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Abstract—The pre-determination of transformer leakage 
inductances is essential for component designers. Except for 
special winding disposal, usual analytical methods of evaluation 
are useless and fem simulation evaluation, even more widely 
applicable, requires a time unsuitable with any optimization 
process. Work presented here is based on an analytical method 
we published recently about leakage inductances calculation. In 
the present paper, an explicit expression of leakage inductances is 
given. This expression does not appear as series so it is requires 
short computer time and it opens a lot of future applications 
relying on optimization software. Moreover, the calculation is not 
restricted to leakage inductances: it has been extended to all the 
parameters characterizing the whole leakage behavior part of 
any transformer. 

Keywords-leakage inductances; analytical calculation; 
transformer parameters; planar technology. 

I.  INTRODUCTION 

Leakage inductances of a transformer have a strong impact 
on stresses sustained by switches so they are of major concern 
for power electronic designers. Contrary to magnetizing 
inductances, their values can't be easily predetermined by 
computation so they are often measured in a post-conception 
phase or evaluated before, using long fem simulations.  

Because leakage inductances may cause over voltages on 
and extra losses in power electronic switches, designers must 
predict their values to be sure that converters will work 
properly. Some analytical methods are available [1-3] but they 
are restricted to particular geometries. Some others, which rely 
on series expansion, are more widely applicable but they 
require a lot of terms that slow the calculation.  

Three years ago we worked on a semi-analytical method 
based on 2D PEEC formulae [4]. Potential vector was 
analytically expressed but, in order to reach energy values, a 
last integration was still carried out numerically. This last 
integration is now solved analytically so leakage inductances 
can be evaluated using only one explicit formula. The method 
can be applied to any kind of transformer winding, with quite 
no restriction on conductor's arrangement. Such a presentation 
suits very well to an optimization process [5]. 

This energy calculation only assumes that total current is 
null in transformer window, so it can be used also to determine 
all the parameters which characterize the behavior of any n-
winding transformer (which has, at least, one winding short-
circuited). These parameters are grouped in what we call 
“leakage transformer” [6]. This approach allows these 
parameters to be evaluated at frequencies where eddy current 
effects are negligible. The method is very useful, particularly in 
the case of planar transformer, where windings arrangements 
may be more complicated than in usual round winding 
transformers. An industrial planar transformer supplies a 
realistic example. Measurements carried out on it will be 
compared to our analytical results. 

II. LEAKAGE ENERGY CALCULATION  

A. Definition of Leakage Inductance 

Inductive equivalent circuit of a two winding transformer 
can be represented by two inductances, three resistances and 
one perfect coupler (Fig. 1): 

• 1r  and 2r : Winding resistances seen from primary.  

• mL : Magnetizing inductance. 

• fL : Leakage inductance. 

• R : Magnetic losses resistance. 

• η  : Coupler ratio. 
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Figure 1.  Two winding transformer inductive equivalent circuit 

If coupling is strong, transformation ratio η  is very close to 

the turn number ratio and leakage inductance fL  is far smaller 

than magnetizing one mL . fL  influence appears on an 
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impedance measurement when secondary is short circuited 
(Fig. 2). Its measurement can be realized only in a specific 
frequency range (zone 4). Others zones are respectively 
dominated by primary resistance (zone 1), magnetizing 
inductance (zone 2), resistances of both windings (zone 3) and 
capacitances in high frequency (zone 5).   

If both windings (primary and secondary) are supplied by 
opposites currents whose ratio is equal to coupling ratio η , 
current in magnetizing inductance is null. Ampere turns are 
then compensated and, in frequency range 4, magnetic energy 
is stored in leakage inductance (1).  
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Figure 2.  Impedance measurement- seondary short circuited 

In this paper we focus on static leakage inductances. They 
correspond to the inductances seen at low frequencies (i.e. such 
that current inside conductors is uniform). For higher 
frequencies, eddy currents reduce these values.  

