ∆ of a Lévy process L t with Lévy density n and characteristic function given by [START_REF] Barndorff-Nielsen | Modelling by Lévy processes for financial econometrics[END_REF]. We assume that (L t ) is a pure jump process with finite variation on compacts. When the Lévy measure n(x)dx is concentrated on (0, +∞), then (L t ) has increasing paths and is called a subordinator. We focus on the estimation of the real valued function

(3) g(x) = xn(x),
and introduce the following assumptions on the function g:

(H1) R |x|n(x)dx < ∞. (H2(p)) For p integer, R |x| p-1 |g(x)|dx < ∞. (H3)
The function g belongs to L 2 (R). Note that (H1) is stronger than the usual assumption (|x| ∧ 1)n(x)dx < +∞, and is also a moment assumption for L t . Under the usual assumption, (H2(p)) for p ≥ 1 implies (H1) and (H2(k)) for k ≤ p.

Our estimation procedure is based on the random variables (4)

Z ∆ i = L i∆ -L (i-1
)∆ , i = 1, . . . , n, which are independent, identically distributed, with common characteristic function ψ ∆ (u).

The moments of Z ∆ 1 are linked with the function g. More precisely, we have:

Proposition 2.1. Let p ≥ 1 integer. Under (H2)(p), E|Z ∆ 1 | p < ∞. Moreover, setting, for k = 1, . . . p, M k = R x k-1 g(x)dx, we have E(Z ∆ 1 ) = ∆M 1 , E[(Z ∆ 1 ) 2 ] = ∆M 2 + ∆ 2 M 1
, and more generally, E[(Z ∆ 1 ) l ] = ∆ M l + o(∆) for all l = 1, . . . , p. Proof. By the assumption, the exponent of the exponential in (1) is p times differentiable and, by derivating ψ ∆ , we get the result. 2 Assumption (H1) yields the relation [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], which is the basis of our estimation procedure. We need a precise control of ψ ∆ . For this, we introduce the assumption that, for m n an integer to be defined later, the following holds:

(H4) ∀x ∈ R, we have c ψ (1 + x 2 ) -∆β/2 ≤ |ψ ∆ (x)| ≤ C ψ (1 + x 2 ) -∆β/2
, for some given constants c ψ , C ψ and β ≥ 0. Note that an assumption of this type is also considered in [START_REF] Neumann | Nonparametric estimation for Lévy processes from low-frequency observations[END_REF].

For the adaptive version of our estimator, we need additional assumptions for g:

(H5) There exists some positive a such that |g * (x)| 2 (1 + x 2 ) a dx < +∞, and (H6)

x 2 g 2 (x)dx < +∞.

We must set independent assumptions for ψ ∆ and g, since there may be no relation at all between these two functions (see the examples). Note that, in Assumption (H5), which is a classical regularity assumption, the knowledge of a is not required. 

P Z ∆ 1 (dz) = e -c∆ (δ 0 (dz) + n≥1 f * n (z) (c∆) n n! dz).
We have the following bound:

(7) 1 ≥ |ψ ∆ (u)| ≥ e -2c∆ .
On this example, it appears clearly that we can not link the regularity assumption on g and (H4) which holds with β = 0.

3.2. The Lévy gamma process. Let α > 0, β > 0. The Lévy gamma process (L t ) with parameters (β, α) is a subordinator such that, for all t > 0, L t has distribution Gamma with parameters (βt, α), i.e. has density:

(8) α βt Γ(βt) x βt-1 e -αx 1 x≥0 .
The characteristic function of Z ∆ 1 is equal to:

(9) ψ ∆ (u) = α α -iu β∆ .
The Lévy density is n(x) = βx -1 e -αx 1 I {x>0} so that g(x) = βe -αx 1 I {x>0} satisfies our assumptions. We have: [START_REF] Diggle | A Fourier approach to nonparametric deconvolution of a density estimate[END_REF] ψ n(x)dx = +∞ and g(x) = xn(x) belongs to L 2 (R)∩L 1 (R). The case δ = 0, which corresponds to the Lévy inverse Gaussian process does not fit in our framework. For 0 < δ < 1/2, we find

′ ∆ (u) ψ ∆ (u) = i∆ β α -iu , |ψ ∆ (u)| = α β∆ (α 2 + u 2 ) β∆/2
g * (x) = c Γ(δ + 1/2) (β -ix) δ+1/2 , and |ψ ∆ (x)| = exp -c ∆Γ(δ + 1/2) 1/2 -δ [(β 2 + x 2 ) -(δ-1/2)/2 -β -(δ-1/2) ] .
It is important to mention that ψ ∆ above does not satisfy assumption (H4) since

(11) |ψ ∆ (x)| ∼ x→+∞ K(β, δ) exp(-c∆ Γ(δ + 1/2) 1/2 -δ x -δ+1/2 )
where

K(β, δ) = exp c ∆Γ(δ+1/2) 1/2-δ β -(δ-1/2
) . Thus, it has an exponential rate of decrease.

3.4.

The bilateral Gamma process. This process has been recently introduced by Küchler and Tappe (2008). Consider X, Y two independent random variables, X with distribution Γ(β, α) and Y with distribution Γ(β ′ , α ′ ). Then, Z = X -Y has distribution bilateral gamma with parameters (β, α, β ′ , α ′ ), that we denote by Γ(β, α; β ′ , α ′ ). The characteristic function of Z is equal to:

(12) ψ(u) = α α -iu β α ′ α ′ + iu β ′ = exp ( R (e iux -1)n(x)dx), with n(x) = x -1 g(x), and, for x ∈ R, g(x) = βe -αx 1 (0,+∞)(x) -β ′ e -α ′ |x| 1 (-∞,0) (x).
The bilateral Gamma process (L t ) has characteristic function ψ t (u) = ψ(u) t . The method can be generalized and we may consider Lévy processes on R obtained by bilateralisation of two subordinators.

