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Vectors, Cyclic Submodules and Projective

Spaces Linked with Ternions

Hans Havlicek Metod Saniga

June 19, 2008

Abstract

Given a ring of ternions R, i. e., a ring isomorphic to that of upper
triangular 2×2 matrices with entries from an arbitrary commutative field
F , a complete classification is performed of the vectors from the free left
R-module Rn+1, n ≥ 1, and of the cyclic submodules generated by these
vectors. The vectors fall into 5 + |F | and the submodules into 6 distinct
orbits under the action of the general linear group GLn+1(R).

Particular attention is paid to free cyclic submodules generated by
non-unimodular vectors, as these are linked with the lines of PG(n, F ),
the n-dimensional projective space over F . In the finite case, F = GF(q),
explicit formulas are derived for both the total number of non-unimodular
free cyclic submodules and the number of such submodules passing through
a given vector. These formulas yield a combinatorial approach to the lines
and points of PG(n, q), n ≥ 2, in terms of vectors and non-unimodular
free cyclic submodules of Rn+1.

Mathematics Subject Classification (2000): 51C05, 51Exx, 16D40.
Key words: Rings of ternions, (non-unimodular free) cyclic submodules,
projective lattice geometry over ternions.

1 Introduction

Projective spaces over rings (see [10] for the standard terminology, notation and
the necessary background information), and projective lines in particular (see
[1]), have recently become the subject of considerable interest due to rather
unexpected recognition of their relevance for the field of quantum physics in
general and quantum information theory in particular; we refer to [5], [6], and
the references therein. Being motivated by these intriguing applications, we have
had—in the framework of a broader international collaboration—a detailed look
at the structure of a variety of finite projective ring lines and planes (see, e. g.
[9]) and came across some interesting aspects (see, among others, [7]) which,
to the best of our knowledge, have not yet been the subject of a systematic
mathematical treatment. These aspects mostly relate to the properties of free
cyclic submodules generated by vectors of a free R-module of a given unital
ring R, and can be summarised into the following open problems: how the
interrelation between different free cyclic submodules over a particular ring is
encoded in the structure of the ideals of the ring; what kind of finite rings feature
“outliers”, i. e., vectors not belonging to any free cyclic submodule generated
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by unimodular vectors; what the conditions are for a non-unimodular vector to
generate a free cyclic submodule; and, finally, how the substructure generated by
such non-unimodular free cyclic submodules relates to the parent ring geometry.
These questions lead to projective lattice geometry in the sense of [2]. In order to
partially answer some of them, we have already examined the case of the smallest
ring of ternions [8]—this being, remarkably, the lowest order ring where one not
only finds “outliers”, but also free cyclic submodules generated by (some of)
them. In the present paper we extend and generalise the findings of [8] to an
arbitrary ring of ternions, with finite cases handled in somewhat more detail.

2 Ternions

Let F be a (commutative) field. We denote by R the ring of ternions, i. e., upper
triangular 2× 2 matrices over F , with the usual addition and multiplication for
matrices. The ring R is non-commutative, with I (the 2 × 2 identity matrix
over F ) being its multiplicative identity and 0 (the 2 × 2 zero matrix over F )
the additive one.1 The ring R has precisely two (two-sided) ideals other than 0
and R, namely the sets

I1 :=

{(

0 y
0 z

)∣

∣

∣

∣

y, z ∈ F

}

and I2 :=

{(

x y
0 0

)∣

∣

∣

∣

x, y ∈ F

}

. (1)

Furthermore, all sets

I1(b : c) :=

{(

0 zb
0 zc

)∣

∣

∣

∣

z ∈ F

}

with (0, 0) 6= (b, c) ∈ F 2 (2)

are proper right ideals of R. In fact, I1(b : c) depends only on the ratio b : c.
Note that the ratio 1 : 0 is also allowed here. Similarly, all sets

I2(a : b) :=

{(

xa xb
0 0

)∣

∣

∣

∣

x ∈ F

}

with (0, 0) 6= (a, b) ∈ F 2 (3)

are proper left ideals of R. It is an easy exercise to show that there are no other
proper one-sided ideals in R apart from the ones given by (2) and (3). Recall
that the Jacobson radical of R (denoted by radR) equals the intersection of all
maximal left (or right) ideals. So

radR = I1(1 : 0) = I2(0 : 1). (4)

Note that a ternion is invertible (a unit) if, and only if, its diagonal entries are
non-zero. The set of invertible ternions will be written as R∗. It is a group
under multiplication.

