
HAL Id: hal-00288966
https://hal.science/hal-00288966

Submitted on 25 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatio-temporal saliency model to predict eye
movements in video free viewing

Sophie Marat, Tien Ho Phuoc, Lionel Granjon, Nathalie Guyader, Denis
Pellerin, Anne Guérin-Dugué

To cite this version:
Sophie Marat, Tien Ho Phuoc, Lionel Granjon, Nathalie Guyader, Denis Pellerin, et al.. Spatio-
temporal saliency model to predict eye movements in video free viewing. EUSIPCO 2008 - 16th
European Signal Processing Conference, Aug 2008, Lausanne, Switzerland. pp.1-5. �hal-00288966�

https://hal.science/hal-00288966
https://hal.archives-ouvertes.fr


SPATIO-TEMPORAL SALIENCY MODEL TO PREDICT EYE MOVEMENTS IN
VIDEO FREE VIEWING

S. Marat, T. Ho Phuoc, L. Granjon, N. Guyader, D. Pellerin and A. Guérin-Dugué
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ABSTRACT

This paper presents a spatio-temporal saliency model that pre-
dicts eye movements. This biologically inspired model separated a
video frame into two signals corresponding to the two main outputs
of the retina (parvocellular and magnocellular outputs). Both sig-
nals are then decomposed into elementary feature maps by cortical-
like filters. These feature maps are then used to form two saliency
maps: a static one and a dynamic one. These maps are fused into
a spatio-temporal saliency map. The model is evaluated by com-
paring the salient areas of each frame predicted by these saliency
maps (static, dynamic, spatio-temporal) to the eye positions of dif-
ferent subjects during a video free viewing experiment with a large
database (17000 frames).

1. INTRODUCTION

Usually, people do not look at all objects in the visual field but con-
centrate on some salient regions. We call salient regions areas in
the visual field that attract attention and so, the eyes. The emerging
problem is how to design a model that puts in conspicuous locations
salient areas. The answer relates to model human visual attention
with saliency maps; this has been of interest to many researchers
for the last few decades. The saliency of a spatial area depends
mainly on two factors, one is task-independent and the other is task-
dependent. The first one is often called the bottom-up and is mainly
driven by low-level processes with the intrinsic features of the visual
stimuli. The latter refers to top-down processes. It is more complex
to model because it must integrate high-level processes (task, cog-
nitive state...).

Most computational models of visual attention are bottom-up
and are inspired by the concept of Feature Integration Theory (FIT)
of Treisman and Gelade [1]. The first model was described by Koch
and Ullman [2]. Most of the models concentrate on spatial features
like color, contrast, orientation... The most popular one inspired by
this architecture is the model proposed by L. Itti et al. [3] and has
became a reference for saliency models. Motion feature has been
added recently to this model [4] and to other models [5, 6] to obtain
saliency models for videos.

This paper presents a new spatio-temporal saliency model close
to biological knowledge.Visual information is decomposed into two
signals: one signal carries spatial information of the visual scene
and the other carries motion information. Retina and primary vi-
sual cortex are modeled according to the biological particularities
of the static and dynamic pathways. This model is validated by an
eye movement experiment with a large video database. The model
is described in section 2. Section 3 presents an experiment that
records eye movements of 15 people looking at videos and then,
some evaluations of the proposed model are drawn.

2. MODEL

The proposed model (Fig.1) simulates a part of the human visual
system. Visual information goes through the retina and then are pro-
cessed by cortical-like filters. The static and dynamic pathways are
modeled and further combined to obtain a master spatio-temporal

Figure 1: Spatio-temporal saliency model

saliency map per video frame. This map predicts the gaze direction
to some particular areas of the frame analyzed.

2.1 Retina model

The retina, which has been described in detail in [7], is composed
of different neuronal layers (Fig.2). The retina has two main out-
puts: (1) The parvocellular which gives precise information on an-
alyzed regions and which is used to model the static pathway. (2)
The magnocellular which responds rapidly and keeps lower spatial
frequencies and which is used for the dynamic pathway. The flow
of information goes through the photoreceptors then the horizontal
cells calculate a local average of the coming information. The bipo-
lar cells take the difference of the outputs of the photoreceptors and
the horizontal cells. Amacrine cells calculate a second local average
of the information.

2.1.1 The parvocellular pathway

In static frames, contrast attracts human gaze [8]. The retina fil-
ter enhances frame contrast and helps to find out salient areas. At
first, photoreceptors enhance contrast through a nonlinear function
(Eq.1) increasing luminance of dark regions without saturating the
bright ones:

y =
255+xo

x+xo
x (1)



Figure 2: Retina model

where x is the luminance of the initial frame, xo represents its aver-
age local luminance and y is the photoreceptor output.