3.5. Subordinated Processes. Let (W t ) be a Brownian motion, and let (Z t ) be an increasing Lévy process (subordinator), independent of (W t ). Assume that the observed process is

L t = W Zt . We have ψ ∆ (u) = E(e iuL ∆ ) = E(e -u 2 2 Z ∆ ). As Z t is positive, we consider, for λ ≥ 0, ϑ ∆ (λ) = E(e -λZ ∆ ) = exp -∆ +∞ 0 (1 -e -λx )n Z (x)dx ,
where n Z denotes the Lévy density of (Z t ). Now let us assume that g Z (x) = xn Z (x) is integrable over (0, +∞). We have:

log(ϑ ∆ (λ)) = -∆ +∞ 0 1 -e -λx x xn Z (x)dx = -∆ +∞ 0 ( λ 0 e -sx ds)xn Z (x)dx = -∆ λ 0 +∞ 0 e -sx xn Z (x)dx ds.
Hence,

ψ ∆ (u) = exp -∆ u 2 /2 0 +∞ 0 e -sx g Z (x)dx ds .
Moreover, it is possible to relate the Lévy density n L of (L t ) with the Lévy density n Z of (Z t ) as follows. Consider f a non negative function on R, with f (0) = 0. Given the whole path (Z t ), the jumps δL s = W Zs -W Z s-are centered Gaussian with variance δZ s . Hence,

E( s≤t f (δL s )) = s≤t E( R f (u) exp (-u 2 /2δZ s ) du √ 2πδZ s ) = t R f (u)du +∞ 0 exp (-u 2 /2x) n Z (x)dx √ 2πx ) . This gives n L (u) = +∞ 0 exp (-u 2 /2x) n Z (x)dx √ 2πx
. By the same tools, we see that

E( s≤t |δL s |) = 2/πE( s≤t δZ s ) = t +∞ 0 √ xn Z (x)dx.
Therefore, if the above integral is finite, the process (L t ) has finite variation on compact sets and it holds that R |u|n L (u)du < ∞.

With (Z t ) a Lévy-Gamma process, g Z (x) = βe -αx 1 I x>0 . Then

+∞ 0

e -sx βe -αx dx = β/(α + s), and

ψ ∆ (u) = α α + u 2 2 ∆β .
This model is the Variance Gamma stochastic volatility model described by [START_REF] Madan | The Variance Gamma (V.G.) Model for Share Market Returns[END_REF]. As noted in [START_REF] Küchler | Bilateral Gamma distributions and processes in financial mathematics[END_REF], the Variance Gamma distributions are special cases of bilateral Gamma distributions. The condition

+∞ 0 √ xn Z (x)dx < ∞ holds.
We can compute, for instance using the norming constant for an inverse Gaussian density,

n L (u) = +∞ 0 exp (- 1 2 ( u 2 x + 2αx) βx -3/2 dx √ 2π = β(2α) 1/4 )|u| -1 exp (-(2α) 1/2 |u|) 4. Statistical strategy 4.1.
Notations. Subsequently we denote by u * the Fourier transform of the function u defined as u * (y) = e iyx u(x)dx, and by u , < u, v >, u * v the quantities

u 2 = |u(x)| 2 dx, < u, v >= u(x)v(x)dx with zz = |z| 2 and u ⋆ v(x) = u(y)v(x -y)dy.
Moreover, we recall that for any integrable and square-integrable functions u, u 1 , u 2 , (

) (u * ) * (x) = 2πu(-x) and u 1 , u 2 = (2π) -1 u * 1 , u * 2 . 4.2. 13 
The projection spaces. As we use projection estimators, we describe now the projection spaces. Let us define

ϕ(x) = sin(πx) πx and ϕ m,j (x) = √ mϕ(mx -j),
where m is an integer, that can be taken equal to 2 ℓ . It is well known (see [START_REF] Meyer | Ondelettes et oprateurs[END_REF], p.22) that {ϕ m,j } j∈Z is an orthonormal basis of the space of square integrable functions having Fourier transforms with compact support included into [-πm, πm]. Indeed an elementary computation yields

(14) ϕ * m,j (x) = e ixj/m √ m 1 I [-πm,πm] (x).
We denote by S m such a space:

S m = Span{ϕ m,j , j ∈ Z} = {h ∈ L 2 (R), supp(h * ) ⊂ [-mπ, mπ]}.
We denote by (S m ) m∈Mn the collection of linear spaces, where

M n = {1, . . . , m n }
and m n ≤ n is the maximal admissible value of m, subject to constraints to be precised later.

In practice, we should consider the truncated spaces S

(n) m = Span{ϕ m,j , j ∈ Z, |j| ≤ K n }, where K n is an integer depending on n, and the associated estimators. Under assumption (H6), it is possible and does not change the main part of the study (see [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF]). For the sake of simplicity, we consider here sums over Z.

4.3.

Estimation strategy. We want to estimate g such that (15)

g * (x) = -i ψ ′ ∆ (x) ∆ψ ∆ (x) = θ ∆ (x) ∆ψ ∆ (x) , with ψ ∆ (x) = E(e ixZ ∆ 1 ), θ ∆ (x) = -iψ ′ ∆ (x) = E(Z ∆ 1 e ixZ ∆ 1
). The orthogonal projection g m of g on S m is given by ( 16)

g m = j∈Z a m,j (g)ϕ m,j with a m,j (g) = R ϕ m,j (x)g(x)dx = ϕ m,j , g .
We have at hand the empirical versions of ψ ∆ and θ ∆ :

ψ∆ (x) = 1 n n k=1 e ixZ ∆ k , θ∆ (x) = 1 n n k=1 Z ∆ k e ixZ ∆ k .
Following [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF] and [START_REF] Neumann | Nonparametric estimation for Lévy processes from low-frequency observations[END_REF], we truncate 1/ ψ∆ and set

(17) 1 ψ∆ (x) = 1 ψ∆ (x) 1 I | ψ∆ (x)|>κ ψ n -1/2 .
Now, for t belonging to a space S m of the collection (S m ) m∈Mn , let us define

(18) γ n (t) = 1 n n k=1 t 2 - 1 π∆ Z ∆ k e ixZ ∆ k t * (-x) ψ∆ (x) dx ,
Consider γ n (t) as an approximation of the theoretical contrast

γ th n (t) = 1 n n k=1 t 2 - 1 π∆ Z ∆ k e ixZ ∆ k t * (-x) ψ ∆ (x) dx ,
The following sequence of equalities, relying on [START_REF] Figueroa-López | Risk bounds for the nonparametric estimation of Lévy processes[END_REF], explains the choice of the contrast:

E( 1 2π∆ Z ∆ k e ixZ ∆ k t * (-x) ψ ∆ (x) dx) = 1 2π∆ θ ∆ (x) t * (-x) ψ ∆ (x) dx = 1 2π t * , g * = t, g .
Therefore, we find that E(γ th n (t)) = t 2 -2 g, t = t -g 2 -g 2 is minimal when t = g. Thus, we define the estimator belonging to S m by [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF] ĝm = Argmin t∈Sm γ n (t)

This estimator can also be written 

(20) ĝm = j∈Z âm,j ϕ m,j , with âm,j = 1 2πn∆ n k=1 Z ∆ k e ixZ ∆ k ϕ * m,j (-x) ψ∆ (x) dx, or âm,j = 1 2π∆ θ∆ (x) ϕ * m,j (-x) ψ∆ (x) dx.
E 1 ψ∆ (x) - 1 ψ ∆ (x) 2p ≤ C 1 |ψ ∆ (x)| 2p ∧ n -p |ψ ∆ (x)| 4p ,
where 1/ ψ∆ is defined by (17).