3 Classifying vectors and cyclic submodules

We consider now the free left R-module Rn+1 for some integer n ≥ 1. (The
assumption n ≥ 1 is needed, for example, to guarantee that all six cases which

1In what follows, the symbol “0” stands, by abuse of notation, for both the zero-element
of the field F and the zero matrix of R, the difference being always fairly obvious from the
context.
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appear in the proof of Lemma 1 below actually occur. We refrain from discussing
the trivial cases n = −1 and n = 0 throughout the paper.) We use boldface
letters for vectors and matrices with entries from R. Any s× t matrix (Aij) over
R can be considered as a 2s×2t matrix over F which is partitioned in 2×2 blocks
formed by the upper triangular matrices Aij , and vice versa. Multiplication of
matrices over R is equivalent to multiplication of matrices over F under this one-
one correspondence. Thus, in particular, it is easy to check whether a square
matrix over R is invertible by calculating the determinant of the associated
matrix over F .

Our first aim is to classify the (row) vectors of the free left module Rn+1

up to the natural action of the general linear group GLn+1(R). Given a vector
X = (X0, X1, . . . , Xn) ∈ Rn+1 let IX denote the right ideal of R which is
generated by X0, X1, . . . , Xn.

Lemma 1. Two vectors X, Y ∈ Rn+1 are in the same GLn+1(R)-orbit if, and
only if, the right ideals IX and IY coincide.

Proof. If a vector X ∈ Rn+1 is multiplied by a matrix A ∈ GLn+1(R), then the
coordinates of Y := X ·A belong to IX . By virtue of the inverse matrix A

−1,
we see that actually IX = IY .

In order to show the converse, we establish that the orbit of any vector
X = (X0, X1, . . . , Xn) contains a distinguished vector which depends only on
the right ideal IX . In our discussion below we make use of two obvious facts.
Firstly, we may permute the coordinates of a vector in an arbitrary way by
multiplying it with a permutation matrix. Secondly, if X is a non-zero vector
with X0 6= 0, say, then one of the entries of the ternion X0 is a scalar w 6= 0.
Multiplying X by the invertible matrix A = diag(w−1I, I, . . . , I) gives a vector
X

′ := X · A such that the entry of the ternion X ′

0 at the same position equals
1 ∈ F . So, without loss of generality, we may assume w = 1 from the very
beginning.

Case 1: IX = 0, so that X = (0, 0, . . . , 0) is already the distinguished vector.
Case 2: IX = radR. Thus X has the form (X0, X1, . . . , Xn) with Xi =

(

0 yi

0 0

)

and y0 = 1, say. Multiplying X by the invertible matrix









I −y1I . . . −ynI
0 I . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . I









gives the distinguished vector
(

(

0 1
0 0

)

, 0, . . . , 0
)

.

Case 3: IX = I1(b : 1) for some b ∈ F . Hence we may assume X =

(X0, w1X0, . . . , wnX0) with X0 =
(

0 b

0 1

)

and w1, . . . , wn ∈ F . Multiplying X

by the invertible matrix








I −w1I . . . −wnI
0 I . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 . . . I









gives the distinguished vector
(

(

0 b

0 1

)

, 0, . . . , 0
)

. The scalar b which appears in

this vector depends only on the right ideal I1(b : 1).
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Case 4: IX = I1, whence at least one coordinate of X has to be off the

Jacobson radical. So the coordinates of X read Xi =
(

0 yi

0 zi

)

with z0 = 1, say.