Horizontal cells act as a low-pass filter of photoreceptor output
and are modeled by a gaussian filter (σ=0.96). Bipolar cells cal-
culate the difference of the outputs of the photoreceptors and the
horizontal cells, which corresponds to a high-pass filtering of the
frame. In human visual perception, low frequencies precede high
frequencies [9]. Low frequencies are added to the high frequency
frame using an α coefficient (α=1/3). The Parvocellular pathway
reveals frame contrast. This pathway is used to compute the static
saliency map.

2.1.2 The magnocellular pathway

We assumed that visual attention is attracted by motion contrast and
we defined it as the motion of regions against background. The first
step, before the retina filter, is the compensation of the background
motion to estimate motion of regions against background.

Background is supposed to represent more than half of the
frame’s pixels, in that case background motion is also called dom-
inant motion and is computed using the 2D motion estimation al-
gorithm developed in [10]. This algorithm provides dominant mo-
tion compensation between two sucessive frames by carrying out
a robust multi-resolution estimation of an affine parametric motion
model. Then the two frames (the current frame and the next com-
pensated frame) go through the retina filter.

The magnocellular pathway responds rapidly but not precisely
in the spatial domain, the nonlinear function is thus not necessary as
it gives more details in a frame. The bipolar cells calculate the dif-
ference between the current frame and the output of the horizontal
cells. The low-pass filter is then turned into a high-pass filter, which
whitens the energy spectrum of the frame. Then the amacrine cells
act as a low-pass filter which eliminates high frequencies (gaussian
filter with σ=0.62). The resulting equivalent filter of the magnocel-
lular pathway is a band-pass filter. This pathway is used to compute
the dynamic saliency map.

2.2 Cortical-like filters

Visual information is processed in different frequencies, orienta-
tions, colors and motion in the primary visual cortex (V1) [11]. In
this model, Gabor filters are used to model frequency and orienta-
tion processing in V1. These filters are a good compromise of reso-
lution between the frequential and spatial domains. Each filter Gi j at
the orientation i and at the frequency j is determined by its central

radial frequency fi and its standard deviations σθ
i j and σ

f
i j in ori-

entation θ and its orthogonal orientation, respectively i = 1, ..,Nθ ,

j = 1, ..,N f and
f j

f j−1
= 2 with fN f

= 0.25. We chose σθ
i j = σ

f
i j ,

which is justified in the next section.

The numbers of orientations and frequencies were fixed at
Nθ = 6 and N f = 4 respectively, for the static pathway, according
to preliminary experiments. The output of each filter is an interme-
diate map mi j . This map corresponds to the elementary feature of
Treisman Theory [1].

For the dynamic pathway the spatial resolution is lower; so only
the three low frequency bands are used ( f1, f2 and f3).

Figure 3: Configuration of Gabor filters: 6 orientations and 4 fre-
quency bands.

2.3 The static pathway for the visual attention model

2.3.1 Interactions between filters

Neuron responses in the primary visual cortex are influenced as far
as excitation and inhibition are concerned by other neurons. We
consider two types of interaction based on the range of the receptive
fields [12].

Short interactions introduce inhibition between neurons of
neighboring orientations and overlapping receptive fields. For the

standard deviations of the cortical-like filters, if σθ
i j > σ

f
i j it is more

orientation-selective but reduces the inhibitive interaction. So, we

chose σθ
i j = σ

f
i j . Short interaction occurs with the same pixel in dif-

ferent intermediate maps mi j. Each pixel is excited by the similar
pixels in the other maps of same orientation but different frequency
and suppressed by those of different orientations but similar fre-
quency.

The second interaction type is long range interaction which oc-
curs among collinear neurons beyond the receptive fields and is of-
ten used for contour facilitation [12]. This type of interaction is
worked out in each intermediate map by convolution with a ”but-
terfly” mask, an excitory part in the corresponding orientation and
an inhibitive part in other orientations (having its summation equal
to 1). The mask size was inversely proportional to the frequency of
the corresponding intermediate map mi j.

2.3.2 Normalization and summation

The intermediate maps mi j were normalized to the same maximal
value before summation. Moreover, an object is more salient if it
is different from its neighbors. We used the method proposed by
Itti [3] to strengthen the intermediate maps which had few maxima.
After being normalized in [0,1], each map mi j was multiplied by

(m∗

i j −mi j)
2 where m∗

i j , mi j are its maximum and average respec-

tively. Then, all values in each map which were smaller than 20%
of its maximum were set to 0.