Neumann's result is for p = 1 but the extension to any p is straighforward. See also [START_REF] Neumann | Nonparametric estimation for Lévy processes from low-frequency observations[END_REF]. This lemma allows to prove the following risk bound. 

21) E( g -ĝm 2 ) ≤ g -g m 2 + K E 1/2 [(Z ∆ 1 ) 4 ] πm -πm dx/|ψ ∆ (x)| 2 n∆ 2 .
where K is a constant.

It is worth stressing that (H4) is not required for the above result. Therefore, it holds even for exponential decay of ψ ∆ .

Proof of Proposition 4.1. First with Pythagoras Theorem, we have

(22) g -ĝm 2 = g -g m 2 + ĝm -g m 2 .
Let

a m,j (g) = 1 2π∆ θ ∆ (x) ϕ * m,j (-x) ψ ∆ (x) dx.
Then, using Parseval's formula and ( 14), we obtain

ĝm -g m 2 = j∈Z |â m,j -a m,j (g)| 2 = 1 2π∆ 2 πm -πm θ∆ (x) ψ∆ (x) - θ ∆ (x) ψ ∆ (x) 2 dx.
It follows that

E( ĝm -g m 2 ) ≤ c ∆ 2 πm -πm E θ∆ (x) 1 ψ∆ (x) - 1 ψ ∆ (x) 2 dx + πm -πm E| θ∆ (x) -θ ∆ (x)| 2 |ψ ∆ (x)| 2 dx ≤ c ∆ 2 πm -πm E(| θ∆ (x) -θ ∆ (x)| 2 1 ψ∆ (x) - 1 ψ ∆ (x) 2 dx (23) + πm -πm ∆ 2 |g * (x)ψ ∆ (x)| 2 E 1 ψ∆ (x) - 1 ψ ∆ (x) 2 + 1 n E[(Z ∆ 1 ) 2 ] |ψ ∆ (x)| 2 dx
The Schwarz Inequality yields

E | θ∆ (x) -θ ∆ (x)| 2 1 ψ∆ (x) - 1 ψ ∆ (x) 2 ≤ E 1/2 (| θ∆ (x)-θ ∆ (x)| 4 )E 1/2 1 ψ∆ (x) - 1 ψ ∆ (x) 4 .
Then, with the Rosenthal inequality E(| θ∆ (x) -θ ∆ (x)| 4 ) ≤ cE[(Z ∆ 1 ) 4 ]/n 2 and by using Lemma 4.1,

E 1 ψ∆ (x) - 1 ψ ∆ (x) 4 ≤ C |ψ ∆ (x)| 4 so that πm -πm E 1/2 (| θ∆ (x) -θ ∆ (x)| 4 )E 1/2 1 ψ∆ (x) - 1 ψ ∆ (x) 4 dx ≤ cE 1/2 [(Z ∆ 1 ) 4 ] n πm -πm dx |ψ ∆ (x)| 2 .
For the second term, we use Lemma 4.1, to get

E 1 ψ∆ (x) - 1 ψ ∆ (x) 2 ≤ Cn -1 |ψ ∆ (x)| 4 .
We obtain

(24) E( ĝm -g m 2 ) ≤ c n∆ 2 (E 1/2 [(Z ∆ 1 ) 4 ] + ∆ 2 g 2 1 + E[(Z ∆ 1 ) 2 ]) πm -πm dx |ψ ∆ (x)| 2 dx,
where g 1 = |g(x)|dx. Therefore, gathering [START_REF] Watteel | Nonparametric estimation of the canonical measure for infinitely divisible distributions[END_REF] and (24) implies the result. 2 Remark 4.1. In papers concerned with deconvolution in presence of unknown error densities, the error characteristic function is estimated using a preliminary and independent set of data. This solution is possible here: we may split the sample and use the first half to obtain a preliminary and independent estimator of ψ ∆ , and then estimate g from the second half. This would simplify the above proof, but not the study of the adaptive case. Then, the bias term satisfies

g -g m 2 = O(m -2a ).
Under (H4), the bound of the variance term satisfies

πm -πm dx/|ψ ∆ (x)| 2 n∆ = O m 2β∆+1 n∆ .
The optimal choice for m is O((n∆) 1/(2β∆+2a+1 ) and the resulting rate for the risk is (n∆) -2a/(2β∆+2a+1 ). It is worth noting that the sampling interval ∆ explicitely appears in the exponent of the rate. Therefore, for positive β, the rate is worse for large ∆ that for small ∆.

• Let us consider the example of the compound process. In this case β = 0, the upper bound of the mean integrated squared error is of order O((n∆) -2a/(2a+1) ), if g belongs to the Sobolev class S(a, L). Note that if g is analytic i.e. belongs to a class

A(γ, Q) = {f, (e γx + e -γx ) 2 |f * (x)| 2 dx ≤ Q},
then the risk is of order O(ln(n∆)/(n∆)) (choose m = O(ln(n∆))).

• For the Levy Gamma process, we have a more precise result since we have

|ψ ∆ (u)| = α β∆ (α 2 + u 2 ) β∆/2 , g * (x) = β α -ix . Therefore |x|≥πm |g * (x)| 2 dx = O(m -1 ) and [-πm,πm] dx/|ψ ∆ (x)| 2 = O(m 2β∆+1
). The resulting rate is of order (n∆) -1/(2β∆+2) for a choice of m of order O((n∆) 1/(2β∆+2) ).

• For the Bilateral Gamma process with (β, α) = (β ′ , α ′ ), we have

ψ ∆ (u) = α β∆ (α 2 + u 2 ) β∆ , g * (x) = β α 2 + x 2 . Therefore |x|≥πm |g * (x)| 2 dx = O(m -3 ) and [-πm,πm] dx/|ψ ∆ (x)| 2 = O(m 4β∆+1 ).
The resulting rate is of order (n∆) -3/(4β∆+4) for a choice of m of order O((n∆) 1/(4β∆+4) ).

These examples illustrate that the relevant choice of m depends on the unknown function, in particular on its smoothness. The model selection procedure proposes a data driven criterion to select m.