We introduce the shorthand

di := det

(

y0 yi

z0 zi

)

= y0zi − yi for i = 1, 2, . . . , n

and proceed in two steps as follows: Define

X ·









I −z1I . . . −znI
0 I . . . 0
. . . . . . . . . . . . . . . . .
0 0 . . . I









=

((

0 y0

0 1

)

,

(

0 −d1

0 0

)

, . . . ,

(

0 −dn

0 0

))

=: X
′.

Since IX 6= I1(y0 : 1), at least one of d1, d2, . . . , dn, say d1, is unequal to 0.
Now multiplying X

′ by the invertible matrix
















I 0 0 . . . 0

y0d
−1
1 I −d−1

1 I −d2d
−1
1 I . . . −dnd−1

1 I

0 0 I . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . I

















gives the distinguished vector
(

(

0 0
0 1

)

,
(

0 1
0 0

)

, 0, . . . , 0
)

.

Case 5: IX = I2. We may assume that Xi =
(

xi yi

0 0

)

and x0 = 1, because

at least one coordinate of X has to be off the Jacobson radical. Multiplying X

by the invertible matrix








A00 −X1 . . . −Xn

0 I . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 . . . I









, where A00 :=

(

1 −y0

0 1

)

,

gives the distinguished vector
(

(

1 0
0 0

)

, 0, 0, . . . , 0
)

.

Case 6: IX = R. Assume, first, that none of the entries of X is invertible.
Hence we have, for example, X0 ∈ I2 \ I1 and X1 ∈ I1 \ I2. Define

X ·













I 0 0 . . . 0
I I 0 . . . 0
0 0 I . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . I













=: X
′.

Then X ′

0 = X0 +X1 is a unit. Thus, we may restrict ourselves to the case when
one of the entries of X, say X0, is a unit. Now, multiplying X by the invertible
matrix













X−1
0 −X−1

0 X1 −X−1
0 X2 . . . −X−1

0 Xn

0 I 0 . . . 0
0 0 I . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . I













gives the distinguished vector (I, 0, . . . , 0).
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The previous proof shows that for n ≥ 1 the vectors of Rn+1 fall into 5+ |F |
orbits.

Lemma 2. Under the action of the general linear group GLn+1(R), n ≥ 1, the
cyclic submodules of Rn+1 fall into six orbits with the following representatives:

R(0, 0, . . . , 0) = {(0, 0, . . . , 0)}. (5)

R
(

(

0 1
0 0

)

, 0, . . . , 0
)

=
{(

(

0 y

0 0

)

, 0, . . . , 0
)∣

∣

∣ y ∈ F
}

. (6)

R
(

(

0 0
0 1

)

, 0, . . . , 0
)

=
{(

(

0 y

0 z

)

, 0, . . . , 0
)∣

∣

∣ y, z ∈ F
}

. (7)

R
(

(

0 0
0 1

)

,
(

0 1
0 0

)

, 0, . . . , 0
)

=
{(

(

0 y

0 z

)

,
(

0 x

0 0

)

, 0, . . . , 0
)∣

∣

∣x, y, z ∈ F
}

. (8)

R
(

(

1 0
0 0

)

, 0, . . . , 0
)

=
{(

(

x 0
0 0

)

, 0, . . . , 0
)∣

∣

∣
x ∈ F

}

. (9)

R (I, 0, . . . , 0) =
{(

(

x y

0 z

)

, 0, . . . , 0
)∣

∣

∣x, y, z ∈ F
}

. (10)

Proof. The assertion follows immediately from the classification of vectors in
Lemma 1.

It is worth noting that the cyclic submodule given in (7) is generated by any
vector X with IX = I1(b : 1) for an arbitrary b ∈ F . This illustrates once more
that the classification of cyclic submodules is coarser than the classification of
vectors.