Finally, all intermediate maps are added together to obtain the
static saliency map Ms(x,y,k) at each frame k (Fig.4).

2.4 The dynamic pathway for the visual attention model

Dynamic saliency is linked to motion and particularly to the motion
of region against background. The speed of moving region against
background was computed using a motion estimator on compen-
sated frames.

2.4.1 Motion estimation

A differential approach, described in detail in [13], was used. It
relies on the assumption of luminance constancy. The motion at
location (x,y) in frame t is given by the vector V(x,y,t) which satisfies
the optical flow constraint equation (Eq.2)

∇I(x,y,t).V (x,y,t)+
∂ I(x,y,t)

∂ t
= 0 (2)

with I(x,y,t) is the luminance of the pixel at position (x,y) in frame t.



Figure 4: Examples of static Ms (middle) and dynamic Md saliency
maps (right) of a natural scene (left)

For each frame, the optical flow constraint was applied to each
output of cortical-like filters , with the same radial frequency, lead-
ing to an over-determined system of equations allowing the aper-
ture problem to be overcome. For each pixel (x,y) a motion vector
(vx,vy) was computed, solving the system (Eq.3).
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with Ω
p
i =

∂ (I∗Gi., j)
∂ p

, Gi., j is the cortical-like filter at the orientation

θ . Then, a robust multiresolution scheme allows the motion estima-
tion from low frequencies ( f1) to higher ( f3) radial frequency to be
obtained.

A motion vector was defined per pixel. As the motion saliency
of a region is linked to its speed against background we used the
module of this motion vector. (Higher the pixel is, brighter the pixel
is).

2.4.2 Temporal filtering

A temporal median filter was applied to remove noise. If a pixel
had a motion in one frame but not in the previous ones it is most
probably noise resulting from the motion estimation. This filter was
applied to a window of five frames (the current frame and the four
previous ones) and the window is reinitialized after each shot cut
to avoid artifacts. The dynamic saliency map Md(x,y,k) was then
obtained for each frame k (Fig.4).

2.5 Fusion

The saliency maps obtained at the outputs of the static and dynamic
pathways do not have the same range of value.

There are always textured and contrasted regions in frames, so
there is always static saliency information. The static saliency maps
are normalized between 0 and 255.

Considering that dynamic saliency is linked to the speed of
moving regions against background, the normalization is done to
be adaptive to motion. We assume that (1) the faster a region is,
the higher its saliency is, and (2) if there is only one moving area
the higher its saliency is. Motion previously seen is also taken
into account: if the motion decreases, the saliency also decreases
but if the motion is constant or increases, the saliency will remain
at maximum value (= 255). Each dynamic map is normalized
between 0 and the maximum value present on a temporal window
of duration L=25 frames (24 previous and the current frame) i.e.
1 second of video. As videos are continuous in time, there is no
abrupt change of speed in such a short portion of shot. The window
was reinitialized after each shot cut, to avoid shot cut artifacts.

Three different fusions are proposed:

• a mean fusion, taking the average of each pixels of the two

saliency maps : Mmean = Ms+Md

2
• a max fusion, taking for each pixel the maximum of the two

saliency maps : Mmax = Max(Ms,Md)
• a pixel by pixel multiplicative fusion corresponding to a logical

and : Mand = Ms ×Md

Figure 5: Examples of Mand (left), Mmoy (middle) and Mmax (right)
of a natural scene (Fig.4 left)

Examples of these fusions are given in Fig.5. The multiplicative fu-
sion is the most selective one. In this case an area needs to be salient
simultaneously in the static and the dynamic maps to be salient for
this fusion. The max and mean fusions are less selective. The mean
fusion modulates a map with the other. If an area is salient for the
static map but not for the dynamic one, the fusion saliency is lower
than it was in static. For the max fusion an area has the highest
saliency between static and dynamic and is less selective.

3. EXPERIMENT AND RESULTS

The goal of this part is to compare the results given by our model to
the human eye position density map obtained with an eye movement
experiment.

3.1 Experiment

Participants:
Fifteen human observers (3 women and 12 men, aged from 23 to
40 years old). All participants had normal or corrected to normal
vision, and were not aware of the purpose of the experiment. They
were asked to look at videos without any particular task.