B. Leakage Energy Calculation Method 

Leakage inductance calculation methods are based on 
magnetic energy stored when ampere-turns are compensated 
[1-3]. This energy can be computed with magnetic excitation 

H  (2) or potential vector A  (3). Integral of (2) must be 
extended to infinity while integral (3) is only limited to 

conductors, where J  is not null.  

dVHµW ⋅⋅= ∫∫∫
2

2

1  (2) 

dVJAW ⋅⋅= ∫∫∫2

1  (3) 

 with 
µ : permeability 

J : current density 
 

In order to simplify calculations, transformer windings are 
considered as 2D plan systems with a length equal to the mean 
length turn. Energy per unit of length is noted Wl  (4) (5). 

dSHµWl ∫∫ ⋅⋅=
2

2

1  (4) 

dSJAWl ∫∫ ⋅⋅=
2

1  (5) 

According to conductor shape and arrangement in planar 
transformer (Fig. 3), the method introduced in [4] is based on 
exact formulation of potential vector created by a straight 
rectangular cross section conductor (Fig. 4). 
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Figure 3.  Planar transformer 

section 
Figure 4.  Rectangular conductor 

All materials are considered as linear, homogenous and 
isotropic. Then, three more hypotheses have to be made: 

• Studied device is supposed to be 2D plan. Currents are 
perpendicular to conductor sections and they are also 
uniform inside each wire (static case). 

• Transformer is in leakage inductance "measurement 
situation": Total current in each window is null. 

• Windings are made of either rectangular wires either 
round conductors grouped into rectangular regions.  

Our elementary field source is an infinite straight wire, 
having a rectangular cross-section (Fig. 4), in which a 
homogenous current flows. Vector potential (6) is obtained by 
integrating that of a thin wire, from x = -a to +a and from y = -
b to +b. In a Oxyz base, potential vector is directed along Oz. 

In our previous paper [4], the double integration which 
appears in (5) still had to be made numerically. Recently, we 
find the analytical expression (7) of this integral which is that 
of the ( )YXF ,  function written in (6).  

C. Example for Two Rectangular Conductors 

To illustrate the computing method and then, obtain only a 
unique formula for leakage inductance calculation, let's take 
the example of a transformer window occupied by only one 
pair of rectangular wires (Fig. 5) indexed 1 and 2.  
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Figure 5.  Rectangular conductors 
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Each wire is supplied with a total current equal respectively 
to 1I  and 2I , that, at the end, are supposed to be opposite. 

Vector potential due to these two wires (8) is the sum of 
two contributions similar to (6). Combining (5) and (8) leads to 
the expression of total energy per unit of length Wl  (9). 
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with 1Wcs  and 2Wcs : Wire cross section areas 

Value of (9) is obtained by varying the ( )YXG ,  function (7) 
over wire cross section Wcs (10). 

Vector potential created by the conductor centred in ( )0,0  
is deduced from the double variation (6). This variation must 
be included in the ( )YXG ,  expression. Other wires are located 

by ( )kk yrxr ,  and they all must be taken into account. 

Formula (10) can then be rewritten as (11) to obtain the 
exact formulation of magnetic energy per length unit for two 

rectangular conductors. With 12 JJ −= , This energy is 

proportional to 2
1J . This leads to the inductance per length 

unit. Neglecting the influence of the magnetic core, the leakage 
inductance is obtained by multiplying the previous value by the 
mean turn length.  

D. Generalization for Transformer Winding 

Formula (11) is easily extended to N  conductors (12). 
Always assuming that total current in the window is null, this 
expression gives the exact value of energy per length unit. This 
leakage energy depends on 1−N  independent currents and it is 
characterized by ( ) 21−NN  independent coefficients. 

The formula is completely analytical and explicit so it is 
quickly computed and well suited to be used it an optimization 
software. 

III.  ACCOUNTING FOR MAGNETIC MATERIAL 

Although magnetic core has a small impact [4] on values 
regarding short-circuit conditions (often less than 5% on 
leakage inductances), it must be taken into account, even 
roughly, to obtain corresponding parameters with a suitable 
accuracy. 