In the terminology of [2, p. 1129] the cyclic2 submodules of Rn+1 are the
points of the projective lattice geometry given by Rn+1. The only free points, i. e.,
free cyclic submodules, appearing in Lemma 2 are given in (8) and (10). The
point in (10) is unimodular, because there exists an R-linear form Rn+1 → R
which takes (I, 0, . . . , 0) to I ∈ R. The point in (8) is not unimodular, since
none of its vectors is mapped to I ∈ R under an R-linear form. We shall not be
concerned with the orbits of the remaining points from Lemma 2, since none of
them is free.

The orbit of (10) under the action of GLn+1(R) is thus the set of “ordinary”
(i. e., unimodular free) points. Note that only the elements of this set are called
“points” in [3], [4], and [10]. See also the section on Barbilian spaces in projective
lattice geometries in [2, p. 1135–1136]. The orbit of (8) gives rise to the set
of “extraordinary” (i. e., non-unimodular free) points of the projective lattice
geometry associated with Rn+1. It is the latter set we shall consider in the
sequel, due to its link with the n-dimensional projective space PG(n, F ).

4 Linking non-unimodular free cyclic submod-

ules with lines of PG(n, F )

The free R-left module Rn+1 turns into a 3(n+1)-dimensional vector space over
F by restricting the ring of scalars from R to F . (We tacitly do not distinguish
between x ∈ F and the ternion x · I ∈ R.) Each R-submodule of Rn+1 is at
the same time an F -subspace of this vector space. In this section we focus our

2In [2] such submodules are called 1-generated rather than “cyclic”. The latter term has a
different meaning there [2, p. 1121].
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attention to the R-submodule (radR)n+1 ⊂ Rn+1. There exists an obvious
F -linear bijection between (radR)n+1 → Fn+1 which is given by

((

0 y0

0 0

)

,

(

0 y1

0 0

)

, . . .

(

0 yn

0 0

))

7→ (y0, y1, . . . , yn). (11)

In the proof of the following result we use this mapping to consider (radR)n+1

as an underlying vector space for the projective space PG(n, F ). Note that we
cannot take radR (together with addition and multiplication from R) as the
field of scalars for this vector space, but we have to let F play this role.

Theorem 1. Let R be the ring of ternions over a field F . The lines of the
projective space PG(n, F ), n ≥ 1, are precisely the intersections of (radR)n+1

with the non-unimodular free cyclic submodules of the module Rn+1.

Proof. Under the action of GLn+1(R) on Rn+1 the set (radR)n+1 is invari-
ant. Consequently, GLn+1(R) acts as an F -linear transformation on (radR)n+1.
Conversely, given an F -linear bijection of (radR)n+1 it will correspond, in terms
of the coordinates given by (11), to a unique matrix (aij) ∈ GLn+1(F ). This ma-
trix over F determines the matrix (aijI) ∈ GLn+1(R) which in turn induces the
given transformation on (radR)n+1. Thus the F -linear bijections of (radR)n+1

are precisely the R-linear bijections of Rn+1 restricted to (radR)n+1. We add
in passing that this action of GLn+1(R) on (radR)n+1 is not faithful.

The non-unimodular free cyclic submodule (8) meets (radR)n+1 in a two-
dimensional F -subspace or, said differently, in a line of PG(n, F ). All non-
unimodular free cyclic submodules of Rn+1 (and, likewise, all lines of PG(n, F ))
form an orbit under the action of the group GLn+1(R). This proves the asser-
tion.

The previous result describes only the lines of PG(n, F ) as certain subsets
of (radR)n+1. However, for n ≥ 2 this implies that also the points of this
projective space are known: A subset p of (radR)n+1 is a point if, and only if,
there exist non-unimodular free cyclic submodules RX and RY of Rn+1 such
that

RX ∩ (radR)n+1 6= RY ∩ (radR)n+1,

p = RX ∩ RY ∩ (radR)n+1, and |p| > 1.