Apparatus and experimental design:
Eyetracking was performed by an Eyetracker Eyelink II (SR Re-
search). During the experiment participants were sitting with their
chin supported in front of a 21′′ color monitor (75 Hz refresh rate)
at viewing distance of 57cm (40◦ × 30◦ usable field of view). A 9
point calibration was made every five stimuli and a control drift was
done before each stimuli.

Stimuli:
This experiment is inspired by an experiment by Carmi and Itti [14].
Fifty three videos (25fps, 720x576 pixels/frames) were selected
from heterogeneous sources including movies, TV shows, TV news,
animated movies, commercials, sport, music clips. These 53 videos
gathered indoor, out-door, day-time and night-time sources. The 53
videos were cut every 1-3 seconds (1.86 ± 0.61) in 305 clip snip-
pets. The length of the clip snippet was chosen randomly, the only
constraint was to obtain snippet without any shot cut. These clip
snippets were then strung to form 20 clips of 30 seconds (30.20 ±

0.81). Each clip contains at most one clip snippet of each continu-
ous source. The choice of the clip snippets and their duration were
random to prevent subject to anticipate shot cut. As the proposed
model is bottom-up, clips snippets were used to minimize poten-
tial top-down influence on eye movements. Stimuli (17000 frames)
were presented on gray level without audio as the model did not
consider color and audio information.

Human eye position density maps:
We recorded and analyzed the eye positions. The eyetracker records
the eye position at 500Hz. The eyetracker records 20 eye positions
per frame for the two eyes. The median of all these points was
taken for each subject and for each frame. A point per frame and
per subject was obtained and enabled the gaze to be tracked even
during smooth pursuit movement which can occur during viewing
video stimuli. For each frame the points of all the subjects were
gathered. Then we added a 2D gaussian function to each point to
obtain the human eye position density map, Mh(x,y,k).



3.2 Results

We analyzed the eye positions rather than the fixation points for two
reasons.
First we have much more data when choosing all the eye positions;
and we can can have one point per frame and per subject.
Second in most of the cases, eye positions and fixations are very
close except during smooth pursuit. This method allows us to obtain
the eye positions even during smooth pursuit. In this section the
contribution of the two pathways is analyzed, as well as different
fusions.

After testing different criteria, results are presented using the
Normalized Scanpath Saliency (NSS) [4]. The NSS is used to mea-
sure the correspondence between the saliency map computed by a
model and the human eye position map. It is computed by:

NSS(k) =
Mh(x,y,k)×Mm(x,y,k)−Mm(x,y,k)

σMm(x,y,k)
(4)

with Mh(x,y,k) is the human eye position map and Mm(x,y,k) the
model saliency map (m = s, d, mean, max or and). NSS(k) value
of zero indicates no correspondence between saliency and eye posi-
tions, higher NSS, that can be above one, suggests a greater corre-
spondence.

3.2.1 Global analysis

The NSS(k) was computed for each frame of all the clips (17000
frames). The mean value on these clips is given for each model of
saliency map in Tab.1.

saliency map Ms Md Mmean Mmax Mand

NSS value 0.79 0.81 0.99 0.84 1.00

Table 1: Mean NSS value on all the clips

For the dynamic pathway, results are as expected. The NSS
value is high, as motion is an important gaze attractor. For the static
pathway, results are better than those usually presented [14]. The

NSS value for Ms is close to the Md one. Every kind of fusion gives
better NSS scores than a static or dynamic saliency map alone. Mand

gives the highest score. Notice that NSS(k) values were computed
for random fixations and they were close to 0 for all the models.

The NSS(k) values are then presented as a function of frame.
The NSS(k) value at frame k on Fig.6 is the average of the NSS(k)
values on every clip snippets at frame k. For the long clip snippets,
the 65 first frames are kept, which correspond to 2.6 seconds.

All the curves have the same shape. The first values are weak
and increase rapidly. This can be explained by the fact that after
each shot cut, the gaze stays at the previous position during few
frames and then moves to a salient region. The maximum NSS(k)
value is reached for all the curves at about 13 frames, which corre-
sponds to 520 ms, then curves decrease slowly. The shape of these
curves can be explained by the fact that at the begining only bottom-
up influences occurred, followed by top-down processes. Ms starts
with a higher NSS(k) value, indeed the gaze stays at the previous
position, which is more likely to be on a static salient region than
a moving area. The dynamic saliency map has a higher maximum
NSS(k) value and it decreases more rapidly than the static saliency
one. After being attracted by a moving area, the gaze will go to
other locations which are less salient for dynamic saliency but with
high static saliency.