• Consider now the process described in Section 3.3. In that case, it follows from (11) that

[-πm,πm] dx/|ψ ∆ (x)| 2 = O(m δ+1/2 exp(κm 1/2-δ )) and |x|≥πm |g * (x)| 2 dx = O(m -2δ
). In this case, choosing κm 1/2-δ = ln(n∆)/2 gives the rate [ln(n∆)] -2δ which is thus very slow, but known to be optimal in the usual deconvolution setting (see Fan (1991)). This case is not considered in the following for the adaptative strategy since it does not satisfy (H4). 4.6. Study of the adaptive estimator. We have to select an adequate value of m. For this, we start by defining the term

(25) Φ ψ (m) = πm -πm dx |ψ ∆ (x)| 2 ,
and the following theoretical penalty

(26) pen(m) = κ(1 + E[(Z ∆ 1 ) 2 ]/∆) Φ ψ (m) n∆ .
We set m = arg min

m∈Mn {γ n (ĝ m ) + pen(m)} ,
and study first the "risk" of ĝ m. Moreover we need the following assumption on the collection of models M n = {1, . . . , m n }, m n ≤ n:

(H7) ∃ε, 0 < ε < 1, m 2β∆ n ≤ Cn 1-ε ,
where C is a fixed constant and β is defined by (H4). For instance, Assumption (H7) is fulfilled if:

(1) pen(m n ) ≤ C. In such a case, we have m n ≤ C(n∆) 1/(2β∆+1) .

(2) ∆ is small enough to ensure 2β∆ < 1. In such a case we can take M n = {1, . . . , n}.

Remark 4.2. Assumption (H7) raises a problem since it depends on the unknown β and concrete implementation requires the knowledge of m n . It is worth stressing that the analogous difficulty arises in deconvolution with unknown error density (see [START_REF] Comte | Deconvolution with estimated error[END_REF]). In the compound Poisson model, β = 0 and nothing is needed. Otherwise one should at least know if ψ ∆ is in a class of polynomial decay. The estimator ψ∆ may be used to that purpose and to provide an estimator of β (see e.g. [START_REF] Diggle | A Fourier approach to nonparametric deconvolution of a density estimate[END_REF]).

Let us define

θ (1) ∆ (x) = E(Z ∆ 1 1 I |Z ∆ 1 |≤kn √ ∆ e ixZ ∆ 1 ), θ (2) 
∆ (x) = E(Z ∆ 1 1 I |Z ∆ 1 |>kn √ ∆ e ixZ ∆ 1 ) so that θ ∆ = θ (1) ∆ + θ (2) 
∆ and analogously θ∆ = θ(1) ∆ + θ(2) ∆ . For any two functions t, s in S m , the contrast γ n satisfies:

γ n (t) -γ n (s) = t -g 2 -s -g 2 -2ν (1) n (t -s) -2ν (2) n (t -s) -2 4 i=1 R (i) n (t -s), (27) 
with

ν (1) n (t) = 1 2π∆ t * (-x) θ(1) ∆ (x) -θ (1) ∆ (x) ψ ∆ (x) dx, ν (2) n (t) = 1 2π∆ t * (-x) θ ∆ (x) [ψ ∆ (x)] 2 (ψ ∆ (x) -ψ∆ (x))dx, R (1) n (t) = 1 2π∆ t * (-x)( θ∆ (x) -θ ∆ (x)) 1 ψ∆ (x) - 1 ψ ∆ (x) dx R (2) n (t) = 1 2π∆ t * (-x) θ ∆ (x) ψ ∆ (x) (ψ ∆ (x) -ψ∆ (x)) 1 ψ∆ (x) - 1 ψ ∆ (x) dx, R (3) 
n (t) = 1 2π∆ t * (-x) θ(2) ∆ (x) -θ (2) ∆ (x) ψ ∆ (x) dx, R (4) n (t) = - 1 2π∆ t * (-x) θ ∆ (x) ψ ∆ (x) 1 I | ψ∆ (x)|≤κ ψ / √ n dx.
Using this decomposition and Talagrand's inequality, we can prove Theorem 4.1. Assume that assumptions (H1)-(H2)( 8)-(H3)-(H7) hold. Then

E( ĝ m -g 2 ) ≤ C inf m∈Mn g -g m 2 + pen(m) + K ln 2 (n) n∆ ,
where K is a constant.

Remark 4.3. Assumption (H6) is satisfied for the Levy-Gamma process. For the compound Poisson process, it is equivalent to x 4 f 2 (x)dx < +∞, where f denotes the density of Y i (see Section 3).

To get an estimator, we replace the theoretical penalty by:

pen(m) = κ ′ 1 + 1 n∆ 2 n i=1 (Z ∆ i ) 2 πm -πm dx/| ψ∆ (x)| 2 dx n .
In that case we can prove:

Theorem 4.2. Assume that assumptions (H1)-(H2)( 8)-(H3)-(H7) hold and let g = ĝ m be the estimator defined with m = arg min m∈Mn (γ n (ĝ m ) + pen(m)). Then

E( g -g 2 ) ≤ C inf m∈Mn g -g m 2 + pen(m) + K ′ ∆ ln 2 (n) n
where K ′ ∆ is a constant depending on ∆ (and on fixed quantities but not on n). Theorem 4.2 shows that the adaptive estimator automatically achieves the best rate that can be hoped. If g belongs to the Sobolev ball S(a, L), and under (H4), the rate is automatically of order O((n∆) -2a/(2β∆+2a+1) ). See Section 4.5.

Remark 4.4.

(1) It is possible to extend our study of the adaptive estimator to the case ψ ∆ having exponential decay. Note that the faster |ψ ∆ | decays, the more difficult it will be to estimate g.

(2) Few results on rates of convergence are available in the literature for this problem.

The results of [START_REF] Neumann | Nonparametric estimation for Lévy processes from low-frequency observations[END_REF] are difficult to compare with ours since the point of view is different. 

ĝ m -g 2 ≤ g m -g 2 + 2ν (1) n (ĝ m -g m ) + 2ν (2) n (ĝ m -g m ) + 2 4 i=1 R (i) n (ĝ m -g m ) +pen(m) -pen( m).
Let us take expectations of both sides and bound each r.h.s. term.

|E(ν (1) n (ĝ m -g m ))| ≤ 1 16 E( g m -ĝ m 2 ) + 16E sup t∈Sm+S m, t =1 |ν (1) n (t)| 2 ≤ 1 8 E( g -ĝ m 2 ) + 1 8 g -g m 2 +16E sup t∈S m∨ m, t =1 |ν (1) n (t)| 2 -p 1 (m, m) + + 16E(p 1 (m, m)).
The same kind of bounds are obtained for ν

n and the residuals leading to

2 8 E( ĝ m -g 2 ) ≤ 14 8 g -g m 2 + 16 m ′ ∈Mn E sup t∈S m∨m ′ , t =1 |ν (1) n (t)| 2 -p 1 (m, m ′ ) + +16E sup t∈S m∨ m, t =1 |ν (2) n (t)| 2 -p 2 (m, m) + +16 2 i=1 E sup t∈S m∨ m, t =1 |R (i) n (t)| 2 -p 1 (m, m) +16 4 i=3 E sup t∈Sm n , t =1 |R (i) n (t)| 2 +pen(m) + E(48p 1 (m, m) + 16p 2 (m, m) -pen( m)). (28)
Next, definition of pen(.) comes from the following constraint:

(29) 48p 1 (m, m ′ ) + 16p 2 (m, m ′ ) ≤ pen(m ′ ) + pen(m).
This leads to

pen(m) + E(48p 1 (m, m) + 16p 2 (m, m) -pen( m)) ≤ 2pen(m).
First, we apply Talagrand's Inequality recalled in Lemma 6.1 to prove the following result:

Proposition 5.1. Under the assumptions of Theorem 4.1, define

p 1 (m, m ′ ) = (4E[(Z ∆ 1 ) 2 ] π(m∨m ′ ) -π(m∨m ′ ) |ψ ∆ (x)| -2 dx)/(πn∆ 2 ), then (30) 
m ′ ∈Mn E sup t∈S m∨m ′ , t =1 |ν (1) n (t)| 2 -p 1 (m, m ′ ) + ≤ c n .
Next we prove:

Proposition 5.2. Under the assumptions of Theorem 4.1, define

p 2 (m, m ′ ) = 0 if -a + β∆ ≤ 0 and p 2 (m, m ′ ) = ( π(m∨m ′ ) -π(m∨m ′ ) |ψ ∆ (x)| -2 dx)/n otherwise. Then (31) E sup t∈S m∨ m , t =1 |ν (2) n (t)| 2 -p 2 (m, m) + ≤ c n .
For the residual terms, two type of results can be obtained.

Proposition 5.3. Under the assumptions of Theorem 4.1, for i = 1, 2,

E sup t∈S m∨ m, t =1 [R (i) n (t)] 2 -p 1 (m, m) ≤ C n∆ .
and Proposition 5.4. Under the assumptions of theorem 4.1, for i = 3, 4

E sup t∈Sm n , t =1 [R (i) n (t)] 2 ≤ c ln 2 (n) n∆ .
Then the choice pen(m) given by (26) gives, following (28) and (29),

1 4 E( ĝ m -g 2 ) ≤ 7 4 g -g m 2 + 2pen(m) + C ln 2 (n) n∆ ,
which is the result. 2

5.2. Proof of Proposition 5.1. Let ω t (z) = z1 I {|z|≤kn √ ∆} 2π∆ e izx t * (-x) ψ ∆ (x) dx
and notice that

ν (1) n (t) = 1 n n k=1 ω t (Z ∆ k ) -E(ω t (Z ∆ k )) .
To apply Lemma 6.1, we compute M 1 , H 1 and v 1 defined therein. First, we have

E sup t∈Sm, t =1 |ν (1) n (t)| 2 ≤ E   j∈Z |ν (1) n (ϕ m,j )| 2   = E   1 2π∆ 2 πm -πm θ(1) ∆ (x) -θ (1) 
∆ (x) ψ ∆ (x) 2 dx   ≤ E[(Z ∆ 1 ) 2 ] 2πn∆ 2 Φ ψ (m),
where Φ ψ (m) is defined in (25). We can take, for m ⋆ = m ∨ m ′ ,

H 2 1 = E[(Z ∆ 1 ) 2 ] 2πn∆ 2 Φ ψ (m ⋆ ).
Then it is easy to see that if t = 1 and t ∈ S m ⋆ , then

|ω t (z)| ≤ k n 2π √ ∆ t * (-x) ψ ∆ (x) dx ≤ k n 2π √ ∆ Φ ψ (m ⋆ ) := M 1 .
Lastly, for t ∈ S m , t = 1, t = j∈Z t m,j ϕ m,j

Var(ω t (Z ∆ 1 )) ≤ 1 (2π) 2 ∆ 2 E e i(u-v)Z ∆ 1 (Z ∆ 1 1 I |Z ∆ 1 |≤kn √ ∆ ) 2 t * (-u)t * (v) ψ ∆ (u)ψ ∆ (-v) dudv = 1 (2π∆) 2 j,k t m,j t m,k E e i(u-v)Z ∆ 1 (Z ∆ 1 1 I |Z ∆ 1 |≤kn √ ∆ ) 2 ϕ * m,j (-u)ϕ * m,k (v) ψ ∆ (u)ψ ∆ (-v) dudv.
Denoting by

(32) h * ∆ (u) = E[e iuZ ∆ 1 (Z ∆ 1 1 I |Z ∆ 1 |≤kn √ ∆ ) 2 ]
, we obtain:

Var(ω t (Z ∆ 1 )) ≤ ≤ 1 (2π∆) 2   j,k h * ∆ (u -v) ϕ * m,j (-u)ϕ * m,k (v) ψ ∆ (u)ψ ∆ (-v) dudv 2   1/2 = 1 2π∆ 2 [-πm,πm] 2 h * ∆ (u -v) ψ ∆ (u)ψ ∆ (-v) 2 dudv 1/2
where the last equality follows from the Parseval equality. Next with the Schwarz inequality and the Fubini theorem, we obtain

Var(ω t (Z ∆ 1 )) ≤ 1 2π∆ 2 [-πm,πm] 2 |h * ∆ (u -v)| 2 |ψ ∆ (u)| 4 dudv 1/2 = 1 2π∆ 2 [-πm,πm] du ψ ∆ (u) 4 du |h * ∆ (z)| 2 dz 1/2 ≤ πm -πm dx/|ψ ∆ (x)| 4 2π∆ h * ∆ ∆ .
Now we use the following Lemma:

Lemma 5.1. Under the assumptions of Theorem 4.1,

h * ∆ /∆ ≤ 2 √ π x 2 g 2 (x)dx + E[(Z ∆ 1 ) 2 ] g 2 1/2 := ξ.
Thus, under (H5), ξ is finite. We set

v 1 = ξ πm ⋆ -πm ⋆ dx/|ψ ∆ (x)| 4 2π∆ .
Therefore, setting ǫ 2 = 1/2,

p 1 (m, m ′ ) = 4E[(Z ∆ 1 ) 2 /∆] Φ ψ (m ⋆ ) 2πn∆ (= 2(1 + 2ǫ 2 )H 2 1 ).
Using (H4) and the fact that E[(Z ∆ 1 ) 2 /∆] is bounded, we find

E sup t∈S m ⋆ , t =1 |ν (1) n (t)| 2 -p 1 (m, m ′ ) + ≤ C (m ⋆ ) 2β∆+1/2 n∆ e -K √ m ⋆ + k 2 n Φ ψ (m ⋆ ) n 2 ∆ e -K ′ √ n/kn .
Here K = K(c ψ , C ψ ). Moreover, we take (33)

k n = K ′ √ n/((2β∆ + 3) ln(n))
and we obtain

m ′ ∈Mn E sup t∈S m ⋆ , t =1 [ν (1) n (t)] 2 -p 1 (m, m ′ ) + ≤ K" n∆ . 5.3. Proof of Proposition 5.2. The study of ν (2) 
n is slightly different.