Thus the vectors of (radR)n+1 together with the “traces” of the non-unimodular
free cyclic submodules of Rn+1 completely determine the structure of PG(n, F )
for n ≥ 2. There is yet another approach to points which makes use of unimod-
ular free cyclic submodules. It works even for n ≥ 1: The points of PG(n, F )
are precisely the intersections of (radR)n+1 with the unimodular free cyclic
submodules of the module Rn+1. This follows like in the proof of Theorem 1
from the fact that the meet of the submodule (10) with (radR)n+1 is a point of
PG(n, F ), and from the actions of GLn+1(R) on Rn+1 and (radR)n+1.

Finally, we note that Theorem 1 also furnishes the proof of the validity of
the conjecture raised in [8] about the connection between non-unimodular free
cyclic submodules of R3, where R is the ring of ternions over a Galois field
GF(q), and lines of the projective plane PG(2, q).
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5 Combinatorics of the finite case

We assume throughout this section that F is a Galois field GF(q) with q ele-
ments. So |R| = q3, and the number of units in R is given by |R∗| = q(q − 1)2.

Our first aim is to count the numbers mi of vectors of Rn+1 fitting into cases
i = 1, 2, . . . , 6 according to the classification from the previous section. All of
these numbers are non-zero due to our general assumption n ≥ 1, which is also
adopted in this section.

Case 1: The zero-vector is the only vector arising in this case, whence m1 = 1.
Case 2: There are |radR|n+1 = qn+1 vectors with entries from the radical of

R, including the zero-vector. We obtain therefore m2 = qn+1 − 1.
Case 3: First we consider a fixed b ∈ F . Any vector X with IX = I1(b : 1)

has the form
(

w0

(

0 b
0 1

)

, w1

(

0 b
0 1

)

, . . . , wn

(

0 b
0 1

))

with (0, 0, . . . , 0) 6= (w0, w1, . . . , wn) ∈ Fn+1. As b varies in F , we get m3 =
q(qn+1 − 1).

Case 4: There are |I1|n+1 = q2(n+1) vectors with entries from the ideal I1,
including the vectors from cases 1, 2, and 3. Hence

m4 = q2(n+1) − m3 − m2 − m1 = q(qn − 1)(qn+1 − 1).

Case 5: We proceed as before and obtain from |I2| = q2 that

m5 = q2(n+1) − m2 − m1 = qn+1(qn+1 − 1).

Case 6: All remaining vectors fall into this case. We read off from |Rn+1| =
q3(n+1) that

m6 = |Rn+1| − m5 − m4 − m3 − m2 − m1 = qn+1(qn+1 − 1)2.

We consider now the set N of all vectors of Rn+1 which belong to at least one
non-unimodular free cyclic submodule of Rn+1. For this set to be non-empty
we must have n ≥ 1. Under these circumstances the set N comprises precisely
the q2(n+1) vectors fitting into cases 1–4 according to our classification.

Theorem 2. Let R be the ring of ternions over GF(q). There are precisely

µ :=
(qn − 1)(qn+1 − 1)

(q − 1)2
(12)

non-unimodular free cyclic submodules in Rn+1 for n ≥ 1. The number of such
submodules containing a vector X ∈ Rn+1 equals

µ1 := µ if IX = 0, (13)

µ2 :=
(q + 1) (qn − 1)

q − 1
if IX = radR, (14)

µ3 :=
qn − 1

q − 1
if IX = I1(b : 1) for some b ∈ F, (15)

µ4 := 1 if IX = I1. (16)
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Proof. Equation (16) holds trivially. The number of non-unimodular free cyclic
submodules is m4/|R∗| which yields (12) and (13). In order to establish (14) we
count in two ways the number of pairs (X, RY ), where RY is a non-unimodular
free cyclic submodule and the vector X ∈ RY is subject to IX = radR.