Magnetic image technique [7] supplies a simple way to 
approximately account for magnetic material influence. 
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A. Magnetic Images for Infinite Material 

The goal of this technique is to replace the magnetic 
material by currents located in its volume in order to obtain the 
same magnetic field in the air. 

To begin, let’s recall a well known problem. A thin straight 
wire, parallel to the plan which limits two semi-infinite 
materials of respective relative permeability 1 and rµ  (Fig. 6) 
carries a currentI . One can show that the field in the air is the 
sum of the one (Hi ) created by the wire alone and another one 
( Hr ) created by another wire, called “image wire”. This wire 
is symmetrically located on the other side of this interface, and 
a current 'I  flows through it (13). 

1

1
'

+
−=

r

rII
µ
µ  (13) 

More generally, if a current density parallel to the initial 
wire exists in the air, the magnetic material can be replaced by 
a symmetrical current density after multiplication by the same 
ratio.  
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Figure 6.  Wire and infinite magnetic material 

B. Influence of Ferrite Thickness on Images 

Before applying the image technique to the magnetic core, 
it is indispensable to answer this question: is the same 
technique still applicable if magnetic material has a finite 
thickness? The answer cannot be always positive, especially 
when the thickness tends to zero or the relative permeability 
reaches 1. 

With this in mind, the influence of magnetic core thickness 
has been investigated. Semi-infinite material of Fig. 6 has been 
replaced by a magnetic layer of thickness ep (Fig. 7). In this 

case, reflected field rH , is expressed as (14). 

This expression (14) is divided in two terms: 

• The first one is identical to the field reflected by an 
infinite media. This field is created by an image wire 
located in ( )h−,0  and supplied by a current given by 
the expression given above (13). 
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Figure 7.  Influence of finite magnetic material (thickness ep) 

• The second one corresponds to the field of an infinite 
set of thin wires. The iethn  is placed at ( )epnh ×−− 2,0  

and it carries a current( ) ( )[ ] n
rrI 211 +− µµ . This sum 

comes from multiple reflections on magnetic material 
faces. It is also multiplied by a factor ( )14 2 −− rr µµ . 

The field rH , added to the incident field iH , gives the total 
field in the air, on the wire side.  

C. Comparison Between Finite and Infinite Thickness 

Both analytical expressions have been presented in 
previous paragraph. In order to know what result (infinite or 
finite) must be used, results of both techniques must be 
compared. First term of (14) is identical to the field of infinite 
media. The second one decreases as n  increases because 
( ) ( ) 111 <+− rr µµ . Thus, as n  increases, image wire is less 
and less influent. For some situations, infinite model may be 
sufficient. 

To find an acceptable approximation, we consider a wire 
placed at mmh 50=  and mmx 0=  of a ferrite media (Fig. 7). 
Tangent magnetic field on the surface at mmx 50=  is used to 
check both formulations (finite and the infinite) for two 
different values of permeability 40=rµ  and 2000 ) (Fig. 8). 
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Figure 8.  Comparison of finite and infinite formulation 

(a) : µr=40 | (b) : µr=2000 
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For both permeabilities, field obtained with finite thickness 
reaches the one obtained with an infinite magnetic material 
when thickness reaches a sufficient value. As thickness 
decreases test field reaches a limit value independent of the 
permeability: that of the incident field. However, this value is 
reached for a lower thickness when permeability is high. To 
sum up, as thickness grows, test field increases from the limit 
related to no magnetic material to another limit given by an 
infinite media. This growth reaches 90% of its maximum at 
mm1 for 2000=rµ  and mm20 with 40=rµ . For thickness 

higher than these values, reflected field is very close to that of a 
semi-infinite material. 

In practical cases, thickness is not an important parameter 
for material whose permeability is upper than 2000. For 
permeability around 40, computation must be done using 
multiple reflections (14). The right resulting field is obtained 
by adding at least 20 to 25 images. 