E sup t∈Sm, t =1 |ν (2) n (t)| 2 ≤ 1 2πn∆ 2 πm -πm |θ ∆ (x)| 2 |ψ ∆ (x)| 4 dx = 1 2πn πm -πm |g * (x)| 2 |ψ ∆ (x)| 2 dx.
With assumptions (H4) and (H5), we can see that if -a + β∆ ≤ 0, then

πm -πm |g * (x)| 2 |ψ ∆ (x)| 2 dx ≤ πm -πm |g * (x)| 2 (1+x 2 ) a (1 + x 2 ) -a+β∆ c 2 ψ dx ≤ 1 c 2 ψ |g * (x)| 2 (1+x 2 ) a dx ≤ L c 2 ψ .
In that case, we simply take p 2 (m, m ′ ) = 0 and write

E sup t∈S m∨ m, t =1 [ν (2) n ] 2 (t) ≤ E sup t∈Sm n , t =1 [ν (2) n ] 2 (t) ≤ L nc 2 ψ .
Now we study the case -a + β∆ > 0 and find the constants

H = H 2 , v = v 2 , ǫ = ǫ 2 to apply Lemma 6.1. Consider ωt (z) = (1/2π∆) e izu t * (-u){θ ∆ (u)/[ψ ∆ (u)] 2 }du. As πm -πm |g * (x)| 2 |ψ ∆ (x)| 2 dx ≤ L c 2 ψ m -2a+2β∆ ,
we take

H 2 2 = L 2πc 2 ψ (m ⋆ ) -2a+2β∆
n .

Next, we have

M 2 = √ nH 2
and we use the rough bound v 2 = nH 2 2 . Moreover, we take ǫ 2 2 = (-2a+2β∆+2) ln(m ⋆ )/K 1 . There exists m 0 , such that for m ⋆ ≥ m 0 ,

2(1 + 2ǫ 2 2 )H 2 2 ≤ Φ ψ (m ⋆ )/n. We set p 2 (m, m ′ ) = Φ ψ (m ⋆ )/n. Introducing W n (m, m ′ ) = sup t∈S m∨m ′ , t =1 |ν (2) n | 2 (t) -p 2 (m, m ′ ) + ,
we find that

m ′ ∈Mn E(W n (m, m ′ )) = m ′ |m ⋆ ≤m 0 E(W n (m, m ′ )) + m ′ |m ⋆ >m 0 E(W n (m, m ′ )) ≤ m ′ |m ⋆ ≤m 0 [E( sup t∈S m ⋆ , t =1 |ν (2) n (t)| 2 -2(1 + 2ǫ 2 2 )H 2 2 ] + ) + m ′ |m ⋆ ≤m 0 |p 2 (m, m ′ ) -2(1 + 2ǫ 2 2 )H 2 2 | + m ′ |m ⋆ >m 0 E([ sup t∈S m ⋆ , t =1 |ν (2) n (t)| 2 -2(1 + 2ǫ 2 2 )H 2 2 ] + ).
Therefore

m ′ ∈Mn E(W n (m, m ′ )) ≤ 2 m ′ ∈Mn E([ sup t∈S m ⋆ , t =1 |ν (2) n (t)| 2 -2(1 + 2ǫ 2 2 )H 2 2 ] + ) + m ′ |m ⋆ ≤m 0 |p 2 (m, m ′ ) -2(1 + 2ǫ 2 2 )H 2 2 | ≤ 2 m ′ ∈Mn E([ sup t∈S m ⋆ , t =1 |ν (2) n (t)| 2 -2(1 + 2ǫ 2 2 )H 2 2 ] + ) + C(m 0 ) n .
Talagrand's Inequality again can be then applied and gives that

m ′ ∈Mn E([ sup t∈S m ⋆ , t =1 |ν (2) n (t)| 2 -2(1 + 2ǫ 2 2 )H 2 2 ] + ) ≤ C n .
The result for ν

n in this case follows then by saying as for ν

n that

E (W n (m, m)) ≤ m ′ ∈Mn E(W n (m, m ′ )). 5.4. Proof of Proposition 5.3. First define Ω(x) = Ω 1 (x) ∩ Ω 2 (x) with Ω 1 (x) = | θ∆ (x) -θ ∆ (x)| ≤ 8E 1/2 [(Z ∆ 1 ) 2 ](log 1/2 (n)n -1/2 , Ω 2 (x) = 1 ψ∆ (x) - 1 ψ ∆ (x) ≤ 1/(log 1/2 (n)n ω |ψ ∆ (x)| 2 ) .
Then split: R

n (t) = R (1,1) n (t) + R (1,2) n (t) where R (1,1) n (t) = 1 2π∆ t * (-x)( θ∆ -θ ∆ )(x) 1 ψ∆ (x) - 1 ψ ∆ (x) 1 I Ω(x) dx (1) 
and R

(1,2) n (t) the integral on the complement of Ω(x).

E sup

t∈S m∨ m, t =1 |R (1) n (t)| 2 ≤ 2E sup t∈S m∨ m, t =1 |R (1,1) n (t)| 2 +2E sup t∈Sm n , t =1 |R (1,2) n (t)| 2 E sup t∈S m∨ m, t =1 |R (1,1) n (t)| 2 ≤ 1 2π∆ 2 E π(m∨ m) -π(m∨ m) | θ∆ (x) -θ ∆ (x)| 2 1 ψ∆ (x) - 1 ψ ∆ (x) 2 1 I Ω(x) dx ≤ 8(E[(Z ∆ 1 ) 2 ]/∆) 2πn∆ E π(m∨ m) -π(m∨ m) n -2ω dx |ψ ∆ (x)| 4 ≤ 4E[(Z ∆ 1 ) 2 ] π∆ E( Φ ψ (m ∨ m) n∆ ) ≤ E(p 1 (m, m)),
under the condition -2ω + (1 -ε) ≤ 0. Therefore we choose ω = (1 -ε)/2. Note that if β = 0 the decomposition is useless and the residual is straightforwardly negligible. On the other hand, Lemma (4.1) yields:

E 1/4 1 ψ∆ (x) - 1 ψ ∆ (x) 8 ≤ C ∆ n|ψ ∆ (x)| 4 .