The Mmax(x,y,k) saliency corresponds to the maximum of
static and dynamic for each map and then for each curve. The
Mand(x,y,k) and Mmoy(x,y,k) fusions are clearly above both static
and dynamic saliency curves. The model of saliency maps that

gives the highest NSS(k) during the first 25th frames is the Mand :

Figure 6: NSS as a function of frame. The NSS is averaged on 305
clip snippets for different saliency maps

Figure 7: NSS as a function of frame for clip snippets categorized
using maximum and skewness for static saliency map

as it retains what is salient in both static and dynamic saliency maps
(Fig.5). Salient areas, defined by human eye positions, are salient
both in the static and dynamic pathways. Both the static and dy-
namic pathways are correct predictors. After around 25 frames (1s)
we can suppose that top-down is present, and subject gaze would
go to less salient regions. As the Mmoy fusion covers areas that are
salient either in the static or the dynamic pathway, gaze is more
likely to be on a salient area in Mmoy than in Mand . Static and dy-
namic pathways are both needed to detect salient areas.

3.2.2 Detailed analysis of the two pathways

The static and dynamic pathways have been evaluated, we now want
to find which information in the static and dynamic saliency maps
is the most gaze-attractive.

The important characteristics of saliency maps are the maxi-
mum saliency value on the map and the dispersion of salient re-
gions. For the dispersion information skewness is used: it is the
third moment on the distribution of the Mm(x,y,k) model saliency
maps. Skewness gives information on the dissymetry of a distribu-
tion. If the saliency map contains every saliency level (gray level)
in the same proportion, the skewness is low; on the other hand if the
saliency map contains only a small salient region and all the rest is
not salient, the skewness is high. The clip snippets are split into 4
categories. Each snippet is labeled with maximum (resp. skewness)
information: above or below the median maximum (resp. skewness)
value on all the snippet (Fig.7, 8). The maximum (resp. skewness)
information for each snippet is the average of the maximum (resp.
skewness) value on this snippet.

The static pathway is more predictive for snippets with high



Figure 8: NSS as a function of frame for clip snippets categorized
using maximum and skewness for dynamic saliency map

maximum in static saliency (maximum above 0.9), and then snip-
pets with higher skewness are even more predictive (maximum at
1.1). Static saliency maps Ms(x,y,k) give static salient information,
if a region is textured for example. Static saliency covers in gen-
eral more area on the frame and is not localized (Fig.4). The main
information is given by the maximum of saliency value. If a frame
has a high maximum value of saliency, there is an attracting region
in this frame. On the other hand, if the frame has a low maximum
of saliency the most attractive region is less attractive than in the
previous frame.

The dynamic pathway is more predictive for snippets with
higher skewness (maximum above 1.2) and then snippets with lower
maximum are more predictive (maximum at 1.4). Map Md(x,y,k)
gives motion information, but this time the salient regions may be
localized (Fig.4). If there was only a small moving region, the
saliency would be concentrated on this region. If there was only a
dynamic salient region the gaze of all the subjects would be concen-
trated there. However if there were several regions with equivalent
dynamic saliency, subjects’ gaze would be spread over these differ-
ent regions. The fact that NSS(k) is higher, with lower motion, can
be explained by the fact that when a region moves rapidly, the eyes
anticipate the motion, and gaze precedes the moving region. Gaze
is then on a less salient region in our model.

4. CONCLUSION

In this paper a new bottom-up saliency model inspired by the biol-
ogy of the human visual system is proposed. This model decom-
posed a visual signal into spatial information conveyed by a static
pathway and motion information conveyed by a dynamic pathway.
This decomposition starts with the two main outputs of the retina
and continues with the cortical cells, sensitive to different spatial
frequencies and orientations, and which are modeled using the same
bank of Gabor filters for both static and dynamic pathways. The
two pathways give two saliency maps that are fused into a spatio-
temporal saliency map. The model is evaluated by comparing the
salient predicted areas with human eye positions.

The proposed model is very efficient for a large number of
frames (17000) coming from heterogeneous and realistic videos.
The Mand fusion, which retains only salient regions in both static
and dynamic, gives the best results, showing that salient regions are
salient for both the static and the dynamic pathways. The analysis
of NSS(k) as a function of time shows the effectiveness of predic-
tion of our model during the period corresponding to the bottom-up
mechanism. The categorization based on intrinsic information of
the video shows the influence of particular characteristics of stimuli
on human behavior.

In future work it would be interesting to use the spatio-temporal
saliency maps obtained to improve video compression or water-
marking. These saliency maps may also be useful for cropping

frames to their most interesting part for video viewing on small dis-
play, or to help selecting video frames to make a video summary.
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