D. Application to Leakage Energy Calculation 

In order to compute leakage energy, magnetic material can 
be taken into account with the use of magnetic images. 
Formulation depends on permeability and ferrite thickness. 
Application of such method is not very different with infinite 
or finite material. Only current magnitude in images, wire 
positions and necessary numbers of images are different. 

In Fig. 9, 8 magnetic images are added to initial transformer 
windows. In most cases, with high permeability ferrite, theses 
images are sufficient. Indeed, because total current in the 
windows is null, radiated field decreases so fast that images 
located further has negligible influence on that existing inside 
the window. Formula (12) is then modified into (15) in order to 
account for the effect of magnetic material. 

Finally, (15) is the complete expression of leakage energy 
per unit of length inside transformer windows. This formula is 
totally analytical and can be used with optimization software. 
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Figure 9.  8 magnetic images 

IV.  FROM LEAKAGE ENERGY TO LEAKAGE TRANSFORMER 

Not only leakage inductances can be computed with this 
formula (15) but, in case of a transformer owning more than 
two windings, if leakage inductances are coupled, parameters 
depicting these properties, can be too. 

The leakage transformer (which is defined for any 
transformer) describes the magnetic behavior that remains 
when one winding is short-circuited [6]. It is composed by 
leakage inductances and couplers that describe coupling 
between these inductances. For a 3 winding transformer (Fig. 
10), leakage energy is computed when current in magnetizing 
inductance is null (16) (i.e. assuming primary is short-
circuited). In this case, Ampere-turns are compensated. 

In order to determine all the parameters of the leakage 
transformer, computation is made as in section II and III. 
Stored energy appears as a quadratic function of two 
independent currents so this function is fully described by three 
coefficients. Firstly, to evaluate inductance aLf  (17), 

secondary current must be null ( 0=sI ). Secondly, for 

inductance sLf  defined by (18), auxiliary current must be null 

( 0=aI ). 

Finally, a third combination of winding currents, the sum of 
which is always null ( sspaapp III ηη −−= ), allows the 

determination of the coupling ratio saη  between secondary and 
auxiliary (19). 
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and i  : image number 

( )ii yx ,  : image coordinates center 
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Figure 10.  Leakage transformer from 3-winding transformer 
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It is useful to evaluate the coupling coefficient of leakage 
inductances (20). This coefficient is indispensable to decide 
if coupling of leakage inductances can be neglected or not 
and, as a consequence, if the related coupler can be removed. 
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Finally, all the magnetic static parameters depicting 
leakage transformer can be evaluated analytically. This 
process is general and can be applied to an n -winding 
transformer (having an ( )1−n  winding leakage transformer) 
[6]. Only the number of current combinations (having a null 
sum) needed to obtain all the parameters varies. 

V. APPLICATION TO PLANAR TRANSFORMER 

An automatic tool for computing leakage inductances 
(and transformers) has been developed under Mathcad® 
software [8]. This tool has been use to identify static leakage 
transformer of an industrial planar transformer (Fig. 11). 
This flat device contains two identical 3-winding 

transformers located side by side. We now focus on one of 
them to compare experimental results to those given by our 
static leakage computing tool. 

5 cm   
Figure 11.  3-winding planar transformer 

A. Experimental Caracterization 

Measurements has been carried out using an Agilent 
4294A impedance analyzer [9], following the method 
developed in [10]. Lossless equivalent circuit of such a 
transformer is presented in Fig. 10. 