Now, we find

E sup t∈Sm n , t =1 |R (1,2) n (t)| 2 ≤ 1 2π∆ 2 πmn -πmn P 1/2 (Ω(x) c )E 1/4 [( θ∆ (x) -θ ∆ (x)) 8 ]E 1/4 1 ψ∆ (x) - 1 ψ ∆ (x) 8 dx ≤ CE 1/4 [(Z ∆ 1 ) 8 ] 2πn 2 πmn -πmn P 1/2 (Ω(x) c ) |ψ ∆ (x)| 4 dx ≤ CE 1/4 [(Z ∆ 1 ) 8 ]n 2(1-ε)+1-b n 2 ≤ C ′ ∆ n if P(Ω(x) c ) ≤ n -2b and 2(1 -ε) -b ≤ 0.
We take b = 2(1 -ε). In fact,

P(Ω(x) c ) ≤ P(Ω 1 (x) c ) + P(Ω 2 (x) c ).
We use the Markov Inequality to bound P(Ω 2 (x) c ):

P(Ω 2 (x) c ) ≤ log p (n)n 2pω |ψ ∆ (x)| 4p E 1 ψ∆ (x) - 1 ψ ∆ (x) 2p ≤ log p (n)n 2pω-p .

The choice of p is thus constrained by 2pω

-p = -p(1 -2ω) < -4(1 -ε) that is p > 4(1 -ε)/ε, e.g. p = 5(1 -ε)/ε.
We use the decomposition of θ ∆ (x) = θ

∆ (x) + θ

∆ (x) with

k n √ ∆ = nE[(Z ∆ 1 ) 2 ] 8 log(n) .
We use the Bernstein Inequality to bound P(Ω 1 (x) c ). If X 1 , . . . , X n are i.i.d. variables with variance less than v 2 and such that |X i | ≤ c, then for S n = n i=1 X i , we have:

P(|S n -E(S n )| ≥ nǫ) ≤ 2 exp - nǫ 2 /2 v 2 + cǫ .
This yields

P(Ω 1 (x) c ) ≤ P | θ(1) ∆ (x) -θ (1) ∆ (x)| ≥ 4 E[(Z ∆ 1 ) 2 ] log(n)/n +P | θ(2) ∆ (x) -θ (2) ∆ (x)| ≥ 4 E[(Z ∆ 1 ) 2 ] log(n)/n ≤ n -16/3 + n 16E[(Z ∆ 1 ) 2 ] log(n) E(| θ(2) ∆ (x) -θ (2) ∆ (x)| 2 ) ≤ n -16/3 + E[(Z ∆ 1 ) 2 1 I |Z ∆ 1 |≥kn √ ∆ ] 16E[(Z ∆ 1 ) 2 ] log(n) ≤ n -16/3 + 8 4 E[(Z ∆ 1 ) 6 ] log 2 (n) 16E 3 [(Z ∆ 1 ) 2 ]n 2 ≤ n -16/3 + c n 2 ∆ 2 .
This gives the result of Proposition 5.3 for R

n . The study of R

n follows the same line and is omitted. E sup

t∈Sm n , t =1 |R (3) n (t)| 2 ≤ 1 4π 2 ∆ 2 E sup t∈Sm n , t =1 ( θ(2) ∆ (x) -θ (2) 
∆ (x))

t * (-x) ψ ∆ (x) dx 2 ≤ 1 2π∆ 2 πmn -πmn E[| θ(2) ∆ (x) -θ (2) ∆ (x)| 2 ] dx |ψ ∆ (x)| 2 = 1 2π∆ 2 πmn -πmn Var(Z ∆ 1 1 I |Z ∆ 1 |≥kn √ ∆ ) n dx |ψ ∆ (x)| 2 ≤ E[(Z ∆ 1 ) 8 ]Φ ψ (m n ) 2πnk 6 n ∆ 4 ≤ KE[(Z ∆ 1 ) 8 ] ln 6 (n) n 2+ε ∆ 4 ,
using the choice of k n given by (33).

Next,

E sup t∈Sm n , t =1 |R (4) n (t)| 2 ≤ 1 2π∆ πmn -πmn |g * (x)| 2 P(| ψ∆ (x)| ≤ κ ψ / √ n)dx ≤ c n∆ . If |ψ ∆ (x)| ≥ 2κ ψ / √ n, then P(| ψ∆ (u)| ≤ κ ψ n -1/2 ) ≤ P(| ψ∆ (u) -ψ ∆ (u)| ≤ |ψ ∆ (u)| -κ ψ n -1/2 ) ≤ P(| ψ∆ (u) -ψ ∆ (u)| ≥ 1 2 |ψ ∆ (u)|) ≤ exp(-cn|ψ ∆ (u)| 2 )
for some c > 0, where the last inequality follows from Bernstein's Inequality. Now, it follows from (H4) that |ψ

∆ (u)| ≥ c ψ (1 + u 2 ) -∆β/2 . Therefore, for |u| ≤ πm n with m 2β∆ n ≤ Cn 1-ε by (H7), |ψ ∆ (u)| ≥ c ′ m -β∆ n ≥ 2κ ψ n -1/2 .
Moreover, with the previous remarks, exp (

-cn|ψ ∆ (u)| 2 ) ≤ exp(-cn ε ) and thus πmn -πmn |g * (x)| 2 P(| ψ∆ (x)| ≤ κ/ √ n)dx ≤ g * 2 exp(-cn ε ). Therefore E sup t∈Sm n , t =1 |R (4) n (t)| 2 ≤ c n∆ .
5.6. Proof of Lemma 5.1. Let us denote by P ∆ the distribution of Z ∆ 1 and define µ ∆ (dz) = ∆ -1 zP ∆ (dz). Let us set µ(dx) = g(x)dx. Equation [START_REF] Küchler | Bilateral Gamma distributions and processes in financial mathematics[END_REF] states that

µ * ∆ = µ * P * ∆ .
Hence, µ ∆ = µ ⋆ P ∆ . Therefore, µ ∆ has a density given by g(z -y)P ∆ (dy) = Eg(z -Z ∆ 1 ).