First we fix Y and count the number of appropriate vectors X. Since all
vectors Y with IY = I1 are in one orbit of GLn+1(R), it is sufficient to consider
as Y the distinguished vector obtained in case 4. By (8), the vectors of RY

have the form
((

0 y
0 z

)

,

(

0 x
0 0

)

, 0, . . . , 0

)

with x, y, z ∈ F. (17)

Such a vector has the required properties if, and only if, z = 0 and (x, y) 6= (0, 0).
Hence there are q2 − 1 vectors of this kind. Consequently, as Y varies also, the
number of pairs (X, RY ) is equal to

(q2 − 1) · µ =
(q + 1)(qn − 1)(qn+1 − 1)

(q − 1)
.

Counting in a different way, we find that this number equals µ2m2, whence
indeed

µ2 =
(q + 1)(qn − 1)

(q − 1)
.

The proof of (15) can be accomplished in the same fashion. The coordinates
of a vector given in (17) generate a right ideal I1(b : 1) for some b ∈ F if, and
only if, z 6= 0 and x = 0. The last condition is due to the fact that second
ternion coordinate of the vector appearing in (17) has to be a scalar multiple of
the first one. Hence there are q(q − 1) vectors of this kind. This gives

q(q − 1) · µ =
q(qn − 1)(qn+1 − 1)

(q − 1)
= µ3m3 = µ3 · q(q

n+1 − 1),

from which the formula for µ3 is immediate.

We notice that

µ = µ1 = |PG(n − 1, q)| · |PG(n, q))|,

µ2 = |PG(n − 1, q)| · |PG(1, q)|,

µ3 = |PG(n − 1, q)|.

Thus for n ≥ 2 these numbers are distinct and all of them are greater than
µ4 = 1. Under these circumstances the four types of vectors in N can be dis-
tinguished by the number of non-unimodular free cyclic submodules in which
they are contained. Consequently, the set N and the family of non-unimodular
free cyclic submodules determine the lines and points of the projective space
PG(n, q) according to Theorem 1 and the subsequent remarks. This provides
now the theoretical background for the Fano-Snowflake from [8], which is de-
picted in Figure 1, and puts the construction from there in a general context by
allowing an arbitrary dimension n ≥ 2 and any prime power q.
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Figure 1: The “Fano-Snowflake”—a diagrammatic illustration of the n = q = 2
case. The 26−1 = 63 vectors of N \{(0, 0, 0)} are represented by circles, whose
sizes reflect the number of non-unimodular free cyclic submodules of R3 they
are contained in. As the zero vector is not shown, each submodule of this kind
is represented by 23 − 1 = 7 circles lying on a common polygon; three big, two
medium-sized, and two small circles corresponding, respectively, to the vectors
from case 2 (µ2 = 9), case 3 (µ3 = 3), and case 4 (µ4 = 1). The patterns
of the µ = 21 polygons were chosen in such a way to make (the lines of) the
Fano plane PG(2, 2) sitting in the middle of the “snowflake” readily discernible.
The illustration is essentially three-dimensional. There is also a single “vertical
branch” of the “snowflake” which emanates from the the middle of the figure
and ramifies into three smaller branches.

6 Conclusion

Given the free left R-module Rn+1, n ≥ 1, of an arbitrary ring of ternions R, we
provide a complete classification of the vectors from Rn+1 (Lemma 1) and the
cyclic submodules generated by them (Lemma 2), up to the action of the group
GLn+1(R). There exist altogether 5+ |F | distinct orbits of vectors and six (two
free, one of them non-unimodular) ones of submodules. The non-unimodular
free cyclic submodules are linked with the lines of PG(n, F ) (Theorem 1). In
the finite case, we count explicitly the total number of non-unimodular free
cyclic submodules as well as the cardinalities of their subsets passing through
a given vector (Theorem 2). In light of the fact that there are only few papers
on projective geometries over ternions, we hope that our findings will stir the
interest of mathematicians into a more systematic treatment of exciting open
problems in this particular branch of ring geometries, and will also prove fruitful
for envisaged applications of projective geometries over ternions in quantum
physics.
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