Leakage inductances are plotted in Fig. 12 and Fig. 13 
versus frequency. As it has been told in section II.A, in low 
and high frequency, inductances are difficult to evaluate 
because they are masked by other components. Moreover, 
leakage inductances are often modified by eddy currents so, 
to model them in a wide frequency range, we place some Lp-
Rp cells [10] in series with a pure inductance. In this case, 
static leakage inductance corresponds to the sum of all these 
serial inductances. Searched values appear on the low 
frequency side of model related curves shown in Fig. 12 and 
Fig. 13: 

• nHLfa 9.72=  

• nHLfs 8.69=  
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Figure 12.  Auxiliary leakage inductance variation vs frequency 
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Figure 13.  Secondary leakage inductance variation vs frequency 

Coupling ratio saη  between these two inductances has 

been evaluated to 64.0=saη . Then, coupling coefficient 

sak  has been deduced: 65.0=sak . 

B. Analytical Calculation  

Conductor placement inside transformer windows has 
been described into our tool. Transformer windings look as 
shown in Fig. 14. Both windows, symmetrical relatively to 
central leg core, are similar. Primary is made of 17 turns and 
other windings are made of 3 turns. 

Conducteurs_G

PrimarySecondary Auxiliary

x

y

 
Figure 14.  Transformer window description 

Energy density in a window is presented in Fig. 15 for 
illustration. 

x

y

 
Figure 15.  Energy density inside a transformer window 

Leakage energy has been evaluated to mµJ /3.13  for 

Primary/Secondary and mµJ /7.13  for Primary/Auxiliary. 
These values lead respectively to nH4.59  and nH4.61  
with a mean turn length estimated to mm26 . This value 
depends mainly on transformer geometry but energy 
repartition intervene too [4]. With (19) coupling ratio is 
evaluated to 77.0=saη . Coupling coefficient is also 

calculated with (20): 78.0=sak . All these values are 
summed up in Table I. 

TABLE I.  LEAKAGE TRANSFORMER PARAMETERS 

Parameters Measurement Computation Error 

P/S leakage 
inductance sLf  nH8.69  nH4.59  %15  

P/A leakage 
inductance 

aLf
 

nH9.72  nH4.61  %16  

A/S coupling 
ratio saη  64.0  77.0  %17  

A/S 
coefficient 
coupling 

sak  65.0  78.0  %17  

 

Finally, agreement of our computations and our 
experimental results is quite good: discrepancies are always 
less than %20 . These discrepancies can be attributed to both 
measurements and analytical calculation. In [10] we have 
shown that, even with meticulous care, we are unable to 
measure inductances with incertitude lower than about 

nH8 . On the other hand, our calculation tool assumes the 
transformer to be a 2D system, that is not exact, and it 
neglects extra wiring which links turns to external terminals 
[11]. For transformers having higher values of leakage 
inductances, agreement is generally far better. 

Accuracy is not impressive for presented example. 
However, for wire arrangement shown in Fig. 14, usual 
methods of calculation are not applicable or they require a lot 
of term to converge toward a result accurate enough. Method 
presented here is also able to account for partial surrounding 
of windings by magnetic core [4]. Evaluated leakage 
inductances are static ones. Their values generally decrease 
when frequency grows because of eddy currents effects. We 
now work on the extension of the presented technique to 
high frequency. 

VI.  CONCLUSION  

A complete analytical formula for computing static 
leakage parameters of a transformer has been introduced. 
This paper is completing a previous one by adding a fully 
analytical formulation. Proposed method applies as soon as 
wires, or winding cross sections, are rectangular. 

Leakage energy computation assumes device geometry 
can be considered as a 2D plane. It is based on expression of 
vector potential created by a rectangular conductor carrying a 
uniform current. Magnetic material is taken into account 
using magnetic images, even if it doesn’t completely 
surround the wires. Influence of magnetic material thickness 
has been investigated too. 

A tool has been developed using Mathcad® software and 
it has been applied to industrial planar transformers. This 
tool proved to be effective for transformer designers. They 
are now able to quickly and accurately predict all static 
parameters, including inductances, regarding leakage. 



Two extensions can now be accessed. The first one 
consists in coupling our developing tool with optimization 
software to improve device behaviour. The second one aims 
to account for eddy currents inside rectangular wires. This 
will permit these effects to be taken into account in 
transformer equivalent circuit.  
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