Moreover, we have, for any compactly supported function t:

1 ∆ E(Z ∆ 1 t(Z ∆ 1 )) = t(z)Eg(z -Z ∆ 1 )dz = E(t(x + Z ∆ 1 )g(x)dx.
Hence, we apply first Parseval formula:

h * ∆ 2 = |h * ∆ (x)| 2 dx = 2π h 2 ∆ (x)dx = 2π∆ z 2 1 I |z|≤kn √ ∆ E 2 (g(z -Z ∆ 1 ))dz ≤ 2π∆E z 2 1 I |z|≤kn √ ∆ g 2 (z -Z ∆ 1 )dz ≤ 2π∆E (x + Z ∆ 1 ) 2 g 2 (x)dx ≤ 4π∆E (x 2 + (Z ∆ 1 ) 2 )g 2 (z)dz ≤ 4π∆ x 2 g 2 (x) + E[(Z ∆ 1 ) 2 ] g 2 .
This ends the proof. 2 5.7. Proof of Theorem 4.2. Let us define the sets

Ω 1 = ∀m ∈ M n , πm -πm 1 ψ∆ (x) - 1 ψ ∆ (x) 2 dx ≤ k 1 πm -πm dx |ψ ∆ (x)| 2 and Ω 2 = 1 n n i=1 [Z ∆ i ] 2 E[(Z ∆ i ) 2 ] -1 ≤ k 2 .
Take 0 < k 1 < 1/2 and 0 < k 2 < 1. On Ω 

[Z ∆ i ] 2 ≤ (1 + k 2 )E[(Z ∆ 1 ) 2 ] and E[(Z ∆ 1 ) 2 ] ≤ 1 1 -k 2 1 n n i=1 [Z ∆ i ] 2 .
Il follows that, on Ω 1 ∩ Ω 2 := Ω 1,2 , we can choose κ ′ large enough to ensure As m 2β∆+1 /(n∆) is bounded m 2pβ∆ n -p = O(n 2pβ∆/(2β∆+1)-p ) = O(n -p/(2β∆+1) ). Therefore, choosing p = 3/ε ensures that n 1-pε) = n -2 and P(Ω c 1 ) ≤ C/n 2 .

On the other hand, |ν (1) n (ϕ m,j ) + ν (2) n (ϕ m,j ) + )) ≤ c ′ n using the proof of Theorem 4.1 and the fact that pen(.) is less than O(n). The same line can be followed for the other terms. This result follows from the concentration inequality given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] and arguments in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354). It can be extended to the case where F is a unit ball of a linear space.

P[Ω c 2 ] ≤ 1 k p 2 E p [(Z ∆ 1 ) 2 ] E 1 n n i=1 [(Z ∆ i ) 2 -E[(Z ∆ 1 ) 2 ]]

4. 4 .

 4 Risk bound of the collection of estimators. First, we recall a key Lemma, borrowed from Neumann (1997) (see his Lemma 2.1): Lemma 4.1. It holds that, for any p ≥ 1,

Proposition 4 . 1 .

 41 Under Assumptions (H1)-(H2)(4)-(H3), then for all m:

(

  

4. 5 .

 5 Discussion about the rates. Let us study some examples and use (21) to get a relevant choice of m. We have g -g m 2 = |x|≥πm |g * (x)| 2 dx. Suppose that g belongs to the Sobolev class S(a, L) = {f, |f * (x)| 2 (x 2 + 1) a dx ≤ L}.

5 . Proofs 5 . 1 .

 551 Proof of Theorem 4.1. Writing that γ n (ĝ m) + pen( m) ≤ γ n (g m ) + pen(m) in view of (27) implies that

5. 5 .

 5 Proof of Proposition 5.4. First we study R (3) n .

48p 1 First, we prove that P(Ω c 1 , 2 )C

 112 (m, m) + 16p 2 (m, m) + pen(m) -pen( m) ≤ C(a, b)pen(m).This allows to extend the result of Theorem 4.1 as follows:∀m ∈ M n , E g -g 2 1 I Ω 1,2 ≤ C g -g m 2 + pen(m) + K ln 2 (n) n∆ .Next we need to prove that (34) E g -g 2 1 I Ω c ≤ c/n 2 by proving that P(Ω c 1 ) ≤ c/n 2 and P(Ω c 2 ) ≤ c/n.P((Ω 1 ) c ) ≤ p m p-1 n -p πm -πm dx/|ψ ∆ (x)| 4p (Φ ψ (m)) p ≤ m∈Mn C ′ p n -p m (p-1)-p(2β∆+1)+4pβ∆+1 = m∈Mn C ′ p m 2pβ∆ n -p≤ C"n 1-p+p(1-ε) ≤ C"n 1-pε .

p.

  Here the choice p = 4 gives P[Ω c 2 ] = O(1/n 2 ) with a simple variance inequality, provided that E[(Z ∆ 1 ) 8 ] < +∞. Next, we write thatg -g 2 = g -g m 2 + g m -ĝ m 2 ≤ g 2 + j∈Z |â m,j -a m,j (g)| 2and j∈Z |â m,j -a m,j (g)| 2 = j∈Z

6 . Appendix Lemma 6 . 1 . 1 + ǫ 2 - 1 ,

 661121 Let Y 1 , . . . , Y n be independent random variables, let ν n,Y (f ) = (1/n) n i=1 [f (Y i )-E(f (Y i ))] and let F be a countable class of uniformly bounded measurable functions. Then for ǫ 2 > 0E sup f ∈F |ν n,Y (f )| 2 -2(1 + 2ǫ 2 )H 2 + K 1 = 1/6, and sup f ∈F f ∞ ≤ M, E sup f ∈F |ν n,Y (f )| ≤ H, sup (Y k )) ≤ v.

  1 , we have, ∀m ∈ M n ,

	πm -πm and on Ω 2 , we find dx | ψ∆ (x)| 2 ≤ (2k 1 + 2)	πm -πm	dx |ψ ∆ (x)| 2 and	πm -πm	dx |ψ ∆ (x)| 2 ≤	2 1 -2k 1	πm -πm	dx | ψ∆ (x)| 2
	1	n						
	n	i=1						

  (ϕ m,j )| 2 + |ν (2) n (ϕ m,j )| 2 + It follows that, E( g 2 1 I Ω c 1,2 ) = g 2 P(Ω c 1,2) ≤ c/n, and for k = 3, 4,

							4
							R (k) n (ϕ m,j )| 2
							k=1
							4
					≤ C		k=1	|R (k) n (ϕ m,j )| 2 }
					= C	sup t∈S m , t =1	|ν (1) n (t)| 2 +	sup t∈S m , t =1	|ν (2) n (t)| 2
						4
					+	k=1	sup t∈S m , t =1	|R (k) n (t)| 2
		E	sup t∈S m , t =1	|R (k) n (t)| 2 1 I Ω c 1,2	≤ E	sup t∈Sm n , t =1	|R (k) n (t)| 2 ≤ C/n
	as it has been proved previously. Lastly,
	E	sup t∈S m , t =1	|ν (1) n (t)| 2 1 I Ω c 1,2	≤ E	sup t∈S m , t =1	|ν (1)
							1,2
							≤ c(	1 n∆	+ nP(Ω c 1,2

j∈Z {|ν

(1) 

n n (t)| 2 -pen( m)

+ +E pen( m)1 I Ω c
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